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Abstract

As software systems are forming the essential infrastructures of human societies, we
have to make them trustworthy. A prominent approach to building reliable systems is
complete formal verification using proof assistants.

Proof assistants are software systems that facilitate interactive proof developments. In
a complete formal verification project, software developers specify what they want in a
proof assistant and prove that their implementation is correct in terms of the specification.

This method is known to be able to remove software failures, however, interactive
proof developments are laborious processes that require domain-specific expertise in the
proof assistant of our choice.

This dissertation demonstrates how to alleviate such burdensome processes for a
particular proof assistant, Isabelle/HOL. Isabelle/HOL is one of the most commonly
used proof assistants and comes with various sub-tools to expedite proof developments.
Experienced Isabelle users know how to best exploit such sub-tools, whereas new Isabelle
users are usually overwhelmed by the number of available sub-tools. Furthermore, even
for experienced Isabelle users it is still necessary to carefully investigate the proof goal at
hand to adjust the appropriate sub-tool for that goal.

I automate some of such onerous processes using artificial intelligence and domain-
specific languages: domain-specific languages allow experienced users to encode their know-
hows, and artificial intelligence tries to identify the promising sub-tool and recommends
how to use the tool. Evaluations show that my meta-tools correctly predict experts’ use
of Isabelle’s sub-tools, improving the user-experience of Isabelle/HOL.
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Chapter 1

Introduction

Zu diesem Allen kommt, daß zu Papier
gebrachte Gedanken überhaupt nichts
weiter sind, als die Spur eines
Fußgängers im Sande: man sieht wohl
den Weg, welchen er genommen hat;
aber um zu wissen, was er auf dem
Wege gesehn, muß man seine eigenen
Augen gebrauchen.

Arthur Schopenhauer

1.1 Artificial Intelligence for Theorem Proving
This dissertation presents how I improved the user-interface of an interactive theorem
prover, Isabelle/HOL, using artificial intelligence and domain-specific languages. Inter-
active proof assistants (ITPs) are software systems that assist human researchers to
formulate mathematical concepts and prove them. Therefore, ITPs are also known as
proof assistants. Isabelle/HOL is an ITP based on a classical higher-order logic and is
known for its powerful sub-tools that expedite proof developments.

I improved the user-interface of Isabelle/HOL because proof automation for higher-order
logic is an important problem of both theoretical interest and practical necessity.

On the theoretical side, theorem proving allows machines to fully capture the formal
definitions of mathematical objects provided through user interaction. This forms a
vibrant contrast to the conventional machine learning techniques that are often based on
inductive reasoning: the conclusions of typical machine learning algorithms are based on
statistical inference and their correctness is subject to probability, while the conclusions
of mechanically proved theorems are in theory 100% correct under their formally stated
assumptions.

On the practical side, theorem proving is becoming the norm of reliable systems
programming. Researchers and engineers use ITPs to mechanically specify their system
requirements and prove that their implementations are correct in terms of the specifi-
cations. ITPs are also forming the basis of formal scientific development. For example,
well-known hard mathematical propositions, such as the four color theorem and the
Kepler conjecture, have been mechanically proved in ITPs.
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1 Introduction

Despite the recent progress in proof automation, writing mechanical proofs still requires
engineers’ expertise and is labor intensive: theorem proving in higher-order logic is in
general undecidable, and any deterministic algorithm quickly faces combinatorial explosion
even for conceptually straight-forward conjectures. For this reason, one has to resort to
heuristic solutions. Fortunately, many proof obligations require “shallow” heuristics in
practice: since we already have many useful tools called tactics for writing proofs, we
can prove many conjectures by specializing and combining tactics.

That is why this dissertation introduces approaches to improving ITPs’ user-interface
using AI and DSLs, so that we can build a system that is rigorous, expressive, and
capable of autonomous reasoning by integrating the benefits of theorem proving and
artificial intelligence.

1.2 Isabelle/HOL, the Target Proof Assistant

There are a number of proof assistants available. Arguably, Coq [TCdt] has the largest
user base. Coq is based on an expressive formal language called the Calculus of Inductive
Constructions [PM14]. There is also a group of proof assistants, called the HOL family,
which includes HOL Light [Har96], HOL [SN08], HOL Zero [Ada16], PVS [ORS92],
and Isabelle/HOL [NPW02]. These proof assistants are based on a variant of classical
higher-order logic.

Originally, these proof assistants used to admit procedural proof scripts only: human
engineers keep applying commands, called tactics, one by one to reduce proof goals into
simpler sub-goals until no new sub-goals arise. The resulting proof scripts are, therefore,
di�cult to read and maintain.

Mizar [GKN10] addressed this problem by introducing a declarative style: it comes
with reserved keywords that resemble English, such as assume and by. Using these
keywords, human engineers develop proof scripts that are more intuitive to humans and
easy to read and maintain.

Inspired by Mizar, Wenzel developed a proof language, Isar [Wen02], for Isabelle. Isar
allows us to intertwine the procedural tactic-style proofs with the Mizar-like declarative
proof style as well as definitions and specifications in one framework. Furthermore, the
syntax of Isar is extensible: it provides an infrastructure to build other tools for Isabelle
and integrate such tool as its sub-components [WW07].

I choose Isabelle/HOL as my target proof assistant for several reasons. Firstly, the
extensible syntax of Isar lets me develop new tools as plug-ins. This allows users to easily
install my tools using the standard Isabelle command and call the tools as parts of Isar.
Thus, all tools presented in this dissertation are implemented as plug-ins, which one can
use as parts of Isabelle/Isar.

Secondly, Isabelle/HOL comes with a number of sub-tools, such as proof tactics,
Sledgehammer [BBP11] and counterexample finders [Bul12, Bla10]. These powerful
sub-tools can handle non-trivial proof goals; however, each sub-tool has weakness as well
as strength, and it requires Isabelle-specific expertise to decide how to use which sub-tool
for what kind of problem. The tools presented in this dissertation address these issues,

2
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so that Isabelle users can best exploit the already powerful Isabelle sub-tools.
Lastly, Isabelle/HOL comes with a large proof corpora called the Archive of Formal

Proofs (AFP) [KNPT04]. The AFP is an online repository where Isabelle users submit
their proof documents. All submitted proof documents are peer reviewed to maintain the
quality of entries. Currently, the AFP hosts 548 articles written by in total 360 authors,
with more than 148,000 lemmas and 2,584,000 lines of code. This large repository is
useful to train my machine learning algorithms to learn how to write proof documents in
Isabelle/HOL.

1.3 Need for Suitable Representations of Proof Heuristics
There are already a number of projects that attempt to improve proof assistants or
automatic theorem provers using artificial intelligence. For example, Sledgehammer, a
sub-tool of Isabelle/HOL itself, uses machine learning to select relevant facts [KBKU13].

One aspect that di�erentiates my work from other AI projects to improve theorem
provers is that my approach exploits Isabelle users expert knowledge explicitly by choosing
or developing suitable languages to represent their expertise.

Such representations of expertise have to satisfy the following two requirements:

1. they should not require a large number of similar data points, and

2. they should not be specific to particular problems.

From the perspective of theorem proving, these two criteria are the achievements of
expressive logics: when formulating theorems and proving them in an expressive logic,
engineers prefer to describe general concepts that can cover a large number of concrete
cases. Such abstractions let engineers handle concrete cases as instances of the general
concepts.

Consider, for example, the following formalisation of list from Isabelle’s standard
library.

datatype ’a list =
Nil ("[]")

| Cons "’a" "’a list" (infixr "#" 65)

In this formalisation, the list type constructor is defined using parametric polymorphism,
and the concrete type of list depends on the type variable expressed as ’a. For instance,
we can instantiate ’a with char to express lists of characters or with int to express lists
of integers. This way, parametric polymorphism allows us to reason about lists in general
instead of dealing with lists of particular types one by one. Based on this formalisation
of the list constructor, the standard library defines a function to append two lists and
the associative property of this function as follows:

primrec append :: "’a list ∆ ’a list ∆ ’a list" (infixr "@" 65) where
append_Nil: "[] @ ys = ys"

3
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| append_Cons: "(x#xs) @ ys = x # xs @ ys"

lemma associative: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct xs)
apply auto

done

where the variables (xs, ys, and zs) are universally quantified implicitly. That is, this
append function is defined for all lists of any number of arbitrary elements of any type.
Therefore, the only restriction that lists in lemma associative has to satisfy is that all
elements in the lists under consideration have to be of the same type. For this reason,
once we prove the generic associative property for lists as lemma associative, we can
derive the associative properties of concrete lists as special cases of lemma associative
as follows:

lemma "([1] @ [2]) @ [3] = [1] @ ([2] @ [3])"
by (intro append_assoc)

lemma "([’’a’’] @ [’’b’’]) @ [’’c’’] = [’’a’’] @ ([’’b’’] @ [’’c’’])"
by (intro append_assoc)

This way, when we use an expressive logic experienced scientists replace many similar
theorems sharing the same nature with one general formula. And concise presentation of
knowledge is what is desired in science, and that is why scientists prefer to use expressive
logics.

But from the perspective of AI application to theorem proving, this expressiveness is
what causes the aforementioned two criteria: since similar concrete cases are represented
in one general formula, we should not have similar theorems and proofs in a high quality
proof database. If two theorems share a certain nature, we should represent them in one
general formula and treat the two theorems as instances of the general formula.

This expressiveness also leads to the second criterion about the desirable representation
of heuristics. Since we can handle similar concrete cases as instances of a general formula,
whenever we need support from AI tools, these tools have to provide recommendations
for a new problem that is not similar to existing ones.

In our example, we already have the associative property for all lists. Therefore, we
do not need AI support to prove the associative property for lists of integers or lists of
strings. But we might need AI supports when we try to prove the associative property of
new operations defined on new types (e.g. the plus operator) .

This means if we want to exploit human engineers’ heuristics from the proof of
associative property of the append function for lists to prove the associative property
of a new operation, such as the plus operator on natural numbers, we have to choose a
representation that is not specific to the list constructor or the append function.

4
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1.4 Three Kinds of Representations for Proof Heuristics
For this reason, I employed three kinds of representations to encode proof heuristics in
this dissertation. In this section, I introduce these three styles briefly. The details of each
representation is expounded in the corresponding chapters.

Proof Strategy Language. Chapter 3 introduces PSL, Proof Strategy Language. Using
PSL, Isabelle users can encode their rough idea about how to attack proof goals as
a strategy. Strategies written in PSL are not specific to concrete proof goals but are
abstract descriptions of procedural proof heuristics. When applied to a proof goal, PSL’s
interpreter produces variants of proof tactics from a strategy and attempts to solve the
goal.

For instance, if we apply a proof strategy about proof by induction to the aforementioned
proof goal about the associative property of lists, PSL’s interpreter produces variants
of the induction tactic that are parametrized by arguments such as (induct xs) and
(induct xs arbitrary:ys).

The advantage of this approach is that the interpreter produces a combination of
tactics with which Isabelle can discharge a proof goal if PSL’s interpreter succeeds to
complete a proof search based on a given strategy. The drawback of this approach is
that when applied to di�cult proof goals the search space specified by a strategy as a
procedural heuristic tends to explode and the interpreter fails to complete a proof search.

Elaborate Feature Extractor in Standard ML To complement the weakness of PSL,
Chapter 6 introduces PaMpeR. PaMpeR is a recommendation tool for proof tactics that
does not rely on a proof search. PaMpeR learns which proof tactic to apply to what kind
of proof goals from the Archive of Formal Proofs. However, when creating a database
which matches proof tactic names and proof goals PaMpeR applies an elaborate feature
extractor to the proof goals, converting each proof goal into an array of boolean values.

This feature extractor is hand-written in Isabelle’s implementation language, Standard
ML. And it only analyzes the concrete information defined in Isabelle’s standard library
and the meta-information related to proof goals. Strictly speaking, analyzing concrete
information defined in Isabelle’s standard library is an exception to the aforementioned
second criterion. However, some language constructs defined in the standard library, such
as the list type constructor, appear in many projects across problem domains. Therefore,
I decided that it is valuable to have heuristics about concrete information defined in the
standard library.

To acquire meta-information, PaMpeR mainly analyzes how each construct is defined in
the underlying context. PaMpeR’s feature extractor, for example, checks which Isabelle
keyword was used to define constants appearing in the proof goal. Our ongoing example
about the associative property of list involves the append function, which is defined with
the primrec keyword. This keyword is used to define new constants using primitive
recursion. Therefore, when PaMpeR’s feature extractor processes this proof, it tags the
name of proof tactic, induct, with the information that this proof goal involves a constant
defined through primitive recursion.

5
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Note that such feature extractor for the meta-information can analyze not only proof
goals that are available today, but also new goals that will be developed in future using
new constants and types that do not even exist yet.

The evaluation results in Chapter 6 show that PaMpeR can recommend certain proof
tactics accurately without resorting to proof search. However, it does not recommend
arguments of proof tactics. This is a serious limitation of PaMpeR, as the choice of
arguments is critical to e�ective proof developments for some tactics, notably the induct
tactic.

LiFtEr: Logical Feature Extractor. To address this problem for the induct tactic
we developed our domain-specific language, LiFtEr. LiFtEr stands for logical feature
extractor and o�ers logical connectives such as implication, conjunction, and existential
and universal quantifiers. These connectives provide the abstraction that allows expe-
rienced users to encode induction heuristics without referring to concrete constructs,
such as constants or variable names. Since induction heuristics written in LiFtEr do not
depend on problem specific constructs, they can transcend problem domains. Chapter 4
provides more thorough explanations on LiFtEr. And Chapter 5 introduces an automatic
recommendation tool for the arguments of the induct tactic, using induction heuristics
encoded in LiFtEr.

1.5 Inductive Theorem Proving
As the previous section implies, a significant part of this dissertation explains approaches
to automating proof by induction in Isabelle/HOL. The automation of proof by induction
is one of the largest remaining challenge in mechanised theorem proving. In particular,
the automation of inductive theorem proving of arbitrary problem domains is a known
open question.

Traditionally, this problem was addressed mainly by the automated first-order theorem
provers, in which one introduces induction axioms to handle proof by induction.

Inductive theorem provers are often based on logics expressive enough to handle proof
by induction without introducing additional axioms. Isabelle/HOL is no exception
here. In fact, Isabelle o�ers proof tactics, with which users can specify how to apply
proof by induction intuitively. However, there are usually infinitely many ways to apply
the induction tactic for a given inductive problem. What is worse, for many cases an
application of the induction tactic can be both inappropriate and safe at the same
time: an inappropriate application of the induction tactic would transform an inductive
problem into a format that is more di�cult to prove, yet if the application is safe the
resulting new proof goals are still provable assuming the original inductive problem is
provable. Therefore, when an application of induction tactic is both inappropriate and
safe, counterexample finders cannot detect that the proof attempt has gone awry, causing
the explosion of search space.

In this dissertation, I present a guided brute-force approach in Chapter 3 to auto-
mate relatively easy proof by induction in Isabelle/HOL, and Chapter 4 introduces a

6
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domain-specific language, LiFtEr, to encode induction heuristics, so that we can mechan-
ically check if an application of the induction tactic is likely to be appropriate or not
independently of the safety of the application. smart_induct in Chapter 5 uses LiFtEr
and recommends how one should use induct for a given inductive problem. Chapter 8
describes an approach to identifying an auxiliary lemma useful to prove a given inductive
problem using abductive reasoning. In Chapter 9, I envision a strong inductive prover
that takes advantages of the approaches presented in this dissertation.
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Chapter 2

Contributions

Consider the following two definitions of the reverse function for lists presented in the
Isabelle/HOL tutorial [NPW02]:

primrec append :: "’a list ∆ ’a list ∆ ’a list" (infixr "@" 65) where
append_Nil : " [] @ ys = ys"

| append_Cons: "(x#xs) @ ys = x # xs @ ys"

primrec itrev :: "’a list ∆ ’a list ∆ ’a list" where
"itrev [] ys = ys"

| "itrev (x#xs) ys = itrev xs (x#ys)"

primrec rev :: "’a list ∆ ’a list" where
"rev [] = []"

| "rev (x#xs) = rev xs @ [x]"

where # is the list constructor, [x] is a syntactic sugar for x # [], and @ is defined
as an infix operator for append. How would you prove the following equivalence in
Isabelle/HOL?

lemma itrev_is_rev: "itrev xs [] = rev xs"

One way to prove this lemma is to prove a more generic lemma and use it as an
auxiliary lemma to prove our final goal:

lemma helper: "itrev xs ys = rev xs @ ys"
apply (induct xs arbitrary: ys)
by auto

lemma itrev_is_rev: "itrev xs [] = rev xs"
by (simp add: helper)

This small proof script reveals the following three key challenges of theorem proving in
Isabelle/HOL:

• Task A: Proof authors choose adequate proof methods for each step in the proofs.

9



2 Contributions

• Task B: Proof authors pass arguments to the method to handle each proof goal.

• Task C: Proof authors specify auxiliary lemmas to prove the original goal.

In my PhD studies, I automated some of these processes using artificial intelligence
and domain-specific languages. My research contributions resulted in the following six
papers compiled into this thesis.

• A proof strategy language and proof script generation for Isabelle/HOL presented
as Chapter 3

• Goal-oriented conjecturing for Isabelle/HOL as Chapter 8

• PaMpeR: proof method recommendation system for Isabelle/HOL as Chapter 6

• Simple dataset for proof method recommendation in Isabelle/HOL as Chapter 7

• LiFtEr: Language to encode induction heuristics for Isabelle/HOL as Chapter 4

• Smart induction for Isabelle/HOL (tool paper) as Chapter 5

I am the first author and main contributor of these six publications. In the following, I
expound how each publication addressed the aforementioned three challenges and what
my contribution was for each publication.

2.1 A Proof Strategy Language and Proof Script Generation
for Isabelle/HOL

Publication Details

Yutaka Nagashima and Ramana Kumar. A proof strategy language and proof
script generation for Isabelle/HOL. In Leonardo de Moura, editor, Automated
Deduction - CADE 26 - 26th International Conference on Automated Deduc-
tion, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of
Lecture Notes in Computer Science, pages 528–545. Springer, 2017

In this chapter, I automated Task A and Task B for relatively easy proof goals by
introducing PSL. PSL is a domain-specific language designed to capture high level proof
strategies in Isabelle/HOL. Given a strategy and a proof obligation, PSL’s runtime system
generates and combines various tactics to explore a large search space with low memory
usage. Upon success, PSL generates an e�cient proof script, which bypasses a large part
of the proof search. I also present PSL’s monadic interpreter to show that the underlying
idea of PSL is transferable to other ITPs.
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2.2 LiFtEr: Language to encode induction heuristics for Isabelle/HOL

My Contributions
I came up with the idea of proof strategy language as a meta-language for Isabelle’s tactic
language and implemented the PSL interpreter. I conducted the evaluations of PSL’s
default strategy, try_hard based on course work assignments and selected theory files
from the Archive of Formal Proofs (AFP) [KNPT04]. I wrote most of the final version of
the manuscript with support from Ramana Kumar.

2.2 LiFtEr: Language to encode induction heuristics for
Isabelle/HOL

Publication Details
Yutaka Nagashima. LiFtEr: Language to encode induction heuristics for Is-
abelle/HOL. In Programming Languages and Systems - 17th Asian Symposium,
APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings,
pages 266–287, 2019

In this chapter, I addressed Task B for relatively di�cult inductive problems, which
brute-force search tools cannot prove in a realistic timeout, by designing and implementing
a domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to encode
their induction heuristics in a style independent of any problem domain. When new
Isabelle users face an inductive problem, LiFtEr’s interpreter mechanically checks if a
given combination of arguments to the induct tactic matches the heuristics with respects
to the inductive problem. Later, LiFtEr was used to implement smart_induct [Nag20e],
a recommendation tool for inductive problems in Isabelle/HOL.

My Contributions
I was the sole author of this chapter: I came up with the idea of developing a domain-
specific language resembling the first-order logic to encode induction heuristics for
Isabelle/HOL, implemented its interpreter, and wrote the paper independently with the
supports from Ekaterina Komendantskaya as the shepherd assigned by the program
committee.

2.3 Smart Induction for Isabelle/HOL (Tool Description)
Publication Details

Yutaka Nagashima. Smart induction for Isabelle/HOL (tool paper). In
Proceedings of the 20th Conference on Formal Methods in Computer-Aided
Design – FMCAD 2020, 2020

In this chapter, I addressed Task B for relatively di�cult inductive theorem proving
in Isabelle/HOL, using LiFtEr. More specifically, I encoded 19 induction heuristics
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2 Contributions

in LiFtEr and implemented a recommendation tool, smart_induct. Given a problem
in any problem domain. smart_induct suggests promising combinations of arguments
to the induct tactic without completing a proof search. My in-depth evaluations
demonstrated that smart_induct produces valuable recommendations across problem
domains. Currently, smart_induct is an interactive tool; however, I expect that smart_-
induct can be used to narrow the search space of automatic inductive provers.

My Contributions

I was the sole author of this chapter: I came up with the idea of developing a recom-
mendation tool for the induct tactic, using LiFtEr in Isabelle/HOL, implemented and
evaluated the tool, and wrote the paper independently.

2.4 PaMpeR: proof method recommendation system for
Isabelle/HOL

Publication Details

Yutaka Nagashima and Yilun He. PaMpeR: proof method recommendation
system for Isabelle/HOL. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, pages 362–372, 2018

In this chapter, I built a proof method recommendation system, PaMpeR, to automate
Task A in Isabelle/HOL. Given a proof state, PaMpeR recommends proof methods to
discharge the proof goal and provides qualitative explanations as to why it suggests these
methods. PaMpeR generates these recommendations based on existing hand-written proof
corpora, thus transferring experienced users’ expertise to new users. Our evaluation shows
that PaMpeR correctly predicts experienced users’ proof method invocations especially
when it comes to special purpose proof methods.

My Contributions

I designed PaMpeR and supervised the student, Yilun He, who implemented the first
working prototype of PaMpeR. His first prototype had less than 20 assertions to extract
features of proof obligations and relied on an external Python library for the machine
learning implementation. And the first prototype showed a limited performance in an
initial evaluation. Therefore, I added more than 90 assertions to make the feature extractor
more expressive and implemented the machine learning algorithms in Isabelle/ML to
remove the dependency to the external software. Even though Yilun He was the main
developer of the first prototype, I became the main developer of the second prototype. I
wrote the manuscript alone, which I presented at the conference.
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2.5 Simple Dataset for Proof Method Recommendation in Isabelle/HOL (Dataset
Description)

2.5 Simple Dataset for Proof Method Recommendation in
Isabelle/HOL (Dataset Description)

Publication Details
Yutaka Nagashima. Simple dataset for proof method recommendation in
Isabelle/HOL. In Christoph Benzmüller and Bruce R. Miller, editors, Intelli-
gent Computer Mathematics - 13th International Conference, CICM 2020,
Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture Notes
in Computer Science, pages 297–302. Springer, 2020

In this chapter, I present the dataset I used to build PaMpeR. This dataset contains
data on over 400k proof method applications along with over 100 extracted features for
each. The data format is simple, so that the dataset helps machine learning practitioners
try out machine learning tools to address Task A without knowing domain expertise in
logic.

My Contributions
I produced the database using PaMpeR’s feature extractor from the Archive of Formal
Proofs [KNPT04] and Isabelle’s standard library. I also wrote the manuscript. I am the
sole author of this chapter.

2.6 Goal-oriented conjecturing for Isabelle/HOL
Publication Details

Yutaka Nagashima and Julian Parsert. Goal-oriented conjecturing for Is-
abelle/HOL. In Intelligent Computer Mathematics - 11th International Con-
ference, CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceedings,
pages 225–231, 2018

In this chapter, I present an abductive reasoning framework to address Task C: dis-
covering of useful auxiliary lemmas. Given a proof goal and its background context,
my tool, PGT, attempts to generate conjectures from the original goal by transforming
the original proof goal. These conjectures should be weak enough to be provable by
automation but su�ciently strong to prove the original goal. By incorporating PGT into
the pre-existing PSL framework, we exploit Isabelle’s strong automation to identify and
prove such conjectures.

My Contributions
I designed the abductive reasoning framework and the framework to produce conjectures
based on a proof obligation. I also implemented these. I wrote most of the manuscript
except for Section 2.2 on conjecturing, which was written mainly by Julian Parsert.
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2 Contributions

2.7 Other Contributions Before my PhD Studies

In addition to the aforementioned contributions, I worked to develop a certifying compiler,
Cogent, at Data61, CSIRO, formerly known as NICTA. This line of work resulted in the
following three publications, which are not part of this dissertation.

Publication Details (Functional Correctness of File Systems Code)

Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,
Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas
Sewell, Joseph Tuong, Gabriele Keller, Toby C. Murray, Gerwin Klein, and
Gernot Heiser. Cogent: Verifying high-assurance file system implementations.
In Tom Conte and Yuanyuan Zhou, editors, Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016,
pages 175–188. ACM, 2016

My Contributions

Using Isabelle/HOL, I supported proving functional correctness of two main API functions
of this file systems code written in the Cogent language. The main contributor to this
proof was Sidney Amani, my contribution was limited to proving auxiliary lemmas Amani
needed to complete the correctness proofs.

Publication Details (Development of a Certifying Compiler for Cogent)

• Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen,
Liam O’Connor, Toby C. Murray, Gabriele Keller, and Gerwin Klein. A framework
for the automatic formal verification of refinement from Cogent to C. In Jas-
min Christian Blanchette and Stephan Merz, editors, Interactive Theorem Proving
- 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016,
Proceedings, volume 9807 of Lecture Notes in Computer Science, pages 323–340.
Springer, 2016

• Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim,
Toby C. Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. Refinement
through restraint: bringing down the cost of verification. In Jacques Garrigue,
Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 89–102. ACM, 2016
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2.8 Other Contributions During my PhD Studies

My Contributions
In this project, we developed a verified compiler for a restricted functional systems
language with linear types (Cogent). I contributed to proof automation tools, written in
ML, for the translation validation pass to C code in this verified compiler.

2.8 Other Contributions During my PhD Studies
In addition to the aforementioned contributions, I presented my plans to further improve
Isabelle/HOL. These presentations resulted in the following two extended abstracts,
which are not part of this dissertation.

Publication Details
Yutaka Nagashima. Towards evolutionary theorem proving for Isabelle/HOL.
In Manuel López-Ibáñez, Anne Auger, and Thomas Stützle, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019, pages 419–420.
ACM, 2019

My Contributions
I was the sole author of this extended abstract: I came up with the idea and presented it
independently.

Publication Details
Yutaka NAGASHIMA. Towards united reasoning for automatic induction
in Isabelle/HOL. The 34th Annual Conference of the Japanese Society for
Artificial Intelligence, JSAI2020:3G1ES103–3G1ES103, 2020

My Contributions
I was the sole author of this extended abstract: I came up with the idea and presented it
independently.
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Chapter 3

A Proof Strategy Language and Proof
Script Generation for Isabelle/HOL

Publication Details
Yutaka Nagashima and Ramana Kumar. A proof strategy language and proof
script generation for Isabelle/HOL. In Leonardo de Moura, editor, Automated
Deduction - CADE 26 - 26th International Conference on Automated Deduc-
tion, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of
Lecture Notes in Computer Science, pages 528–545. Springer, 2017

Abstract
We introduce a language, PSL, designed to capture high level proof strategies in Is-
abelle/HOL. Given a strategy and a proof obligation, PSL’s runtime system generates
and combines various tactics to explore a large search space with low memory usage.
Upon success, PSL generates an e�cient proof script, which bypasses a large part of the
proof search. We also present PSL’s monadic interpreter to show that the underlying
idea of PSL is transferable to other ITPs.

3.1 Introduction
Currently, users of interactive theorem provers (ITPs) spend a lot of time iteratively
interacting with their ITP to manually specialise and combine tactics. This time consum-
ing process requires expertise in the ITP, making ITPs more esoteric than they should be.
The integration of powerful automatic theorem provers (ATPs) into ITPs ameliorates this
problem significantly; however, the exclusive reliance on general purpose ATPs makes it
hard to exploit users’ domain specific knowledge, leading to combinatorial explosion even
for conceptually straight-forward conjectures.

To address this problem, we introduce PSL, a programmable, extensible, meta-tool based
framework, to Isabelle/HOL [NPW02]. We provide PSL (available on GitHub [Nag16d])
as a language, so that its users can encode proof strategies, abstract descriptions of how
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to attack proof obligations, based on their intuitions about a conjecture. When applied
to a proof obligation, PSL’s runtime system creates and combines several tactics based
on the given proof strategy. This makes it possible to explore a larger search space than
has previously been possible with conventional tactic languages, while utilising users’
intuitions on the conjecture.

We developed PSL to use engineers’ downtime: with PSL, we can run an automatic
proof search for hours while we are attending meetings, sleeping, or reviewing papers.
PSL makes such expensive proof search possible on machines with limited memory: PSL’s
runtime system truncates failed proof attempts as soon as it backtracks to minimise its
memory usage.

Furthermore, PSL’s runtime system attempts to generate e�cient proof scripts from a
given strategy by searching for the appropriate specialisation and combination of tactics
for a particular conjecture without direct user interaction. Thus, PSL not only reduces
the initial labour cost of theorem proving, but also keeps proof scripts interactive and
maintainable by reducing the execution time of subsequent proof checking.

In Isabelle, Sledgehammer adopts a similar approach [BKPU16]. It exports a proof goal
to various external ATPs and waits for them to find a proof. If the external provers find
a proof, Sledgehammer tries to reconstruct an e�cient proof script in Isabelle using hints
from the ATPs. Sledgehammer is often more capable than most tactics but su�ers from
discrepancies between the polymorphic higher-order logic of Isabelle and the monomorphic
first-order logic of most backend provers. While we integrated Sledgehammer as a sub-tool
in PSL, PSL conducts a search using Isabelle tactics, thus avoiding the problems arising
from the discrepancies and proof reconstruction.

The underlying implementation idea in PSL is the monadic interpretation of proof
strategies, which we introduce in Section 3.6. We expect this prover-agnostic formalization
brings the following strengths of PSL to other ITPs such as Lean [dMKA+15] and Coq
[TCdt]:

• runtime tactic generation based on user-defined procedures,
• memory-e�cient large-scale proof search, and
• generation of e�cient proof scripts for proof maintenance.

3.2 Background

Interactive theorem proving can be seen as the exploration of a search tree. Nodes of
the tree represent proof states. Edges represent applications of tactics, which transform
the proof state. Tactics are context sensitive: they behave di�erently depending on
information stored in background proof contexts. These proof contexts contain such
information as the constants defined and auxiliary lemmas proved prior to the current
step. Since tactic behaviour depends on the proof context, it is hard to predict the shape
of the search tree in advance.

The goal is to find a node representing a solved state: one in which the proof is
complete. The search tree may be infinitely wide and deep, because there are endless
variations of tactics that may be tried at any point. The goal for a PSL strategy is to
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No subgoals!

y /\ z => w => x => z w /\ x => y => z => z

w /\ x => y /\ z => z

back

Failed to apply proof 
method

apply ( erule conjE )

apply ( assumption )

(a) External view

[            ,           ]

[           ]( w /\ x => y /\ z => z )

( y /\ z => w => x => z )
=>

( w /\ x => y /\ z => z )

( w /\ x => y => z => z )
=>

( w /\ x => y /\ z => z )

( w /\ x => y /\ z => z ) 
=>

( w /\ x => y /\ z => z ) 

back

[ ]

:thm

++

apply ( erule conjE )

apply ( assumption )

(b) Internal view

Figure 3.1: External and internal view of proof search tree.

direct an automated search of this tree to find a solved state; PSL will reconstruct an
e�cient path to this state as a human-readable proof script.

Fig. 3.1a shows an example of proof search. At the top, the tactic erule conjE is
applied to the proof obligation w·x ∆ y·z ∆ z. This tactic invocation produces two
results, as there are two places to apply conjunction elimination. Applying conjunction
elimination to w·x returns the first result, while doing so to y·z produces the second
result. Subsequent application of proof by assumption can discharge the second result;
however, assumption does not discharge the first one since the z in the assumptions is
still hidden by the conjunction. Isabelle’s proof language, Isar , returns the first result by
default, but users can access the subsequent results using the keyword back.

Isabelle represents this non-deterministic behaviour of tactics using lazy sequences:
tactics are functions of type thm -> [thm], where [·] denotes a (possibly infinite) lazy
sequence [Pau93]. Fig. 3.1 illustrates how Isabelle internally handles the above example
where ++ stands for the concatenation of lazy sequences. Each proof state is expressed as a
(possibly nested) implication which assumes proof obligations to conclude the conjecture.
One may complete a proof by removing these assumptions using tactics. Tactic failure
is represented as an empty sequence, which enables backtracking search by combining
multiple tactics in a row [Wad85]. For example, one can write apply(erule conjE,
assumption) using the sequential combinator , (comma) in Isar ; this tactic traverses
the tree using backtracking and discharges the proof obligation without relying on the
keyword back.

The search tree grows wider when choosing between multiple tactics, and it grows
deeper when tactics are combined sequentially. In the implementation language level, the
tactic combinators in Isabelle include THEN for sequential composition (corresponding
to , in Isar), APPEND for non-deterministic choice, ORELSE for deterministic choice, and
REPEAT for iteration.

Isabelle/HOL comes with several default tactics such as auto, simp, induct, rule,
and erule. When using tactics, proof authors often have to adjust tactics using modifiers
for each proof obligation. succeed and fail are special tactics: succeed takes a value
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of type thm, wraps it in a lazy sequence, and returns it without modifying the value.
fail always returns an empty sequence.

3.3 Syntax of PSL

The following is the syntax of PSL. We made PSL’s syntax similar to that of Isabelle’s
tactic language aiming at the better usability for users who are familiar with Isabelle’s
tactic language.

strategy := default | dynamic | special | subtool | compound
default := Simp | Clarsimp | Fastforce | Auto | Induct

| Rule | Erule | Cases | Coinduction | Blast
dynamic := Dynamic (default )
special := IsSolved | Defer | IntroClasses | Transfer

| Normalization | Skip | Fail | User <string >
subtool := Hammer | Nitpick | Quickcheck
compound := Thens [strategy ] | Ors [strategy ] | Alts [strategy ]

| Repeat (strategy ) | RepeatN (strategy )
| POrs [strategy ] | PAlts [strategy ]
| PThenOne [strategy ] | PThenAll [strategy ]
| Cut int (strategy )

The default strategies correspond to Isabelle’s default tactics without arguments, while
dynamic strategies correspond to Isabelle’s default tactics that are specialised for each
conjecture. Given a dynamic strategy and conjecture, the runtime system generates
variants of the corresponding Isabelle tactic. Each of these variants is specialised for the
conjecture with a di�erent combination of promising arguments found in the conjecture
and its proof context. It is the purpose of the PSL runtime system to select the right
combination automatically.

subtool represents Isabelle tools such as Sledgehammer [PB10] and counterexample
finders. The compound strategies capture the notion of tactic combinators: Thens
corresponds to THEN, Ors to ORELSE, Alts to APPEND, and Repeat to REPEAT. POrs
and PAlts are similar to Ors and Alts, respectively, but they admit parallel execution
of sub-strategies. PThenOne and PThenAll take exactly two sub-strategies, combine
them sequentially and apply the second sub-strategy to the results of the first sub-
strategy in parallel in case the first sub-strategy returns multiple results. Contrary
to PThenAll, PThenOne stops its execution as soon as it produces one result from the
second sub-strategy. Users can integrate user-defined tactics, including those written in
Eisbach [MWM14, MMW16], into PSL strategies using User. Cut limits the degree of
non-determinism within a strategy.

In the following, we explain how to write strategies and how PSL’s runtime system
interprets strategies with examples.
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3.4 PSL by Example

Figure 3.2: Screenshot for Example 1.

3.4 PSL by Example

Example 1. For our first example, we take the following lemma from an entry [NM04a]
in the Archive of Formal Proofs (AFP):

lemma dfs_app: "dfs g (xs @ ys ) zs = dfs g ys (dfs g xs zs )"

where dfs is a recursively defined function for depth-first search. As dfs is defined
recursively, it is natural to expect that its proof involves some sort of mathematical
induction. However, we do not know exactly how we should conduct mathematical
induction here; therefore, we describe this rough idea as a proof strategy, DInductAuto,
with the keyword strategy, and apply it to dfs_app with the keyword find_proof as
depicted in Fig. 3.2. The find_proof command tells PSL’s runtime system to interpret
DInductAuto. For example, it interprets Auto as Isabelle’s default tactic, auto.

The interpretation of Dynamic(Induct) is more involved: the runtime generates tactics
using the information in dfs_app and its background context. First, PSL collects the free
variables (noted in italics above) in dfs_app and applicable induction rules stored in
the context. PSL uses the set of free variables to specify two things: on which variables
instantiated tactics conduct mathematical induction, and which variables should be
generalised in the induction scheme. The set of applicable rules are used to specify which
rules to use. Second, PSL creates the powerset out of the set of all possible modifiers.
Then, it attempts to instantiate a variant of the induct tactic for each subset of modifiers.
Finally, it combines all the variants of induct with unique results using APPEND. In this
case, PSL tries to generate 4160 induct tactics for dfs_app by passing several combinations
of modifiers to Isabelle; however, Isabelle cannot produce valid induction schemes for
some combinations, and some combinations lead to the same induction scheme. The
runtime removes these, focusing on the 223 unique results. PSL’s runtime combine these
tactics with auto using THEN.

PSL’s runtime interprets IsSolved as the is_solved tactic, which checks whether any
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goal

Dynamic ( Induct )

Auto

IsSolved

(a) DInductAuto

goal

Dynamic ( Induct )

IsSolved

Auto Repeat ( Ors [ FastForce, Hammer ] ) 

IsSolved

(b) some_induct2

Figure 3.3: Proof search tree for some_induct

proof obligations are left or not. If obligations are left, is_solved behaves as fail,
triggering backtracking. If not, is_solved behaves as succeed, allowing the runtime to
stop the search. This is how DInductAuto uses IsSolved to ensure that no sub-goals are
left before returning an e�cient proof script. For dfs_app, PSL interprets DInductAuto
as the following tactic:

(induct1 APPEND induct2 APPEND...) THEN auto THEN is_solved

where induct_ns are variants of the induct tactic specialised with modifiers.
Within the runtime system, Isabelle first applies induct1 to dfs_app, then auto to the

resultant proof obligations. Note that each induct tactic and auto is deterministic: it
either fails or returns a lazy sequence with a single element. However, combined together
with APPEND, the numerous variations of induct tactics en masse are non-deterministic:
if is_solved finds remaining proof obligations, Isabelle backtracks to the next induct
tactic, induct2 and repeats this process until either it discharges all proof obligations or
runs out of the variations of induct tactics. The numerous variants of induct tactics
from DInductAuto allow Isabelle to explore a larger search space than its naive alternative,
induct THEN auto, does. Fig. 3.3a illustrates this search procedure. Each edge and
curved square represents a tactic application and a proof state, respectively, and edges
leading to no object stand for tactic failures. The dashed objects represent possible future
search space, which PSL avoids traversing by using lazy sequences.

The larger search space specified by DInductAuto leads to a longer search time. PSL
addresses this performance problem by tracing Isabelle’s proof search: it keeps a log
of successful proof attempts while removing backtracked proof attempts. The monadic
interpretation discussed in Section 3.6 let PSL remove failed proof steps as soon as
it backtracks. This minimises PSL memory usage, making it applicable to hours of
expensive automatic proof search. Furthermore, since PSL follows Isabelle’s execution
model based on lazy sequences, it stops proof search as soon as it finds a specialisation
and combination of tactics, with which Isabelle can pass the no-proof-obligation test
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imposed by is_solved.
We still need a longer search time with PSL, but only once: upon success, PSL converts

the log of successful attempts into an e�cient proof script, which bypasses a large part of
proof search. For dfs_app, PSL generates the following proof script from DInductAuto.

apply (induct xs zs rule: DFS.dfs.induct) apply auto done

We implemented PSL as an Isabelle theory; to use it, PSL users only have to import the
relevant theory files to use PSL to their files. Moreover, we have integrated PSL into
Isabelle/Isar, Isabelle’s proof language, and Isabelle/jEdit, its standard editor. This
allows users to define and invoke their own proof strategies inside their ongoing proof
attempts, as shown in Figure 3.2; and if the proof search succeeds PSL presents a proof
script in jEdit’s output panel, which users can copy to the right location with one click.
All generated proof scripts are independent of PSL, so users can maintain them without
PSL.

Example 2. DInductAuto is able to pick up the right induction scheme for relatively
simple proof obligations using backtracking search. However, in some cases even if PSL
picks the right induction scheme, auto fails to discharge the emerging sub-goals. In
the following, we define InductHard, a more powerful strategy based on mathematical
induction, by combining Dynamic(Induct) with more involved sub-strategies to use
external theorem provers.

strategy SolveAllG = Thens[Repeat(Ors[Fastforce,Hammer]),IsSolved]
strategy PInductHard = PThenOne[Dynamic(Induct),SolveAllG]
strategy InductHard = Ors[DInductAuto, PInductHard]

PSL’s runtime system interprets Fastforce and Hammer as the fastforce tactic and
Sledgehammer, respectively. Both fastforce and Sledgehammer try to discharge the first
sub-goal only and return an empty sequence if they cannot discharge the sub-goal.

The repetitive application of Sledgehammer would be very time consuming. We mitigate
this problem using Ors and PThenOne. Combined with Ors, PSL executes PInductHard
only if DInductAuto fails. When PInductHard is called, it first applies Dynamic(Induct),
producing various induction schemes and multiple results. Then, SolveAllG tries to
discharge these results in parallel. The runtime stops its execution when SolveAllG
returns at least one result representing a solved state. We apply this strategy to the
following conjecture, which states the two versions of depth-first search programs (dfs2
and dfs) return the same results given the same inputs.

lemma "dfs2 g xs ys = dfs g xs ys "

Then, our machine with 28 cores returns the following script within 3 minutes:

apply (induct xs ys rule: DFS.dfs2.induct)
apply fastforce
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apply (simp add: dfs_app)
done

Fig. 3.3b roughly shows how the runtime system found this proof script. The runtime
first tried to find a complete proof as in Example 1, but without much success. Then, it
interpreted PInductHard. While doing so, it found that induction on xs and ys using
DFS.dfs2.induct leads to two sub-goals both of which can be discharged either by
fastforce or Sledgehammer. For the second sub-goal, Sledgehammer found out that the
result of Example 1 can be used as an auxiliary lemma to prove this conjecture. Then, it
returns an e�cient proof script (simp add: dfs_app) to PSL, before PSL combines this
with other parts and prints the complete proof script.

Example 3. In the previous examples, we used IsSolved to get a complete proof script
from PSL. In Example 3, we show how to generate incomplete but useful proof scripts,
using Defer. Incomplete proofs are specially useful when ITP users face numerous proof
obligations, many of which are within the reach of high-level proof automation tools,
such as Sledgehammer, but a few of which are not.

Without PSL, Isabelle users had to manually invoke Sledgehammer several times to
find out which proof obligations Sledgehammer can discharge. We developed a strategy,
HamCheck, to automate this time-consuming process. The following shows its definition
and a use case simplified for illustrative purposes.

strategy HamCheck = RepeatN(Ors[Hammer,Thens[Quickcheck,Defer]])
lemma safe_trans: shows
1:"ps_safe p s " and 2:"valid_tran p s s’ c " and 3:"ps_safe p s’ "
find_proof HamCheck

We made this example simple, so that two sub-goals, 1:"ps_safe p s " and 3:"ps_safe
p s’ ", are not hard to prove; however, they are still beyond the scope of commonly used
tactics, such as fastforce.

Generally, for a conjecture and a strategy of the form of RepeatN (strategy), PSL
applies strategy to the conjecture as many times as the number of proof obligations in
the conjecture. In this case, PSL applies Ors [Hammer, Thens [Quickcheck, Defer]]
to safe_trans three times.

Note that we integrated quickcheck and nitpick into PSL as assertion tactics. Asser-
tion tactics provide mechanisms for controlling proof search based on a condition: such
a tactic takes a proof state, tests an assertion on it, then behaves as succeed or fail
accordingly. We have already seen one of them in the previous examples: is_solved.

Ors [Hammer, Thens [Quickcheck, Defer]] first applies Sledgehammer. If Sledge-
hammer does not find a proof, it tries to find counterexamples for the sub-goal us-
ing quickcheck. If quickcheck finds no counterexamples, PSL interprets Defer as
defer_tac 1, which postpones the current sub-goal to the end of the list of proof
obligations.

In this example, Sledgehammer fails to discharge 2:"valid_tran p s s’ c ". When
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Sledgehammer fails, PSL passes 2 to Thens [Quickcheck, Defer], which finds no coun-
terexample to 2 and sends 2 to the end of the list; then, PSL continues working on
the sub-goal 3 with Sledgehammer. The runtime stops its execution after applying
Ors [Hammers, Thens [Quickcheck, Defer]] three times, generating the following
proof script. This script discharges 1 and 3, but it leaves 2 as the meaningful task for
human engineers, while assuring there is no obvious counterexamples for 2.

apply (simp add: state_safety ps_safe_def)
defer apply (simp add: state_safety ps_safe_def)

3.5 The default strategy: try_hard.
PSL comes with a default strategy, try_hard. Users can apply try_hard as a completely
automatic tool: engineers need not provide their intuitions by writing strategies. Unlike
other user-defined strategies, one can invoke this strategy by simply typing try_hard
without find_proof inside a proof attempt. The lack of input from human engineers
makes try_hard less specific to each conjecture; however, we made try_hard more
powerful than existing proof automation tools for Isabelle by specifying larger search
spaces presented.

We conducted a Judgement Day style evaluation [BN10b] of try_hard against selected
theory files from the AFP, coursework assignments and exercises [BFW15], and Isabelle’s
standard library. Table 1, 2 and 3 show that given 300 seconds for each proof goal
try_hard solves 1115 proof goals out of 1526, while Sledgehammer found proofs for 901 of
them using the same computational resources and re-constructed proofs in Isabelle for 866
of them. This is a 14 percentage point improvement of proof search and a 16 percentage
point increase for proof reconstruction. Moreover, 299 goals (20% of all goals) were solved
only by try_hard within 300 seconds. They also show that a longer time-out improves
the success ratio of try_hard, which is desirable for utilising engineers’ downtime.

try_hard is particularly more powerful than Sledgehammer at discharging proof obli-
gations that can be nicely handled by the following:

• mathematical induction or co-induction,
• type class mechanism,
• specific procedures implemented as specialised tactics (such as transfer and

normalization), or
• general simplification rules (such as field_simps and algebra_simps) .

Furthermore, careful observation of PSL indicates that PSL can handle the so-called
“hidden fact” problem in relevance filtering. Hidden facts are auxiliary lemmas that
are useful to discharge a given proof obligation but are not obviously relevant. For
example, a hidden fact may share no constants with the proof obligation, because it is
related only via an intermediate fact. With PSL, a user can write a strategy that applies
rewriting before relevance filtering to reveal more information. This information allows
the relevance filter to find useful facts that were previously hidden. For example, the
following strategy “massages” the given proof obligation before invoking the relevance
filter of Sledgehammer: Thens [Auto, Repeat(Hammer), IsSolved].
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Table 3.1: The number of automatically proved proof obligations from assignments. TH
and SH stand for the number of obligations discharged by try_hard and
Sledgehammer, respectively. TH\SH represents the number of goals to which
try_hard found proofs but Sledgehammer did not. POs stands for the number
of proof obligations in the theory file. x(y) for SH means Sledgehammer found
proofs for x proof obligations, out of which it managed to reconstruct proof
scripts in Isabelle for y goals. We omit these parentheses when these numbers
coincide. Note that all proofs of PSL are checked by Isabelle/HOL. Besides,
Sledgehammer inside PSL avoids the smt proof method, as this method is not
allowed in the Archive of Formal Proofs.

assignments [BFW15] POs TH SH TH\SH TH SH TH\SH

time out - 30s 30s 30s 300s 300s 300s
assignment_1 19 17 14(13) 4 18 14(13) 5
assignment_2 22 21 5 16 22 5 17
assignment_3 52 30 27 8 35 27 10
assignment_4 82 66 61 10 71 61 10
assignment_5 64 36 41(39) 6 55 44(42) 17
assignment_6 26 11 12(11) 2 14 13(12) 3
assignment_8 52 36 45(39) 1 40 46(39) 0
assignment_9 61 31 32(30) 6 35 32(30) 6
assignment_11 26 14 15 1 20 17 3
sum 404 262 252(241) 54 310 259(246) 71

For 3 theories out of 35, try_hard discharged fewer proof obligations, even given 300
seconds of time-out. This is due to the fact that PSL uses a slightly restricted version of
Sledgehammer internally for the sake of the integration with other tools and to avoid the
smt method, which is not allowed in the AFP. In these files, Sledgehammer can discharge
many obligations and other obligations are not particularly suitable for other sub-tools
in try_hard. Of course, given high-performance machines, users can run both try_hard
and Sledgehammer in parallel to maximise the chance of proving conjectures.

3.6 Monadic Interpretation of Strategy

The implementation of the tracing mechanism described in Section 3.4 is non-trivial:
PSL’s tracing mechanism has to support arbitrary strategies conforming to its syntax.
What is worse, the runtime behaviour of backtracking search is not completely predictable
statically since PSL generates tactics at runtime, using information that is not available
statically. Moreover, the behaviour of each tactic varies depending on the proof context
and proof obligation at hand.
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Table 3.2: The number of automatically proved proof obligations from exercises.

exercises [BFW15] POs TH SH TH\SH TH SH TH\SH

time out - 30s 30s 30s 300s 300s 300s
exercise_1 15 12 8 4 12 8 4
exercise_2 7 4 3 2 5 3 2
exercise_3 42 27 26(25) 5 29 27(26) 5
exercise_4 23 11 15 0 17 15 2
exercise_5a 13 9 11 0 11 11 0
exercise_5b 83 65 74 1 74 74 1
exercise_6 4 1 2 0 1 3 0
exercise_7a 3 0 0 0 0 0 0
exercise_7b 9 5 6 1 8 6 2
exercise_8a 10 7 7 1 7 7 1
exercise_8b 26 11 9 4 12 12 2
exercise_9 31 14 17 3 19 17 3
exercise_10 15 5 5(4) 1 6 6(5) 1
exercise_11 10 4 6 0 9 6 3
exercise_12 30 8 10 1 12 10 3
sum 321 183 199(197) 23 222 205(203) 29
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Table 3.3: The number of automatically proved proof goals from AFP entries and Is-
abelle’s standard libraries. Due to limited page space, we introduced the
following short names for some theory files: ES for Efficient_Sort.thy, CL
for Coinductive_Language.thy, CFG for Context_Free_Grammar.thy, and
HLTM for HOL/Library/Tree_Multiset.thy.

theory name POs TH SH TH\SH TH SH TH\SH

time out - 30s 30s 30s 300s 300s 300s
DFS.thy [NM04a] 51 24 28 6 34 29 7
ES [Ste11] 75 27 28(26) 8 33 31(28) 9
List_Index.thy [Nip10] 105 48 72(70) 12 67 75(72) 14
Skew_Heap.thy [Nip14] 16 8 6(5) 4 12 8(7) 5
Hash_Code.thy [Lam09] 16 7 4 4 11 4 7
CoCallGraph.thy [Bre15] 141 88 78(71) 29 104 79(73) 33
CL [Tra13] 139 57 69(68) 11 106 70(69) 43
CFG [Tra13] 29 26 2 26 29 2 27
LTL.thy [Sic16] 97 56 61 15 78 65(62) 15
HOL/Library/Tree.thy 124 93 70(68) 32 101 73(70) 32
HLTM 8 8 1 7 8 1 7
sum 801 442 419(404) 154 583 437(417) 199
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Program 1 Monad with zero and plus, and lazy sequence as its instance.

signature MONAD0PLUS =
sig

type ’a m0p;
val return : ’a -> ’a m0p;
val bind : ’a m0p -> (’a -> ’b m0p) -> ’b m0p;
val mzero : ’a m0p;
val ++ : (’a m0p * ’a m0p) -> ’a m0p;

end;
structure Nondet : MONAD0PLUS =
struct

type ’a m0p = ’a Seq.seq;
val return = Seq.single;
fun bind xs f = Seq.flat (Seq.map f xs);
val mzero = Seq.empty;
fun (xs ++ ys) = Seq.append xs ys;

end;

It is likely to cause code clutter to specify where to backtrack explicitly with references
or pointers, whereas explicit construction of search tree [Nag16c] consumes too much
memory space when traversing a large search space. Furthermore, both of these approaches
deviate from the standard execution model of Isabelle explained in Section 3.2. This
deviation makes the proof search and the e�cient proof script generation less reliable.
In this section, we introduce our monadic interpreter for PSL, which yields a modular
design and concise implementation of PSL’s runtime system.

Monads in Standard ML. A monad with zero and plus is a constructor class 1 with four
basic methods (return, bind, mzero, and ++). As Isabelle’s implementation language,
Standard ML, does not natively support constructor classes, we emulated them using its
module system [NO16]. Program 1 shows how we represent the type constructor, seq, as
an instance of monad with zero and plus.

The body of bind for lazy sequences says that it applies f to all the elements of xs
and concatenates all the results into one sequence. Attentive readers might notice that
this is equivalent to the behaviour of THEN depicted in Fig. 3.1 and that of Thens shown
in Fig. 3.3. In fact, we can define all of THEN, succeed, fail, and APPEND, using bind,
return, mzero, and ++, respectively.

1Constructor classes are a class mechanism on type constructors such as list and option, whereas type
classes are a class mechanism on types such as int and double. Commonly used constructor classes
include functor, applicative, monoid, and arrow.
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Program 2 The monadic interpretation of strategies.

interp :: core_strategy -> ’a -> ’a m0p
interp (Atom atom_str) n = eval atom_str n
interp Skip n = return n
interp Fail n = mzero
interp (str1 Then str2) n = bind (interp str1 n) (interp str2)
interp (str1 Alt str2) n = interp str1 n ++ interp str2 n
interp (str1 Or str2) n = let val result1 = interp str1 n

in if (result1 != mzero) then result1 else interp str2 n end
interp (Rep str) n = interp ((str THEN (Rep str)) Or Skip) n
interp (Comb (comb, strs)) n = eval_comb (comb, map interp strs) n

Monadic Interpretation of Strategies. Based on this observation, we formalised PSL’s
search procedure as a monadic interpretation of strategies, as shown in Program 2, where
the type core_strategy stands for the internal representation of strategies. Note that
Alt and Or are binary versions of Alts and Ors, respectively; PSL desugars Alts and
Ors into nested Alts and Ors. We could have defined Or as a syntactic sugar using Alt,
mzero, Fail, and Skip, as explained by Martin et al. [MGW96]; however, we prefer the
less monadic formalisation in Program 2 for better time complexity.

eval deals with all the atomic strategies, which correspond to default , dynamic , and
special in the surface language. For the dynamic strategies, eval expands them into
dynamically generated tactics making use of contextual information from the current proof
state. PSL combines these generated tactics either with APPEND or ORELSE, depending on
the nature of each tactic. eval_comb handles non-monadic strategy combinators, such as
Cut. We defined the body of eval and eval_comb for each atomic strategy and strategy
combinator separately using pattern matching. As is obvious in Program 2, interp
separates the complexity of compound strategies from that of runtime tactic generation.

Adding Tracing Modularly for Proof Script Generation. We defined interp at the
constructor class level, abstracting it from the concrete type of proof state and even from
the concrete type constructor. When instantiated with lazy sequence, interp tries to
return the first element of the sequence, working as depth-first search. This abstraction
provides a clear view of how compound strategies guide proof search while producing
tactics at runtime; however, without tracing proof attempts, PSL has to traverse large
search spaces every time it checks proofs.

We added the tracing mechanism to interp, combining the non-deterministic monad,
Nondet, with the writer monad. To combine multiple monads, we emulate monad
transformers using ML functors: Program 3 shows our ML functor, writer_trans, which
takes a module of MONAD0PLUS, adds the logging mechanism to it, and returns a module
equipped with both the capability of the base monad and the logging mechanism of
the writer monad. We pass Nondet to writer_trans as the base monad to combine
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Program 3 The writer monad transformer as a ML functor.

functor writer_trans (structure Log:MONOID; structure Base:MONAD0PLUS) =
struct

type ’a m0p = (Log.monoid * ’a) Base.m0p;
fun return (m:’a) = Base.return (Log.mempty, m) : ’a m0p;
fun bind (m:’a m0p) (func: ’a -> ’b m0p) : ’b m0p =

Base.bind m (fn (log1, res1) =>
Base.bind (func res1) (fn (log2, res2) =>
Base.return (Log.mappend log1 log2, res2)));

val mzero = Base.mzero;
val (xs ++ ys) = Base.++ (xs, ys);

end : MONAD0PLUS;

the logging mechanism and the backtracking search based on non-deterministic choice.
Observe Programs 1, 2 and 3 to see how Alt and Or truncate failed proof attempts while
searching for a proof. The returned module is based on a new type constructor, but it is
still a member of MONAD0PLUS; therefore, we can re-use interp without changing it.

History-Sensitive Tactics using the State Monad Transformer. The flexible runtime
interpretation might lead PSL into a non-terminating loop, such as REPEAT succeed. To
handle such loops, PSL traverses a search space using iterative deepening depth-first
search (IDDFS). However, passing around information about depth as an argument of
interp as following quickly impairs its simplicity:

interp (t1 CSeq t2) level n = if level < 1 then return n else ...
interp (t1 COr t2) level n = ...

where level stands for the remaining depth interp can proceed for the current iteration.
We implemented IDDFS without code clutter, introducing the idea of a history-sensitive

tactic: a tactic that takes the log of proof attempts into account. Since the writer monad
does not allow us to access the log during the search time, we replaced the writer monad
transformer with the state monad transformer, with which the runtime keeps the log of
proof attempt as the “state” of proof search and access it during search. By measuring
the length of “state”, interp computes the current depth of proof search at runtime.

The modular design and abstraction discussed above made this replacement possible
with little change to the definition of interp: we only need to change the clause for Atom,
providing a wrapper function, iddfc, for eval, while other clauses remain intact.

inter (CAtom atom_str) n = iddfc limit eval atom_str n

iddfc limit first reads the length of “state”, which represents the number of edges to
the node from the top of the implicit proof search tree. Then, it behaves as fail if the
length exceeds limit; if not, it executes eval atom_str n. 2

2In this sense, we implemented IDDFS as a tactic combinator.
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3.7 Related Work
ACL2 [KMM00] is a functional programming language and mostly automated first-order
theorem prover. ACL2 is known for the so-called waterfall model, which is essentially
repeated application of various heuristics. Its users can guide proof search by supplying
arguments called “hints”, but the underlining operational procedure of the waterfall
model itself is fixed. ACL2 does not produce e�cient proof scripts after running the
waterfall algorithm.

PVS [ORS92] provides a collection of commands called “strategies”. Despite the
similarity of the name to PSL, strategies in PVS correspond to tactics in Isabelle. The
highest-level strategy in PVS, grind, can produce re-runnable proof scripts containing
successful proof steps only. However, scripts returned by grind describe steps of much
lower level than human engineers would write manually, while PSL’s returned scripts are
based on tactics engineers use. Furthermore, grind is known to be useful to complete a
proof that does not require induction, while try_hard is good at finding proofs involving
mathematical induction.

SEPIA [GWR15] is an automated proof generation tool in Coq. Taking existing Coq
theories as input, SEPIA first produces proof traces, from which it infers an extended
finite state machine. Given a conjecture, SEPIA uses this model to search for its proof.
The authors of SEPIA chose to use breadth-first search (BFS) to find shorter proofs. For
PSL we could emulate the BFS strategy within the IDDFS framework. However, our
experience tells us that the search tree tends to be very wide and some tactics, such as
induct, need to be followed by other tactics to complete proofs. Therefore, we chose
IDDFS for PSL. Both SEPIA and PSL o�-load the construction of proof scripts to search
and try to reconstruct e�cient proof scripts. Compared to SEPIA, PSL allows users to
specify their own search strategies to utilize the engineer’s intuition, which enables PSL
to return incomplete proof scripts, as discussed in Section 3.4.

Martin et al. first discussed a monadic interpretation of tactics for their language,
Angel, in an unpublished draft [MG02]. We independently developed interp with the
features discussed above, lifting the framework from the tactic level to the strategy level
to traverse larger search spaces. The two interpreters for di�erent ITPs turned out to be
similar to each other, suggesting our approach is not specific to Isabelle but can be used
for other ITPs.

Similar to Ltac [Del00] in Coq, Eisbach [MWM14, MMW16] is a framework to write
proof methods in Isabelle. Proof methods are the Isar syntactic layer of tactics. Eisbach
does not generate methods dynamically, trace proof attempts, nor support parallelism
natively. Eisbach is good when engineers already know how to prove their conjecture,
while try_hard is good when they want to find out how to prove it.

IsaPlanner [DF03] o�ers a framework for encoding and applying common patterns of
reasoning in Isabelle, following the style of proof planning [Bun88]. IsaPlanner addresses
the performance issue by a memoization technique, on the other hand try_hard strips
o� backtracked steps while searching for a proof, which Isabelle can check later without
try_hard. While IsaPlanner works on its own data structure reasoning state, try_hard
managed to minimize the deviation from Isabelle’s standard execution model using
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constructor classes.

3.8 Conclusions
PSL improves proof automation in higher-order logic, allowing us to exploit both the
engineer’s intuition and various automatic tools. The simplicity of the design is our
intentional choice: we reduced the process of interactive proof development to the
well-known dynamic tree search problem and added new features (e�cient-proof script
generation and IDDFS) by safely abstracting the original execution model and employing
commonly used techniques (monad transformers).

We claim that our approach enjoys significant advantages. Despite the simplicity of the
design, our evaluations indicate that PSL reduces the labour cost of ITP significantly. The
conservative extension to the original model lowers the learning barrier of PSL and makes
our proof script generation reliable by minimising the deviation. The meta-tool approach
makes the generated proof script independent of PSL, separating the maintenance of proof
scripts from that of PSL; furthermore, by providing a common framework for various tools
we supplement one tool’s weakness (e.g. induction for Sledgehammer) with other tools’
strength (e.g. the induct tactic), while enhancing their capabilities with runtime tactic
generation. The parallel combinators reduce the labour-intensive process of interactive
theorem proving to embarrassingly parallel problems. The abstraction to the constructor
class and reduction to the tree search problem make our ideas transferable: other ITPs,
such as Lean and Coq, handle inter-tactic backtracking, which is best represented in
terms of MONAD0PLUS.
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Appendix: Details of the Evaluation
All evaluations were conducted on a Linux machine with Intel (R) Core (TM) i7-600 @
3.40GHz and 32 GB memory. For both tools, we set the time-out of proof search to 30
and 300 seconds for each proof obligation.

Prior to the evaluation, the relevance filter of Sledgehammer was trained on 27,041 facts
and 18,695 non-trivial Isar proofs from the background libraries imported by theories
under evaluation for both tools. Furthermore, we forbid Sledgehammer inside PSL from
using the smt method for proof reconstruction, since the AFP does not permit this
method.
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Note that try_hard does not use parallel strategy combinators which exploit par-
allelism. The evaluation tool does not allow try_hard to use multiple threads either.
Therefore, given the same time-out, try_hard and Sledgehammer enjoy the same amount
of computational resources, assuring the fairness of the evaluation results.

The evaluation tool [Nag16b] and results [Nag16a] are available at our websites. We
provide the evaluation tool and results in the following websites:

• http://ts.data61.csiro.au/Downloads/cade26_evaluation/

• http://ts.data61.csiro.au/Downloads/cade26_results/
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LiFtEr: Language to Encode Induction
Heuristics for Isabelle/HOL

Publication Details
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APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings,
pages 266–287, 2019

Abstract
Proof assistants, such as Isabelle/HOL, o�er tools to facilitate inductive theorem proving.
Isabelle experts know how to use these tools e�ectively; however, there is a little tool
support for transferring this expert knowledge to a wider user audience. To address this
problem, we present our domain-specific language, LiFtEr. LiFtEr allows experienced
Isabelle users to encode their induction heuristics in a style independent of any problem
domain. LiFtEr’s interpreter mechanically checks if a given application of induction tool
matches the heuristics, thus automating the knowledge transfer loop.

4.1 Introduction
Consider the following reverse functions, rev and itrev, presented in a tutorial of
Isabelle/HOL [NPW02]:

primrec rev::"’a list =>’a list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"

fun itrev::"’a list =>’a list =>’a list" where
"itrev [] ys = ys"

| "itrev (x#xs) ys = itrev xs (x#ys)"
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where # is the list constructor, and @ appends two lists. How do you prove the following
lemma?

lemma "itrev xs ys = rev xs @ ys"

Since both rev and itrev are defined recursively, it is natural to imagine that we can
handle this problem by applying induction. But how do you apply induction and why?
What induction heuristics do you use? In which language do you describe those heuristics?

Modern proof assistants (PAs), such as Isabelle/HOL [NPW02], are forming the basis
of trustworthy software. Klein et al., for example, verified the correctness of the seL4
micro-kernel in Isabelle/HOL [KAE+10], whereas Leroy developed a certifying C compiler,
CompCert, using Coq [Ler09]. Despite the growing number of such complete formal
verification projects, the limited progress in proof automation still keeps the cost of
proof development high, thus preventing the wide spread adoption of complete formal
verification.

A noteworthy approach in proof automation for proof assistants is hammer tools
[BKPU16]. Sledgehammer, for example, exports proof goals in Isabelle/HOL to various
external automated theorem provers (ATPs) to exploit the state-of-the-art proof au-
tomation of these backend provers; however, the discrepancies between the polymorphic
higher-order logic of Isabelle/HOL and the monomorphic first-order logic of the backend
provers severely impair Sledgehammer’s performance when it comes to inductive theorem
proving (ITP).

This is unfortunate for two reasons. Firstly, many Isabelle users chose Isabelle/HOL
precisely because its higher-order logic is expressive enough to specify mathematical
objects and procedures involving recursion without introducing new axioms. Secondly,
induction lies at the heart of mathematics and computer science. For instance, induction
is often necessary for reasoning about natural numbers, recursive data-structures, such
as lists and trees, computer programs containing recursion and iteration [Bun01].

This is why ITP remains as a long-standing challenge in computer science, and its
automation is much needed. Facing the limited automation in ITP, Gramlich surveyed
the problems in ITP and presented the following prediction in 2005 [Gra05]:

in the near future, ITP will only be successful for very specialized domains
for very restricted classes of conjectures. ITP will continue to be a very
challenging engineering process.

We address this conundrum with our domain-specific language, LiFtEr. LiFtEr allows
experienced Isabelle users to encode their induction heuristics in a style independent
of problem domains. LiFtEr’s interpreter mechanically checks if a given application of
induction is compatible with the induction heuristics written by experienced users. Our
research hypothesis is that:

it is possible to encode valuable induction heuristics for Isabelle/HOL in
LiFtEr and these heuristics can be valid across diverse problem domains, be-
cause LiFtEr allows for meta-reasoning on applications of induction methods,
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without relying on concrete proof goals, their underlying proof states, nor
concrete applications of induction methods.

We developed LiFtEr as an Isabelle theory and integrated LiFtEr into Isabelle’s proof
language, Isabelle/Isar, and its proof editor, Isabelle/jEdit. This allows for an easy
installation process: to use LiFtEr, users only have to import the relevant theory files
into their theory files, using Isabelle’s import keyword. Our working prototype is available
at GitHub [Nag].

The important di�erence of LiFtEr from other tactic languages, such as Eisbach
[MWM14, MMW16] and Ltac [Del00], is that LiFtEr itself is not a tactic language but a
language to write how one should use Isabelle’s existing proof method for induction. To
the best of our knowledge, LiFtEr is the first language in which one can write how to use
a tactic by mechanically analyzing the structures of proof goals in a style independent of
any problem domain.

4.2 Induction in Isabelle/HOL
To handle inductive problems, modern proof assistants o�er tools to apply induction.
For example, Isabelle comes with the induct proof method and the induction method
1. Nipkow et al. proved our ongoing example as follows [NK14]:

lemma model_prf:"itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) by auto

Namely, they applied structural induction on xs while generalizing ys before applying
induction by passing the string ys to the arbitrary field. The resulting sub-goals are:

1. !!ys. itrev [] ys = rev [] @ ys
2. !!a xs ys. (!!ys. itrev xs ys = rev xs @ ys) ==>

itrev (a # xs) ys = rev (a # xs) @ ys

where !! is the universal quantifier and ==> is the implication in Isabelle’s meta-logic.
Due to the generalization, the ys in the induction hypothesis is quantified within the
hypothesis, and it is di�erentiated from the ys that appears in the conclusion. Had
Nipkow et al. omitted arbitrary: ys, the first sub-goal would be the same, but the
second sub-goal would have been:

2. !!a xs. itrev xs ys = rev xs @ ys ==>
itrev (a # xs) ys = rev (a # xs) @ ys

Since the same ys is shared by the induction hypothesis and the conclusion, the subsequent
application of auto fails to discharge this sub-goal.

It is worth noting that in general there are multiple equivalently appropriate combina-
tions of arguments to prove a given inductive problem. For instance, the following proof
snippet shows an alternative proof script for our example:

1Proof methods are the Isar syntactic layer of LCF-style tactics.
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lemma alt_prf:"itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:itrev.induct) by auto

Here we passed the itrev.induct rule to the rule field of the induct method and
proved the lemma by recursion induction 2 over itrev. This rule was derived by Isabelle
automatically when we defined itrev, and it states the following:

(!!ys. P [] ys) ==>
(!!x xs ys. P xs (x # ys) ==> P (x # xs) ys) ==>
P a0 a1

Essentially, this rule states that to prove a property P of a0 and a1 we have to prove it
for two cases where a0 is the empty list and the list with at least two elements. When the
induct method takes this rule and xs and ys as induction variables, Isabelle produces
the following sub-goals:

1. !!ys. itrev [] ys = rev [] @ ys
2. !!x xs ys. itrev xs (x # ys) = rev xs @ x # ys ==>

itrev (x # xs) ys = rev (x # xs) @ ys

where the two sub-goals correspond to the two clauses in the definition of itrev.
There are other lesser-known techniques to handle di�cult inductive problems using the

induct method, and sometimes users have to develop useful auxiliary lemmas manually;
however, for most cases the problem of how to apply induction boils down to the the
following three questions:

• On which terms do we apply induction?

• Which variables do we generalize?

• Which rule do we use for recursion induction?

Isabelle experts resort to induction heuristics to answer such questions and decide what
arguments to pass to the induct method; however, such reasoning still requires human
engineers to carefully investigate the inductive problem at hand. Moreover, Isabelle
experts’ induction heuristics are sparsely documented across various documents, and
there was no way to encode their heuristics as programs. For the wide spread adoption
of complete formal verification, we need a program language to encode such heuristics
and the system to check if an invocation of the induct method written by an Isabelle
novice complies with such heuristics. We developed LiFtEr, taking these three groups of
questions as a design space.

2Recursion induction is also known as functional induction or computation induction.
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Figure 4.1: The Workflow of LiFtEr.

4.3 Overview and Syntax of LiFtEr
We designed LiFtEr to encode induction heuristics as assertions on invocations of the
induct method in Isabelle/HOL. An assertion written in LiFtEr takes the pair of a
proof goal with its underlying proof state and arguments passed to the induct method.
When one applies a LiFtEr assertion to an invocation of the induct method, LiFtEr’s
interpreter returns a boolean value as the result of the assertion applied to the proof
goals and their underlying proof state.

The goal of a LiFtEr programmer is to write assertions that implement reliable
heuristics. A heuristic encoded as a LiFtEr assertion is reliable when it satisfies the
following two properties:

1. The LiFtEr interpreter is likely to evaluate the assertion to True when the argu-
ments of the induct method are appropriate for the given proof goal.

2. The LiFtEr interpreter is likely to evaluate the assertion to False when the
arguments are inappropriate for the goal.

Fig. 4.1 illustrates the workflow of LiFtEr. Firstly, Isabelle experts encode the gist of
promising applications of induction based on experts’ proofs. Note that the heuristics
encoded in LiFtEr become applicable to problem domains that the experts users have
not even encountered at the time of writing the assertions.

When new Isabelle users are facing an inductive problem and are unsure if their
application of induction is a valid approach or not, they can apply LiFtEr assertions
written by experts using the assert_LiFtEr keyword to their proof goal and their
candidate arguments.

LiFtEr’s interpreter checks if the pair of new users’ proof goal and candidate arguments
to the induct method is compatible with the experts’ heuristics. If the interpreter
evaluates the pair to True, Isabelle prints “Assertion succeeded.” in the Output
panel of Isabelle/jEdit [Wen12]. If the interpreter evaluates the pair to False, Isabelle
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highlights the assert_LiFtEr in red and prints “Assertion failed.” in the Output
panel.

Program 4 The Abstract Syntax of LiFtEr.

assertion := atomic | connective | quantifier | ( assertion )
type := term | term_occurrence | rule | number
modifier_term := induction_term | arbitrary_term
quantifier := ÷x : type. assertion

| ’x : type. assertion
| ÷x : term œ modifier_term . assertion
| ’x : term œ modifier_term . assertion
| ÷x : term_occurrence œ y : term . assertion
| ’x : term_occurrence œ y : term . assertion

connective := True | False | assertion ‚ assertion | assertion · assertion
assertion æ assertion | ¬ assertion

pattern := all_only_var | all_constructor | mixed
atomic :=

rule is_rule_of term_occurrence
| term_occurrence term_occurrence_is_of_term term
| are_same_term ( term_occurrence , term_occurrence )
| term_occurrence is_in_term_occurrence term_occurrence
| is_atomic term_occurrence
| is_constant term_occurrence
| is_recursive_constant term_occurrence
| is_variable term_occurrence
| is_free_variable term_occurrence
| is_bound_variable term_occurrence
| is_lambda term_occurrence
| is_application term_occurrence
| term_occurrence is_an_argument_of term_occurrence
| term_occurrence is_nth_argument_of term_occurrence
| term is_nth_induction_term number
| term is_nth_arbitrary_term number
| pattern_is ( number , term_occurrence , pattern )
| is_at_deepest term_occurrence
| ...

Program 4 shows the essential part of LiFtEr’s abstract syntax. LiFtEr has four
types of variables: number, rule, term, and term_occurrence. A value of type number
is a natural number from 0 to the maximum of the following two numbers: the number
of terms appearing in the proof goals at hand, and the maximum arity of constants
appearing in the proof goals. A value of type rule corresponds to a name of an auxiliary
lemma passed to the induct method as an argument in the rule field.
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The di�erence between term and term_occurrence is crucial: a value of term is a
term appearing in proof goals, whereas a value of term_occurrence is an occurrence
of such terms. It is important to distinguish terms and term occurrences because the
induct method in Isabelle/HOL only allows its users to specify induction terms but
it does not allow us to specify on which occurrences of such terms we intend to apply
induction.

The connectives, ·, ‚, ¬, and æ correspond to conjunction, disjunction, negation, and
implication in the classical logic, respectively; and æ admits the principle of explosion.

LiFtEr has four essential quantifiers and two quantifiers as syntactic sugar. As is
often the case, ’ quantifies over variables universally, and ÷ stands for the existence of a
variable it binds. Again, it is important to notice the di�erence between the quantifiers
over term and the ones over term_occurrence. For example, ’_. œ term quantifies all
sub-terms appearing in the proof goals, whereas ’_. œ term_occurrence quantifies all
occurrences of such sub-terms. Quantified variables restricted to induction_term by the
membership function œ are quantified over all terms passed to the induct method as
induction terms, while quantified variables restricted to arbitrary_term are quantified
over all terms passed to the induct method as arguments in the arbitrary field.

Some atomic assertions judge properties of term occurrences, and some judge the
syntactic structure of proof goals with respect to certain terms, their occurrences, or
certain numbers. While most atomic assertions work on the syntactic structures of proof
goals, Pattern provides a means to describe a limited amount of semantic information
of proof goals since it checks how terms are defined. Section 4.4 explains the meaning of
important atomic assertions through LiFtEr’s standard heuristics.

Attentive readers may have noticed that LiFtEr’s syntax does not cover any user-
defined types or constants. This absence of specific types and constants is our intentional
choice to promote induction heuristics that are valid across various problem domains: it
encourages LiFtEr users to write heuristics that are not specific to particular data-types
or functions. And LiFtEr’s interpreter can check if an application of the induct method
is compatible with a given LiFtEr heuristic even if the proof goal involves user-defined
data-types and functions even though such types and functions are unknown to the
LiFtEr developer or the author of the heuristic but come into existence in the future
only after developing LiFtEr and such heuristic.

4.4 LiFtEr’s Standard Heuristics

This section presents LiFtEr’s standard heuristics and illustrates how to use those atomic
assertions and quantifiers to encode induction heuristics.

4.4.1 Heuristic 1: Induction terms should not be constants.

Let us revise the first example lemma about the equivalence of two reverse functions,
itrev and rev. One naive induction heuristic would be “any induction term should not
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be a constant” 3 In LiFtEr, we can encode this heuristic as the following assertion 4:

’ t1 : term œ induction_term.
÷ to1 : term_occurrence.

( to1 term_occurrence_is_of_term t1 )
·

¬ ( is_constant to1 )

Note the use of quantifiers over induction_terms and term_occurrences: when LiFtEr
handles induction terms, LiFtEr treats them as terms, but it is often necessary to analyze
the occurrences of these terms in the proof goal to decide how to apply induction. In
our example lemma, xs is a variable, which appears twice: once as the first argument of
itrev, and once as the first argument of rev. With this in mind, the above assertion
reads as follows:

for all induction terms, named t1, there exists a term occurrence, named to1,
such that to1 is an occurrence of t1 and to1 is not a constant.

Now we compare this heuristic with the model proof by Nipkow et al.
The only induction term, xs, has two occurrences in the proof goal both as variables.

Therefore, if we apply this LiFtEr assertion to the model proof, LiFtEr’s interpreter
acknowledges that the model proof complies with the induction heuristic defined above.

Fig. 4.2 shows the user interface of LiFtEr. In the second line where the cursor is
staying, LiFtEr’s interpreter executes the aforementioned reasoning and concludes that
the model proof by Nipkow et al. is compatible with this heuristic, printing “Assertion
succeeded.” in the Output panel. On the contrary, the fourth line applies the same
heuristic to another possible combination of arguments to the induct method (induct
itrev arbitrary: ys) and concludes that this candidate induction is not compatible
with our heuristic because itrev is a constant. LiFtEr also highlights this line in red to
warn the user.

It is a common practice to analyze occurrences of specific terms when describing
induction heuristics. Therefore, we introduced two pieces of syntactic sugar to avoid
boilerplate code: ÷_ : term_occurrence œ _ : term and ’_ : term_occurrence œ _
: term. Both of these quantify over term occurrences of a particular term rather than all
term occurrences in the proof goal at hand. Using ÷_ : term_occurrence œ _ : term,
we can shrink the above assertion from 5 lines to 3 lines as follows:

’ t1 : induction_term.
÷ to1 : term_occurrence œ t1 : term.

¬ ( is_constant to1 )

In English, this reads as follows:
3This naive heuristic is not very reliable: there are cases where the induct method takes terms involving

constants and apply induction appropriately by automatically introducing induction variables. See
Concrete Semantics [NK14] for more details.

4For better readability we omit parentheses where the binding of terms is obvious from indentation.
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Figure 4.2: The User Interface of LiFtEr.

for all induction terms, named t1, there exists an occurrence of t1, named
to1, such that to1 is not a constant.

4.4.2 Heuristic 2. Induction terms should appear at the bottom of syntax
trees.

Not applying induction on a constant would sound a plausible heuristic, but such heuristic
is not very useful.

In this sub-section, we encode an induction heuristic that analyzes not only the
properties of the induction terms but also the location of their occurrences within the
proof goal at hand. When attacking inductive problems with many variables, it is
sometimes a good attempt to apply induction on variables that appear at the bottom
of the syntax tree representing the proof goal. We encode such heuristic using is_at_-
deepest as the following LiFtEr assertion:

’ t1 : induction_term.
÷ to1 : term_occurrence œ t1 : term.

is_atomic to1 æ is_at_deepest to1

In English, this assertion reads as follows:

for all induction terms, named t1, there exists an occurrence of t1, named
to1, such that if to1 is an atomic term then to1 lies at the deepest layer in
the syntax tree that represents the proof goal.

We used the infix operator, æ, to add the condition that we consider only the induction
terms that are atomic terms. An atomic term is either a constant, free variable, schematic
variable, or variable bound by a lambda abstraction. We added this condition because it
makes little sense to check if the induction term resides at the bottom of the syntax tree
when an induction term is a compound term: such compound terms have sub-terms at
lower layers.

LiFtEr’s interpreter acknowledges that the model solution provided by Nipkow et al.
complies with this heuristic when applied to this lemma: there is only one induction
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term, xs, and xs appears as an argument of rev on the right-hand side of the equation
in the lemma at the lowest layer of this syntax tree.

4.4.3 Heuristic 3. All induction terms should be arguments of the same
occurrence of a recursively defined function.

Probably, it is more meaningful to analyze where induction terms reside in the proof goal
with respect to other terms in the goal. More specifically, one heuristic for promising
application of induction would be “apply induction on terms that appear as arguments
of the same occurrence of a recursively defined function”. We encode this heuristic
using LiFtEr’s atomic assertions, is_recursive_constant and is_an_argument_of, as
follows:

÷ t1 : term.
÷ to1 : term_occurrence œ t1 : term.

’ t2: term œ induction_term.
÷ to2 : term_occurrence œ t2 : term.

is_recursive_constant to1 · to2 is_an_argument_of to1

where is_recursive_constant checks if a constant is defined recursively or not, and
is_an_argument_of takes two term occurrences and checks if the first one is an argument
of the second one.

Note that using is_recursive_constant this assertion checks not only the syntactic
information of the proof goal at hand, but it also extracts an essential part of the semantic
information of constants appearing in the goal, by investigating how these constants are
defined in the underlying proof context. As a whole, this assertion reads as follows:

there exists a term, named t1, such that there exists an occurrence of t1,
named to1, such that for all induction terms, named t2, there exists an
occurrence of t2, named to2, such that to1 is defined recursively and to2
appears as an argument of to1.

Attentive readers may have noticed that we quantified over induction terms within the
quantification over to1, so that this induction heuristic checks if all induction terms occur
as arguments of the same constant.

The LiFtEr interpreter confirms that the model proof is compatible with this heuristic
as well: the constant, itrev, is defined recursively and has an occurrence that takes the
only induction variable xs as the first argument.

4.4.4 Heuristic 4. One should apply induction on the nth argument of a
function where the nth parameter in the definition of the function
always involves a data-constructor.

The previous heuristic checks if all induction terms are arguments of the same occurrence
of a recursively defined function. Sometimes we can even estimate on which arguments
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of such function we should apply induction by inspecting the definition of the function
more carefully.

We introduce two constructs to support this style of reasoning: is_nth_argument_of
and pattern_is. is_nth_argument_of takes a term occurrence, a number, and another
term occurrence, and it checks if the first term occurrence is the nth argument of the
second term occurrence where counting starts at 0. pattern_is takes a number, a term
occurrence, one of three patterns: all_only_var, all_constructor, and mixed. Each
of such patterns describes how the term is defined.

For example, pattern_is (n, to, all_only_var) denotes that the nth parameter is
always a variable on the left-hand side of the definition of the term that has the term
occurrence, to. Likewise, all_constructor denotes the case where the corresponding
parameter of the definition of a particular constant always involves a data-constructor,
whereas mixed denotes that the corresponding parameter is a variable in some clauses
but involves a data-constructor in other clauses. With these atomic assertions in mind,
we write the following LiFtEr assertion:

¬ (÷ r1 : rule. True)
æ

÷ t1 : term.
÷ to1 : term_occurrence œ t1 : term.

is_recursive_constant to1
·

’ t2 : term œ induction_term.
÷ to2 : term_occurrence œ t2 : term.

÷ n : number.
pattern_is (n, to1, all_constructor)

·
is_nth_argument_of (to2, n, to1)

This roughly translates to the following English sentence:

if there is no argument in the rule field in the induct method, then there
exists a recursively defined constant, t1, with an occurrence, to1, such that for
all induction terms t2, there exists an occurrence, to2, of t2, such that there
exists a number, n, such that the nth parameter involves a data-constructor
in all the clauses of the definition of t1, and to2 appears as the nth argument
of to1 in the proof goal.

Note that we added ¬ (÷r1 : rule. True) to focus on the case where the induct
method does not take any auxiliary lemma in the rule field since this heuristic is known
to be less reliable if there is an auxiliary lemma passed to the induct method.

LiFtEr’s interpreter confirms that Nipkow’s proof about itrev and rev conforms to
this heuristic: there exists an occurrence of itrev, such that itrev is recursively defined
and for the only induction term, xs, there is an occurrence of xs on the left-hand side of
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the proof goal, such that itrev’s first parameter involves data-constructor in all clauses
of its definition, and this occurrence of xs appears as the first argument of the occurrence
of itrev in the goal 5.

4.4.5 Heuristic 5. Induction terms should appear as arguments of a
function that has a related .induct rule in the rule field.

When the induct method takes an auxiliary lemma in the rule field that Isabelle
automatically derives from the definition of a constant, it is often true that we should
apply induction on terms that appear as arguments of an occurrence of such constant.

See, for example, our alternative proof, alt_prf, for our ongoing example theorem.
When Nipkow et al. defined the itrev function with the fun keyword, Isabelle auto-
matically derived the auxiliary lemma itrev.induct, and the occurrence of itrev on
the left-hand side of the equation takes xs and ys as its arguments. Furthermore, the
alternative proof passes xs and ys to the rule field in the same order they appear as the
arguments of the occurrence of itrev in the proof goal.

We introduce is_rule_of to relate a term occurrence with an auxiliary lemma passed
to the rule field. is_rule_of takes a term occurrence and an auxiliary lemma in the
rule field of the induct method, and it checks if the rule was derived by Isabelle at
the time of defining the term. Moreover, we introduce is_nth_induction_term, which
allows us to specify the order of induction terms passed to the induct method: is_nth_-
induction_term takes a term and a number, and it checks if the term is passed to the
induct method as the nth induction term. Using these constructs, we can encode the
aforementioned heuristic as follows:

÷ r1 : rule. True
æ

÷ r1 : rule.
÷ t1 : term.

÷ to1 : term_occurrence œ t1 : term.
r1 is_rule_of to1

·
’ t2 : term œ induction_term.

÷ to2 : term_occurrence œ t2 : term.
÷ n : number.

is_nth_argument_of (to2, n, to1)
·

t2 is_nth_induction_term n

As a whole this LiFtEr assertion checks if the following holds:

if there exists a rule, r1, in the rule field of the induct method, then there
exists a term t1 with an occurrence to1, such that r1 is derived by Isabelle

5Note that in reality the counting starts at 0 internally. Therefore, “the first argument” in this English
sentence is processed as the 0th argument within LiFtEr.
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when defining t1, and for all induction terms t2, there exists an occurrence to2
of t2 such that, there exists a number n, such that to2 is the nth argument
of to1 and that t2 is the nth induction terms passed to the induct method.

Our alternative proof is compatible with this heuristic: there is an argument, itrev.induct,
in the rule field, and the occurrence of its related term, itrev, in the proof goal takes
all the induction terms, xs and ys, as its arguments in the same order.

4.4.6 Heuristic 6. Generalize variables in induction terms.
Isabelle’s induct method o�ers the arbitrary field, so that users can specify which
terms to be generalized in induction steps; however, it is known to be a hard problem to
decide which terms to generalize.

Of course LiFtEr cannot provide you with a decision procedure to determine which
terms to generalize, but it allows us to describe heuristics to identify variables that are
likely to be generalized by experienced Isabelle users. For example, experienced users
know that it is usually a bad idea to pass induction terms themselves to the arbitrary
field. We also know that it is often a good idea to generalize variables appearing within
induction terms if induction terms are compound terms.

We can encode the former heuristic using are_same_term, which checks if two terms
are the same term or not. For instance, we can write the following:

’ t1 : term œ arbitrary_term.
¬ (÷ t2 : term œ induction_term. are_same_term (t1, t2))

By now, it should be easy to see that this assertion checks if the following holds:

for all terms in the arbitrary field, there is no induction term of the same
term in the induct method.

The latter heuristic involves the description of the term structure constituting the proof
goal. For this purpose we use is_in_term_occurrence to check if a term occurrence
resides within another term occurrence. With this construct, we can encode the latter
heuristic as follows:

÷ t1 : term œ induction_term.
÷ to1 : term_occurrence œ t1 : term.

’ t2 : term.
÷ to2 : term_occurrence œ t2 : term.

( to2 is_in_term_occurrence to1 · is_free_variable to2 )
æ

÷ t3 : term œ arbitrary_term. are_same_term (t2, t3)

Again, we used the implication (_ æ _) to avoid applying this generalization heuristics
to the cases without compound induction terms.
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Figure 4.3: The test_all_LiFtErs command.

4.4.7 Apply all assertions using the test_all_LiFtErs command.
In this section we have written eight assertions (two assertions from each of Section 4.4.1
and Section 4.4.6). To exploit all the available LiFtEr assertions, we developed the test_-
all_LiFtErs command. The test_all_LiFtErs command first takes a combination of
induction arguments to the induct method. Then, it applies all the available LiFtEr
assertions to the pair of the combination of arguments and the proof goal at hand. Finally,
it counts how many assertions return True. For example, the second line in Fig. 4.3
executed the eight available assertions to the combination of arguments ([on["xs"],
arb["ys"], rule[]]) and the proof goal. The output panel shows the result: Out
of 8 assertions, 8 assertions succeeded. This indicates that the model proof by
Nipkow is indeed a good solution in terms of all the heuristics we discussed in this section.

4.5 Induction Heuristics Across Problem Domains
In Section 4.4 we wrote eight assertions in LiFtEr. When writing these eight assertions,
we emphasized that none of them is specific to the data structure list or the function
itrev appearing in the proof goal. In this section we demonstrate that the LiFtEr
assertions written in Section 4.4 are applicable across domains, taking an inductive
problem from a completely di�erent domain as an example. The following code is the
formalization of a simple stack machine from Concrete Semantics [NK14]:

type_synonym vname = string
type_synonym val = int
type_synonym state = "vname => val"
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"

fun exec1 :: "instr => state => stack => stack" where
"exec1 (LOADI n) _ stk = n # stk"

| "exec1 (LOAD x) s stk = s(x) # stk"
| "exec1 ADD _ (j#i#stk) = (i + j) # stk"
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fun exec :: "instr list => state => stack => stack" where
"exec [] _ stk = stk"

| "exec (i#is) s stk = exec is s (exec1 i s stk)"

exec1 defines how the stack machine in a certain state transforms a given stack into a
new one by executing one instruction, whereas exec specifies how the machine executes
a series of instructions one by one. Nipkow et al. proved the following lemma using
structural induction.

lemma exec_append_model_prf[simp]:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply(induct is1 arbitrary: stk) by auto

This lemma states that executing a concatenation of two lists of instructions in a state
to a stack produces the same stack as executing the first list of the instructions first in
the same state to the same stack and executing the second list again in the same state
again but to the resulting new stack. As in the case with the equivalence of two reverse
functions, there is also an alternative proof based on recursion induction:

lemma exec_append_alt_prf:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply(induct is1 s stk rule:exec.induct) by auto

where exec.induct is automatically derived by Isabelle when defining exec. Now we
check if the heuristics from Section 4.4 correctly recommend these proofs.

Heuristic 1. Both exec_append_model_prf and exec_append_alt_prf comply with
this heuristic. For example, is1 is the only induction term in exec_append_model_prf,
and it has occurrences in the proof goal, where it occurs as a variable.

Heuristic 2. exec_append_model_prf complies with the second heuristic: its only
induction term, is1, occurs at the bottom of the syntax tree as a variable, which is an
atomic term. exec_append_alt_prf also complies with this heuristic: is1, s, and stk
as the arguments of the inner exec on the right-hand side of the equation are all atomic
terms at the deepest layer of the syntax tree.

Heuristic 3. Both proof scripts comply with this heuristic. For example, the inner
occurrence of exec on the right-hand side of the equation takes all the induction terms
of the alternative proof (namely, is1, s, and stk) as its arguments.

Heuristic 4. This heuristic works for both proof scripts, but it explains the model answer
particularly well: it has a recursively defined constant, exec, and the inner occurrence
of exec on the right-hand side of the equation has an occurrence that takes the only
induction term is1 as its first argument, and the first parameter of exec always involve
a data-constructor in the definition of exec.
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Heuristic 5. This heuristic also works for both proof scripts, but it fits particularly well
with the alternative answer: the rule exec.induct is derived by Isabelle when defining
exec, while exec has an occurrence as part of the third argument of another exec on the
right-hand side of the equation, and this inner occurrence of exec takes all the induction
terms (is1, s, and stk) in the same order.

Heuristic 6. None of our proofs involve induction on a compound term, making the
second assertion in Section 4.4.6 rather irrelevant, whereas the first assertion in Section
4.4.6 explains the model answer well: the only generalized term, stk, does not appear as
an induction term.

4.6 Real World Example

In Section 4.4 and Section 4.5, we introduced simple LiFtEr assertions applied to smaller
problems. For example, all induction terms in the examples were variables, even though
Isabelle’s induct method can induct on non-atomic terms.

Program 5 is a more challenging proof about a formalization of an imperative lan-
guage, IMP2 [LW19a], from the Archive of Formal Proofs [KNPT04]. Due to the space
constraints, we refrain ourselves from presenting the complete formalization of IMP2 but
focus on the essential part of the proof document.

In this project, Lammich et al. proved the equivalence between IMP2’s big-step seman-
tics and small-step semantics. smalls_seq in Program 5 is an auxiliary lemma useful to
prove the equivalence. The proof of smalls_seq appears to be somewhat similar to that
of alt_prf in Section 4.2 and exec_append_alt_prf in Section 4.5: smalls_seq’s proof
uses the auxiliary lemma small_steps.induct, which Isabelle derived automatically
when Lammich et al. defined small_steps. Furthermore, the three induction terms, fi,
(c, s), and Some (c’, s’), are the arguments of one occurrence of small_steps.

The di�erence from the preceding examples is the generalization of four free variables
appearing in induction terms: in Program 5, c and s appear within (c, s), while c’
and s’ appear within Some (c’, s’). As we discussed in Section 4.4.6, when applying
induction on non-atomic terms in Isabelle/HOL it is often a good idea to generalize free
variables appearing within such non-atomic induction terms.

To encode such heuristic, we strengthened Example 5 in Section 4.4 using the is_in_-
term_occurrence assertion. Program 6 checks if any induction term is non-atomic and
contains a free variable, all such free variables are generalized in the arbitrary field.
Note that LiFtEr’s interpreter evaluates the universal quantifier over to3 to True when
all induction terms are atomic, since to3 term_occurrence_is_of_term t3 is guarded
by ¬ ( is_atomic to2 ), making this assertion valid even for the cases where induction
terms are atomic variables.
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Program 5 A Proof about the Semantics of an Imperative Language, IMP2.

datatype com =
SKIP (*No-op*)

(*Assignment*)
| AssignIdx vname aexp aexp (*Assign to index in array*)
| ArrayCpy vname vname (*Copy whole array*)
| ArrayClear vname (*Clear array*)
| Assign_Locals "vname => val" (*Assign all local variables*)
(*Block*)
| Seq com com (*Sequential composition*)
| . . .

fun small_step :: "program => com ◊ state => (com ◊ state) option" where
"small_step fi ((AssignIdx x i a, s) =

Some (SKIP, s(x := (s x)(aval i s := aval a s)))"
| "small_step fi (ArrayCpy x y, s) = Some (SKIP, s(x := s y))"
| "small_step fi (ArrayClear x, s) = Some (SKIP, s(x := (⁄_. 0)))"
| "small_step fi (Assign_Locals l, s) = Some (SKIP, <l|s>)"
| "small_step fi (SKIP ;; c, s) = Some (c, s)"
| "small_step fi (c1 ;; c2, s) = (case small_step fi (c1, s) of

Some (c1’, s’) => Some (c1’ ;; c2, s’) | _ => None)"
| . . .

inductive small_steps ::
"program => com ◊ state => (com ◊ state) option => bool" where
"small_steps fi cs (Some cs)"

| "small_step fi cs = None ≠æ small_steps fi cs None"
| "small_step fi cs = Some cs1 ≠æ

small_steps fi cs1 cs2 ≠æ small_steps fi cs cs2"

lemma smalls_seq:
"small_steps fi (c, s) (Some (c’, s’)) =∆
small_steps fi (c ;; cx, s) (Some (c’;; cx, s’))"

apply (induct fi "(c, s)" "Some (c’, s’)"
arbitrary: c s c’ s’ rule: small_steps.induct)

apply (auto dest: small_seq intro: small_steps.intros)
by (metis option.simps(1) prod.simps(1)

small_seq small_step.simps(31) small_steps.intros(3))
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Program 6 An Assertion for the Generalization of Variables in Induction Terms.

÷ r1 : rule. True
æ

÷ r1 : rule.
÷ t1 : term.

÷ to1 : term_occurrence œ t1 : term.
r1 is_rule_of to1

·
’ t2 : term œ induction_term.

÷ to2 : term_occurrence œ t2 : term.
÷ n1 : number.

is_nth_argument_of (to2, n1, to1)
·

t2 is_nth_induction_term n1
·

’ to3 : term_occurrence.
¬ ( is_atomic to2 )

·
is_free_variable to3

·
to3 is_in_term_occurrence to2

æ
÷ t3 : arbitrary_term.

to3 term_occurrence_is_of_term t3

4.7 Conclusions, Related and Future Work

ITP has been considered as a very challenging task. To address this issue, we presented
LiFtEr. LiFtEr is a domain-specific language in the sense that we developed LiFtEr to
encode induction heuristics; however, heuristics written in LiFtEr are often not specific
to any problem domains. To the best of our knowledge, LiFtEr is the first programming
language developed to capture induction heuristics across problem domains, and its
interpreter is the first system that executes meta-reasoning on interactive inductive
theorem proving.

The recent development in proof automation for higher-order logic takes the meta-tool
approach. Gauthier et al., for example, developed an automated tactic prover, TacticToe,
on top of HOL4 [GKU17]. TacticToe leanrs how human engineers used tactics and applies
the knowledge to execute a tactic based Monte Carlo tree search. To automate proofs in
Coq [TCdt], Komendantskaya et al. developed ML4PG [KH17]. ML4PG uses recurrent
clustering to mine a proof database and attempts to find a tactic-based proof for a given
proof goal. Both of them try to identify useful lemmas or hypotheses as arguments of
a tactic; however, they do not identify promising terms as arguments of a tactic even
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though identifying such terms is crucial to apply induction e�ectively.
The most well-known approach for ITP is called the Boyer-Moore waterfall model

[Moo73]. This approach was invented for a first-order logic on Common Lisp. Most
waterfall provers attempt to apply six proof techniques (simplification, destructor elimi-
nation, cross-fertilization, generalization, elimination of irrelevance, and induction) in a
fixed order, store the resulting sub-goals in a pool, and keep applying these techniques
until the pool becomes empty.

ACL2 [Moo98] is the most commonly used waterfall model based prover, which has
achieved industrial-scale proofs [KM97]. When deciding how to apply induction, ACL2
computes a score, called hitting ratio, to estimate how good each induction scheme is for
the term which it accounts for and proceeds with the induction scheme with the highest
hitting ratio [BM79, MW13].

Compared to the hitting ratio used in the waterfall model, LiFtEr’s atomic assertions
let us analyze the structures of proof goals directly while LiFtEr’s quantifiers let us keep
LiFtEr assertions non-specific to any problem. While ACL2 produces many induction
schemes and computes their hitting ratios, LiFtEr assertions do not directly produce
induction schemes but analyze the given proof goal and the arguments passed to the
induct method, re-using Isabelle’s existing tool to (implicitly) produce induction prin-
ciples. We consider LiFtEr’s approach to be a reasonable choice, since it extends the
usability of the already well-developed proof assistant, Isabelle/HOL, while avoiding to
reinvent the mechanism to produce induction principle.

Furthermore, the choice of Isabelle/HOL as the host system of LiFtEr allowed us to
take advantage of human interaction more aggressively both from Isabelle experts and
new Isabelle users: Isabelle experts can encode their own heuristics since LiFtEr is a
language, and new Isabelle users can inspect the results of LiFtEr assertions and decide
how to attack their proof goals instead of following the fixed order of six proof techniques
as in the waterfall model.

Heras et al. used ML4PG learning method to find patterns to generalize and transfer
inductive proofs from one domain to another in ACL2 [HKJM13]. Jiang et al. followed
the waterfall model and ran multiple waterfalls [JPF18] to automate ITP in HOL light
[Har96]. However, when deciding induction variables, they naively picked the first free
variable with recursive type and left the selection of appropriate induction variables as
future work.

To determine induction variables automatically, we developed a proof strategy language
PSL and its default proof strategy, try_hard for Isabelle/HOL [NK17]. PSL tries to
identify useful arguments for the induct method by conducting a depth-first search.
Sometimes it is not enough to pass arguments to the induct method, but users have
to specify necessary auxiliary lemmas before applying induction. To automate such
labor-intensive work, PGT [NP18], a new extension to PSL, produces many lemmas by
transforming the given proof goal while trying to identify a useful one in a goal-oriented
manner.

The drawback of PSL and PGT is that they cannot produce recommendations if they
fail to complete a proof search: when the search space becomes enormous, neither PSL
and PGT gives any advice to Isabelle users.
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PaMpeR [NH18a], on the other hand, recommends which proof method is likely to be
useful to a given proof goal, using a supervised learning applied to the Archive of Formal
Proofs [KNPT04]. The key of PaMpeR was its feature extractor: PaMpeR first applies 108
assertions to each invocation of proof methods and converts each pair of a proof goal
with its context and the name of proof method applied to that goal into an array of
boolean values of length 108 because this simpler format is amenable for machine learning
algorithms to analyze. The limitation of PaMpeR is, unlike PSL, it cannot recommend
which arguments in the induct method to tackle a given proof goal.

Taking the same approach as PaMpeR, we attempted to build a recommendation tool,
MeLoId [Nag18], to automatically suggest promising arguments for the induct method
without completing a proof: we wrote many assertions in Isabelle/ML. Unfortunately,
encoding induction heuristics as assertions directly in Isabelle/ML caused an immense
amount of code-clutter, and we could not encode even the human-friendly notion of depth
in syntax tree since multi-arity functions are represented as curried functions in Isabelle.
Therefore, we developed LiFtEr, expecting that LiFtEr serves as a language for feature
extraction.

We hope that when combined into the supervised learning framework of MeLoId,
assertions written in LiFtEr extract the essence of induction in Isabelle/HOL in a cross-
domain style and produce a useful database for machine learning algorithms, so that
new Isabelle users can have the recommendation of promising arguments for the induct
method in a fully automatic way.
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Publication Details
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Proceedings of the 20th Conference on Formal Methods in Computer-Aided
Design – FMCAD 2020, 2020

Abstract

Proof assistants o�er tactics to facilitate inductive proofs; however, deciding what
arguments to pass to these tactics still requires human ingenuity. To automate this
process, we present smart_induct for Isabelle/HOL. Given an inductive problem in
any problem domain, smart_induct lists promising arguments for the induct tactic
without relying on a search. Our in-depth evaluation demonstrate that smart_induct
produces valuable recommendations across problem domains. Currently, smart_induct
is an interactive tool; however, we expect that smart_induct can be used to narrow the
search space of automatic inductive provers.

5.1 Introduction

Proof by induction lies at the heart of verification of computer programs that involve
recursive data-structures, recursion, or iteration [Gra05]. To facilitate proofs by induction,
interactive theorem provers, such as Isabelle/HOL [NPW02], Coq [TCdt], and HOL[SN08],
o�ers tactics. Yet, it requires prover specific expertise to be familiar with such tactics,
and human developers have to manually investigate each inductive problem to decide
how to apply such tactics.

Unfortunately, the automation of proof by induction is considered as a long standing
challenge in computer science, for which Gramlich [Gra05] presented the following
conjecture in 2005:
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in the near future, inductive theorem proving will only be successful for
very specialised domains for very restricted classes of conjectures. Inductive
theorem proving will continue to be a very challenging engineering process
[Gra05].

We challenge his conjecture with smart_induct, a recommendation tool for proof by
induction in Isabelle/HOL. Given an inductive problem in any domain, smart_induct
suggests how one should apply induct to attack that problem.

5.2 Proof by Induction in Isabelle/HOL
Given the following two simple reverse functions defined in Isabelle/HOL [NPW02], how
do you prove their equivalence [NK14]?

primrec rev::"– list => – list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"

fun itrev::"– list => – list => – list"
where

"itrev [] ys = ys"
| "itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"

where # is the list constructor, and @ appends two lists. Using induct of Isabelle/HOL,
we can prove this inductive problem in multiple ways:

lemma prf1: "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) by auto

lemma prf2: "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:itrev.induct)
by auto

prf1 applies structural induction on xs while generalising ys before applying induction
by passing ys to the arbitrary field. It is worth noting that induct determines the
default induction principle in prf1 from the induction term, xs. On the other hand,
prf2 applies functional induction (also known as computation induction) on itrev by
the induction principle, itrev.induct, to the rule field.

There are other lesser-known techniques to handle di�cult inductive problems using
induct, and sometimes users have to develop useful auxiliary lemmas manually; however,
for most cases the problem of how to apply induction boils down to the the following
three questions:

• On which terms to apply induction?
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Figure 5.1: The workflow of smart_induct.

• Which variables to generalise using the arbitrary field?

• Which rule to use for functional induction or rule inversion (as known as rule
induction) in the rule field?

To answer these questions automatically, we previously developed a proof strategy
language, PSL [NK17]. Given an inductive problem, PSL produces various combinations
of induction arguments for induct and conducts an extensive proof search based on a
given strategy. If PSL completes a proof search, it identifies the appropriate combination
of arguments for the problem and presents the combination to the user; however, when
the search space becomes enormous, PSL cannot find a proof within a realistic timeout
and fails to provide any recommendation, even if PSL produces the right combination of
induction arguments. For further automation of proof by induction, we need a tool that
satisfies the following two criteria:

• The tool suggests right induction arguments without completing a proof search.

• The tool suggests right induction arguments for any inductive problems.

In this paper we present smart_induct, a recommendation tool that addresses these
criteria. smart_induct is available at GitHub [Nag] together with our running example
and the evaluation files discussed in Section 5.4.

The implementation of smart_induct is specific to Isabelle/HOL; however, the under-
lying concept is transferable to other tactic-based proof assistants including HOL4 [SN08],
Coq [TCdt], and Lean [dMKA+15]. We developed smart_induct as an interactive tool,
but one can take its approach to narrow the search space for automatic inductive provers,
such as ACL2 [BM79] and Imandra [PCI+20].

To the best of our knowledge smart_induct is the first recommendation tool that uses
a logic to analyze the syntactic structures of proof goals and advises how to apply induct
across problem domains without completing to a proof search.
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Figure 5.2: The user-interface of smart_induct.

5.3 Generating and Filtering Tactics
Fig. 5.1 illustrates the internal workflow of smart_induct: when invoked by a user, the
first step produces many variants of induct with di�erent combinations of arguments.
Secondly, the multi-stage screening step filters out less promising combinations of in-
duction arguments. Thirdly, the scoring step evaluates each combination to a natural
number using logical feature extractors implemented in LiFtEr [Nag19a] and reorder
the combinations based on their scores. Lastly, the short-listing step takes the best 10
candidates and prints them in the Output panel of Isabelle/jEdit as shown in Fig. 5.2.
In this section, we explore details of Step 1 to Step 3.

5.3.1 Step 1: Creation of Many Induction Tactics.
smart_induct inspects the given proof goal and produces a number of combinations of
arguments for induct taking the following procedure: smart_induct collects variables
and constants appearing in the goal. If a constant has an associated induction rule
in the underlying proof context, smart_induct also collects that rule. From these
variables and induction rules, smart_induct produces the power set of combinations of
arguments for induct. Then, for each member of the power set smart_induct computes
the permutation of the induction variables since induct behaves di�erently for di�erent
orders of induction variables. Finally, smart_induct produces a tactic for each well-typed
permutation of induction variables for each member of the power set.

In our example, smart_induct picks up xs and ys as variables and itrev and rev
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as constants, from which it finds itrev.induct as an induction rule, which Isabelle
derived automatically when defining itrev. From these variables and rule, smart_induct
produces 40 combinations of induction arguments.

If the size of this set is enormous, we cannot store all the produced induction tactics in
our machines. Therefore, smart_induct produces this set as a lazy sequence and takes
only the first 10,000 combinations for further processing.

5.3.2 Step 2: Multi-Stage Screening.
10,000 is still a large number, and feature extractors used in Step 3 often involve
nested traversals of nodes in the syntax tree representing a proof goal, leading to high
computational costs. Fortunately, the application of induct itself is not computationally
expensive in most cases: we can apply induct to a proof goal and have intermediate
sub-goals at a low cost. Therefore, in Step 2, smart_induct applies induct to the given
proof goal using the various combinations of arguments from Step 1 and filter out some
of them through the following two stages.

Stage 1 focuses on inducts that return some results in the first stage, smart_induct
filters out those combinations of induction arguments, with which Isabelle/HOL does
not produce an intermediate goal. Since we have no known theoretical upper bound for
the computational cost for induct, we also filter out those combinations of arguments,
with which induct does not return a result within a pre-defined timeout. In our running
example, this stage filters out 8 combinations out of 40.

Stage 2 discards induct tactics that return unpromising results taking the results
from the previous stage, Stage 2 scans both the original goal and the newly introduced
intermediate sub-goals at the same time to further filter out less promising combinations.
More concretely, this stage filters out all combinations of arguments if they satisfy any of
the following conditions.

• Some of newly introduced sub-goals are identical to each other.

• A newly introduced sub-goal contains a schematic variable even though the original
first sub-goal did not contain a schematic variable.

In our example, Stage 2 does not filter out any combination. Note that these tests on
the original goal and resulting sub-goals do not involve nested traversals of nodes in the
syntax tree representing goals. For this reason, the computational cost of this stage is
often lower than that of Step 3.

5.3.3 Step 3: Scoring Induction Arguments using LiFtEr.
Step 3 carefully investigates the remaining candidates using heuristics implemented in
LiFtEr [Nag19a]. LiFtEr is a domain-specific language to encode induction heuristics in
a style independent of problem domains. Given a proof goal and combination of induction
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Program 7 A LiFtEr heuristic used in smart_induct.
÷ r1 : rule. True

æ
÷ r1 : rule.
÷ t1 : term.
÷ to1 : term_occurrence œ t1 : term.

r1 is_rule_of to1
·
’ t2 : term œ induction_term.
÷ to2 : term_occurrence œ t2 : term.
÷ n : number.

is_nth_argument_of (to2, n, to1)
·
t2 is_nth_induction_term n

arguments, the LiFtEr interpreter mechanically checks if the combination is appropriate
for the goal in terms of a heuristic written in LiFtEr. The interpreter returns True if
the combination is compatible with the heuristic and False if not. We illustrated the
details of LiFtEr in our previous work [Nag19a] with many examples. In this paper, we
focus on the essence of LiFtEr and show one example heuristic used in smart_induct.

LiFtEr supports four types of variables: natural numbers, induction rules, terms, and
term occurrences. An induction rule is an auxiliary lemma passed to the rule field of
induct. The domain of terms is the set of all sub-terms appearing in a given goal. The
logical connectives (‚, ·, æ, and ¬) correspond to the connectives in the classical logic.
LiFtEr o�ers atomic assertions, such as is_rule_of, to examine the property of each
atomic term. Quantifiers bring the power of abstraction to LiFtEr, which allows LiFtEr
users to encode induction heuristics that can transcend problem domains. Quantification
over term can be restricted to the induction terms used in induct.

We encoded 19 heuristics in LiFtEr for smart_induct and assign weights to these
heuristics. Some of them examine a combination of induction arguments in terms of
functional induction or rule inversion, whereas others check the combination for structural
induction. Program 7, for example, encodes a heuristic for functional induction. In
English this heuristic reads as follows:

if there exists a rule, r1, in the rule field of the induct tactic, then there
exists a term t1 with an occurrence to1, such that r1 is derived by Isabelle
when defining t1, and for all induction terms t2, there exists an occurrence to2
of t2 such that, there exists a number n, such that to2 is the nth argument
of to1 and that t2 is the nth induction terms passed to the induct tactic.

If we apply this heuristic to our running example, prf2, the LiFtEr interpreter returns
True: there is an argument, itrev.induct, in the rule field, and the occurrence of its
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related term, itrev, in the proof goal takes all the induction terms, xs and ys, as its
arguments in the same order.

Attentive readers may have noticed that Program 7 is independent of any types or
constants specific to prf2. Instead of handling specific constructs explicitly, Program
7 analyzes the structure of the goal with respect to the arguments passed to induct
in an abstract way using quantified variables and logical connectives. This power of
abstraction let smart_induct evaluate whether a given combination of arguments to
induct is appropriate for a user-defined proof goal consisting of user-defined types
and constants, even though such constructs are not available to the smart_induct
developers. In fact, none of the LiFtEr heuristics used in smart_induct relies on
constructs specific to any problem domain except for one heuristic, which involves a
heuristic about Set.member. We developed this particular heuristic for conjectures
involving Set.member since Set.member appears in the standard library of Isabelle/HOL
and is used by many Isabelle users.

In Step 3, smart_induct applies these heuristics to the results from Step 2. For
each heuristic, smart_induct gives certain predefined points to each combination of
induct arguments if the LiFtEr interpreter returns True for that combination. Then,
smart_induct reorders these combinations based on their scores and presents the most
promising combinations to the user in Step 4.

5.3.4 User-Interface
Fig. 5.2 shows a screenshot of Isabelle/jEdit interface with smart_induct. The seamless
integration into Isabelle’s ecosystem makes smart_induct easy to install and easy to use:
smart_induct is free from any dependency to external tools except for Isabelle/HOL
itself, and we have incorporated smart_induct into Isabelle/Isar [Wen11], Isabelle’s
proof language, and Isabelle/jEdit, its standard editor. This allows Isabelle users to
invoke smart_induct by typing smart_induct within their proof document and to copy
a recommended use of induct to the right location in the document with one click.

Since smart_induct is a meta-tool to use Isabelle’s default induction tactic, once
smart_induct has been called and the tactic inserted, one can remove the smart_induct
call.

5.4 Evaluation
We evaluated smart_induct by measuring its performance. We conducted all evaluations
using a MacBook Pro (15-inch, 2019) with 2.6 GHz Intel Core i7 6-core memory 32 GB
2400 MHz DDR4.

5.4.1 Database for evaluation.
As our evaluation target, we chose five Isabelle theory files with many inductive problems
developed by various researchers from the Archive of Formal Proofs [KNPT04]. In the
following, we use the following short names to denote these files:
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Challenge(12)

11.0%

DFS(10)

9.2%

Goodstein(52)
47.7%

NN(11)

10.1%

PST(24)
22.0%

Figure 5.3: Breakdown of the evaluation dataset.

1. Challenge stands for Challenge1A.thy, which is a part of the solution for Veri-
fyThis2019, a program verification competition associated with ETAPS2019 [LW19b],

2. DFS stands for DFS.thy, which is a formalisation of depth-first search [NM04b],

3. Goodstein is for Goodstein_Lambda.thy, which is an implementation of the Good-
stein function in lambda-calculus [Fel20],

4. NN stands for Nearest_Neighbors.thy, which is from the formalisation of multi-
dimensional binary search trees [Rau19], and

5. PST stands for PST_RBT.thy, which is from the formalisation of priority search
tree [LN19].

As a whole these files contain 109 calls of induct. Fig. 5.3 shows the demographics of
our dataset. For example, NN(11) 10.1% mean that Nearest_Neighbor.thy contains
11 invocations of induct, which accounts for 10.1% of all invocations of induct in our
dataset.

Fig. 5.4, on the other hand, shows how often proof authors used the rule and
arbitrary fields. In the labels of Fig. 5.4, “w" and “wo" stand for “with" and “without",
respectively; whereas “R" and “A" stand for “Rule" and “Arbitrary". For example,
“wR-woA(55) 50.5%" represents that among the 109 applications of induct 55 of them
have an argument in the rule field but have no argument in the arbitrary field, and
this amounts to 50.5%. We greyed the area corresponding to the applications of induct
with an argument in the rule field.

This figure illustrates that in our dataset

• more than half of applications come with a rule, and
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wR-wA(9)
8.3%

wR-woA(55)

50.5%

woR-wA(14)

12.8%

woR-woA(31)

28.4%

Figure 5.4: Use of rule and arbitrary fields.

Table 5.1: Scope of smart_induct.

- w/ handwritten rule w/o handwritten rule
w/ compound term 1 (0.9%) 1 (0.9%)
w/o compound term 5 (4.6%) 102 (93.6%)

• applications of induct with a rule are less likely to involve generalisation.

Table 5.1 shows how many proofs by induction in the evaluation dataset reside within
the scope of smart_induct. For example, 102(93.6%) for “w/o compound term" and
“w/o handwritten rule" means the following: for 102 proofs by induction out of 109,
developers of this dataset used induct without applying induction on a compound term
nor using an induction rule in the rule field that was conjectured and proved manually
by a human developer.

These 102 proofs by induction are the only ones that reside within the scope of smart_-
induct because Step 1 of smart_induct does not create inducts on compound terms or
inducts with induction principles that were not derived by Isabelle automatically when
defining a constant appearing in the proof goal at hand.

Conversely, the remaining three entries in Table 5.1 correspond to the invocations of
induct that lie outside the scope of smart_induct. And such invocations amount to 7
(6.4%) out of 109.

5.4.2 Coincidence Rate.

The most important aspect of this tool would be the accuracy of its recommendation.
Unfortunately, it is in general not possible to measure if a combination of induction
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Figure 5.5: Coincidence rates for each theory file.
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Figure 5.6: Inductions with a rule or generalization.

arguments is correct for a goal because many proofs by induction can be valid for one
inductive problem. For our running example, we have two proofs, prf1 and prf2, and
both of them are equally good. In this particular case, we can confirm the correctness
of these combinations of induction arguments by completing the corresponding proof
attempts; however, the necessary proof scripts that follow induct, in general, can be
arbitrarily long, and for this reason it is not possible to mechanically check whether a
combination of induction arguments is correct or not.

Since we cannot directly measure the true success rate of smart_induct, we evaluated
the trustworthiness of smart_induct’s recommendations using coincidence rates: we
counted how often its recommendation coincides with the choices of Isabelle experts.
Since we often have multiple equally valid combinations of induction arguments for a
given proof goal, we should regard a coincidence rate as a conservative estimate of true
success rate.
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On the other hand, we can safely consider our coincidence rates as the lower bound for
the true success rates since we collected our evaluation targets from the Archive of Formal
Proofs [KNPT04], which accepts Isabelle proof documents only after the peer-reviewing
process by Isabelle experts.

Fig. 5.5 shows coincidence rates for each theory file and the entire dataset separately.
The four bars for each theory file represent the corresponding success rates among top
n recommendations, where n is 1, 3, 5, and 10 from left to right. For example, top 3
for Goodstein is 51.9%. This means the following: when smart_induct recommends
three most promising combinations induction arguments to 52 inductive problems in
Goodstein_Lambda.thy, for 51.9% out of 52 problems in this file one of the three
combinations of induction arguments recommended by smart_induct coincides with the
choice of human proof author.

As mentioned earlier, we should regard a coincidence rate as a conservative estimate of
true success rate. Therefore, 51.9% mentioned above should be interpreted as following:
smart_induct’s recommendation coincides with the choice of experienced Isabelle user
for 51.9% of times when it is allowed to recommend three combinations of arguments,
but the real success rate of smart_induct’s recommendation can be higher than 51.9%.

Notably the rightmost group of bars in Fig. 5.5 shows that smart_induct can recom-
mend the choice of human engineer as the most promising application of induct for at
least roughly half of the cases (49.5%).

A quick glance over Fig. 5.5 would give the impression that smart_induct’s perfor-
mance depends heavily on problem domains: smart_induct demonstrated the perfect
result for PST, whereas the coincidence rate for NN remains at 18.2% for top_5.

However, a closer investigation of the results reveals that the di�erent coincidence rates
come from the style of induction rather than domain specific items such as the types or
constructs appearing in goals.

To corroborate this claim, we illustrate how each proof author used induct to develop
each theory file in Fig. 5.6. In this figure each pair of bars presents how often induct
comes with an argument in the rule field and arbitrary field, respectively. For example,
the left bar for Goodstein is 40.4% whereas its right bar is 25.0%. This means that
induct is applied with an argument in the rule field for 40.4% of times in Goodstein,
and induct generalises a variable using the arbitrary field for 25.0% of times in the
same file.

Together with Fig. 5.5, Fig. 5.6 shows that smart_induct tends to show a higher
coincidence rate for theory files with a high proportion of inducts with an argument
in the rule field and a lower proportion of the tactics with generalisation using the
arbitrary field. NN and PST are two extreme examples: In NN, 81.8% of applications
of induct involve generalisation while no application of the tactic has an argument in
the rule field in Fig. 5.6, and smart_induct’s coincidence rates are lowest for NN. On
the contrary, PST has no application involving generalisation while all applications use
the rule field, and smart_induct’s showed the perfect result for PST.

To further investigate how the style of induction a�ects the coincidence rate of smart_-
induct, we measured coincidence rates based on the use of the rule and arbitrary
fields in Fig. 5.7 where “w”, “wo”, and “a” stand for “with”, “without”, and “arbitrary”,

65



5 Smart Induction for Isabelle/HOL (Tool Paper)

w-rule-w-a wo-rule-w-a w-rule-wo-a wo-rule-wo-a w-rule wo-rule

0

50

100

0
14.3

78.2

29

67.2

24.4
11.1

21.4

83.6

61.3
73.4

48.9

22.2 28.6

87.3 80.6 78.1
64.4

33.3
50

90.9 96.8
82.8 82.2

co
in

ci
de

nc
e

ra
te

[%
]

top 1 top 3 top 5 top 10

Figure 5.7: Coincidence rates with regard to the rule and arbitrary fields.

respectively. For example, the leftmost group labelled with “w-rule-w-a” represents the
coincidence rates among the applications of induct that have arguments in both the
rule and arbitrary fields.

The two right most groups of bars represent the coincidence rates based on the use
of rule field regardless of the use of the arbitrary field. These two groups show that
smart_induct tends to perform better in predicting how human engineers use induct
when induct has an argument in the rule field, which correspond to functional induction
and rule inversion.

Interestingly, the two groups in the middle of Fig. 5.7 show that if we focus on the
cases without generalisation we can see that the trend among the gaps between the
coincidence rates for rule-based inductions (function induction and rule inversion) and
the corresponding rates for structural inductions is less clear: we have a wider gap for
“top 1”, but narrower gaps for “top 3" and “top 5”. And for “top 10” we even have
a lower coincidence rate for rule-based inductions. Moreover, if we focus on inducts
involving generalisation, smart_induct shows even lower coincidence rates for rule-based
inductions as shown by the two leftmost groups in Fig. 5.7; even though smart_induct
overall tends to show higher coincidence rates for rule-based inductions.

This seemingly paradoxical phenomenon is best explained by Fig. 5.4, which shows that
rule-based inductions less often involve generalisation (14.0%) than structural induction
(31.1%) in the dataset: it is still di�cult for smart_induct to predict which variable to
generalise, especially for rule-based inductions, but rule-based inductions tend not to
involve variable generalisation to begin with.

To investigate how far generalisation of variables leads to poor coincidence rates, we
computed the coincidence rates for NN again based on a di�erent criterion: this time we
ignored the arbitrary fields and took only induction terms and arguments in the rule
into consideration to measure coincidence rates presented in Fig. 5.8. In Fig. 5.8, the
coincidence rate among top 1 is still as low as 9.1% since smart_induct often chooses
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Figure 5.8: Coincidence rates when ignoring arbitrary.

a rule-based induction for the most promising candidate, but the overall trend is much
better and similar to the rates for w-rule-wo-a in Fig 5.7. The large discrepancies between
the numbers for NN in Fig. 5.5 and those in Fig. 5.8 show that even for the most
problematic theory file, NN, which contains many structural inductions smart_induct is
often able to predict on which variables experts apply induction, but it fails to predict
which variables to generalise.

The limited performance in predicting experts’ use of the arbitrary field stems
from LiFtEr’s limited capability to examine semantic information of proof goals. Even
though LiFtEr o�ers quantifiers, logical connectives, and atomic assertions to analyze the
syntactic structure of a goal in an abstract way, LiFtEr does not o�er enough supports to
analyze the semantics of the goal. For more accurate prediction of variable generalisation,
smart_induct needs a language to analyze not only the structure of a goal itself but also
the structure of the definitions of types and constants appearing in the goal abstractly.

5.4.3 Pruning.

Section 5.3 showed how smart_induct produces many candidates of induct and prunes
less promising ones step by step. We measured how each of these steps contributes to
the production of recommendations by counting how many candidates are produced and
pruned at each step.

Fig. 5.9 illustrates how many candidates smart_induct produced at each step for
each proof by induction. The vertical axis denotes the number of candidates after each
step for the corresponding proof by induction. White circles and “+"es represent the
number of remaining candidates for invocations of smart_induct when the choice of
induction arguments by human authors coincides with one of the 10 most promising
combinations recommended by smart_induct. For such successful cases, we also used a
white diamond to depict the corresponding “rank" given by smart_induct. For example,
if smart_induct gives a rank of 3, this means smart_induct recommended the choice
of human engineer as the third most promising combination of arguments to induct.

Along the horizontal axis in Fig. 5.9, we sorted proofs by induction based on the
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Figure 5.9: Number of Candidates After Each Step.

number of candidates after Step 1. For example, at the right-end of the horizontal
axis, we have a circle, a plus, and a diamond. This means for the proof by induction
represented by these three points Step 1 produced 10,000 candidates, and Step 2 pruned
them down to 128 candidates, and Step 3 ranked the choice of human engineer as the
most promising candidate.

On the other hand, black circles and “x”es represent the number of candidates for
failed cases where the choice of induction arguments by human authors did not appear
among the top 10 recommendations by smart_induct.

One can see that black circles are broadly distributed along the horizontal axis,
indicating that the number of initial candidates after Step 1 does not have a strong
influence on the accuracy of smart_induct.

The use of the logarithmic scale for the vertical axis makes it clear that the number of
candidates after Step 1 di�ers wildly. On the other hand, the number of candidates after
Step 2 are mostly contained under 200 with a single exception of 592.

Fig. 5.9 also shows that we had 6 cases where Step 1 reached its upper limit, 10,000.
Interestingly, all these cases are successful and 5 of them have the rank of 1. From this,
we can judge that the pre-defined upper limit of 10,000 is a descent compromise, which
excludes some possible combinations of induction arguments without seriously damaging
the coincidence rates of smart_induct.

Finally the wide gaps between each “+" and its corresponding diamond in Fig. 5.9
indicate that smart_induct’s heuristics written in LiFtEr e�ectively nailed down the
combination of induction arguments used by human engineers out of many plausible
options.
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Figure 5.10: Execution Time of smart_induct.

For smart_induct to be useful, it has to be able to provide valuable recommendations
within a realistic time out.

Fig. 5.10 illustrates the distribution of smart_induct’s execution time necessary to
produce recommendations. The vertical axis represents the execution times in second for
each data point, which are sorted along the horizontal axis. As is the case in Section
5.4.3, we filled circles for unsuccessful cases with black.

Similarly to Fig. 5.9, Fig. 5.10 also shows that the unsuccessful cases are spread along
the horizontal axis, meaning there is no clear correlation between execution time and the
accuracy of recommendation.

We again used the logarithmic scale for the vertical axis. This means that execution
times vary largely for di�erent proofs by induction, even though the numbers of candidates
after Step 2 are mostly kept below 200, as we saw in Section 5.4.3, This is because the
computational cost for each LiFtEr heuristic in Step 3 depends on the syntactic structure
of each inductive problem, smart_induct’s execution time varies for di�erent problems.

The overall median value is 25.5 seconds, which means smart_induct can produce a
recommendation within 25.5 seconds for half of the problems. In the future we plan to
identify and discard less valuable heuristics in Step 3 to speed up smart_induct.

5.5 Conclusion

We presented smart_induct, a recommendation tool for proof by induction in Is-
abelle/HOL. Our evaluation showed smart_induct’s excellent performance in recom-
mending how to apply functional induction and rule inversion and good performance at
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identifying induction variables for structural induction for various inductive problems
across problem domains. This partially refutes Gramlich’s bleak conjecture from 2005.
However, recommendation of variable generalisation remains as a challenging task.

It remains as an open question how far we can improve the accuracy and speed of
smart_induct by combining it with search based systems [NK17, NP18] and approaches
based on evolutionary computation [Nag19b] or statistical machine learning [Nag18].

Related Work The most well-known approach for inductive problems is called the
Boyer-Moore waterfall model [Moo73]. This approach was invented for a first-order logic
on Common Lisp. ACL2 [Moo98] is a commonly used waterfall model based prover.
When deciding how to apply induction, ACL2 computes a score, called hitting ratio,
to estimate how good each induction scheme is for the term which it accounts for and
proceeds with the induction scheme with the highest hitting ratio [BM79, MW13].

Instead of computing the hitting ratios, smart_induct analyzes the structures of
proof goals directly using LiFtEr. While ACL2 produces many induction schemes and
computes their hitting ratios, smart_induct does not directly produce induction schemes
but analyzes the given proof goal, the arguments passed to the induct tactic, and the
emerging sub-goals.

Jiang et al. ran multiple waterfalls [JPF18] in HOL Light [Har96]. However, when
deciding induction variables, they naively picked the first free variable with a recursive
type and left the selection of appropriate induction variables as future work.

Machine learning applications to tactic-based provers [NH18a, Nag20c, BLR+19,
GKU17, BUG20a, BUG20b] focus on selections of tactics, and the selections of tac-
tic arguments are restricted to premise selections for general-purpose tactics; even though
one often has to choose terms for induction arguments to use induct e�ectively.

Sometimes it is not enough to apply induct to discharge an inductive problem in
Isabelle/HOL but we have to conjecture useful auxiliary lemmas, which we can use to prove
the original problem e�ectively. There are two schools to automate such conjecturing step:
bottom-up approach known as theory exploration [Buc00, JRSC14, Joh17, Joh19, EJP18]
and top-down approach known as goal-oriented conjecturing [NP18]. For both cases,
conjectured lemmas themselves are often inductive problems, which one has to prove by
applying proof by induction. For this reason, we plan to achieve complementary strengths
by incorporating smart_induct into a conjecturing tool.

There was a series of attempts to automate proof by induction in Isabelle/HOL in
the style of rippling [BSvH+93, BBHI05]. Compared to their approach, we built smart_-
induct on top of the default induct tactic, which allowed us to exploit the widely used
existing framework for proof by induction in Isabelle/HOL and made the resulting proof
scripts maintainable without smart_induct.

Reger et al. incorporated lightweight automated induction into Vampire [RV19] for
saturation-based automated first-order theorem proving [KV13], while we built smart_-
induct for Isabelle/HOL, a tactic-based interactive theorem prover for higher-order
logic.
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Abstract
Deciding which sub-tool to use for a given proof state requires expertise specific to each
interactive theorem prover (ITP). To mitigate this problem, we present PaMpeR, a proof
method recommendation system for Isabelle/HOL. Given a proof state, PaMpeR recom-
mends proof methods to discharge the proof goal and provides qualitative explanations
as to why it suggests these methods. PaMpeR generates these recommendations based
on existing hand-written proof corpora, thus transferring experienced users’ expertise to
new users. Our evaluation shows that PaMpeR correctly predicts experienced users’ proof
methods invocation especially when it comes to special purpose proof methods.

6.1 Introduction
Do you know when to use the proof method1 called intro_classes in Isabelle? What
about uint_arith? Can you tell when fastforce tends to be more powerful than auto?
If you are an Isabelle expert, your answer is “Sure.” But if you are new to Isabelle, your
answer might be “No. Do I have to know these Isabelle specific details?”

Interactive theorem provers (ITPs) are forming the basis of reliable software engineering.
Klein et al. proved the correctness of the seL4 micro-kernel in Isabelle/HOL [KAE+10].
Leroy developed a certifying C compiler, CompCert, using Coq [Ler09]. Kumar et al.

1Proof methods are tools used to discharge proof goals in Isabelle. They are similar to tactics in other
LCF-style provers.
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built a verified compiler for a functional programming language, CakeML, in HOL4
[KMNO14, TMK+19]. In mathematics, mathematicians are replacing their pen-and-
paper proofs with mechanised proofs to avoid human-errors in their proofs: Hales
et al. mechanically proved the Kepler conjecture using HOL-light and Isabelle/HOL
[HAB+17], whereas Gonthier et al. finished the formal proofs of the four colour theorem
in Coq [Gon07]. In theoretical computer science, Paulson proved Gödel’s incompleteness
theorems using Nominal Isabelle [Pau15].

To facilitate e�cient proof developments in such large scale verification projects,
modern ITPs are equipped with many sub-tools, such as proof methods and tactics. For
example, Isabelle/HOL comes with 160 proof methods defined in its standard library.
These sub-tools provide useful automation for interactive theorem proving; however, it
still requires ITP specific expertise to pick up the right proof method to discharge a given
proof goal.

This paper presents our novel approach to proof method recommendation and its
implementation, PaMpeR. The implementation is available at GitHub [Nag]. Our research
hypothesis is that:

it is possible to advise which proof methods are useful to a given proof state,
based only on the meta-information about the state and information in the
standard library. Furthermore, we can extract advice by applying machine
learning algorithms to existing large proof corpora.

The paper is organized as follows: Section 6.2 explains the basics of Isabelle/HOL and
provides the overview of PaMpeR. Section 6.3 expounds how PaMpeR transforms the
complex data structures representing proof states to simple data structures that are
easier to handle for machine learning algorithms. Section 6.4 shows how our machine
learning algorithm constructs regression trees from these simple data structures. Section
6.5 demonstrates how users can elicit recommendations from PaMpeR. Section 6.6 presents
our extensive evaluation of PaMpeR to assess the accuracy of PaMpeR’s recommendations.
Section 6.7 discusses the strengths and limitations of the current implementation and
the future work that might improve PaMpeR’s performance further or provide even more
detailed evaluation of the current implementation. Section 6.8 compares our work with
other attempts of applying machine learning and data mining to interactive theorem
proving.

6.2 Background and Overview of PaMpeR
6.2.1 Background
Isabelle/HOL is an interactive theorem prover, mostly written in Standard ML. The
consistency of Isabelle/HOL is carefully protected by isolating its logical kernel using
the module system of Standard ML. Isabelle/Isar [Wen02] (Isar for short) is a proof
language used in Isabelle/HOL. Isar provides a human-friendly interface to specify and
discharge proof goals. Isabelle users discharge proof goals by applying proof methods,
which are the Isar syntactic layer of LCF-style tactics.
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Each proof goal in Isabelle/HOL is stored within a proof state, which also contains
locally bound theorems for proof methods (chained facts) and the background proof
context of the proof goal, which includes local assumptions, auxiliary definitions, and
lemmas proved prior to the the current step. Proof methods are in general sensitive
not only to proof goals but also to their chained facts and background proof contexts:
they behave di�erently based on information stored in proof state. Therefore, when
users decide which proof method to apply to a proof goal, they often have to take other
information in the proof state into consideration.

Isabelle comes with many Isar keywords to define new types and constants, such as
datatype, codatatype, primrec, primcorec, inductive, and definition. For example,
the fun command is used for general recursive definitions.

These keywords not only let users define new types or constants, but they also
automatically derive auxiliary lemmas relevant to the defined objects behind the user-
interface and register them in the background proof context where each keyword is used.
For example, Nipkow et al. defined a function, sep, using the fun keyword in an old
Isabelle tutorial [NPW02] as follows:

fun sep::"’a => ’a list => ’a list" where
"sep a [ ] = [ ]" |
"sep a [x] = [x]" |
"sep a (x#y#zs) = x # a # sep a (y#zs)"

Intuitively, this function inserts the first argument between any two elements in the
second argument. Following this definition, Isabelle automatically derives the following
auxiliary lemma, sep.induct, and registers it in the background proof context as well
as other four automatically derived lemmas:

sep.induct: (!!a. ?P a [])
==> (!!a x. ?P a [x])
==> (!!a x y zs. ?P a (y # zs)
==> ?P a (x # y # zs))
==> ?P ?a0.0 ?a1.0

where variables prefixed with ?, such as ?a0.0, are schematic variables, !! is the meta-
logic universal quantifier, ==> is the meta-logic implication2. Isabelle also attaches unique
names to these automatically derived lemmas following certain naming conventions
hard-coded in Isabelle’s source code. In this example, the full name of this lemma is
fun0.sep.induct, which is a concatenation of the theory name (fun0), the delimiter
(.), the name of the constant defined (sep), followed by a hard-coded postfix (.induct),
which represents the kind of this derived lemma.

When users want to prove conjectures about sep, they can specify their conjectures
using Isar keywords such as lemma and theorem. The Isar commands, apply and by, allow

2Isabelle/HOL is a specialization of Isabelle for Higher-Order Logic (HOL) formalized in Isabelle’s
meta-logic. Therefore, it has two versions of universal quantifier and implication: one in the meta-logic
and the other one in HOL
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Figure 6.1: Proof attempt with PaMpeR.

users to apply proof methods to these proof goals. In the above example, Nipkow et al.
proved the following lemma about map and sep using the automatically derived auxiliary
lemma, sep.induct, as an argument to the proof method induct_tac as following:

lemma "map f (sep x xs) = sep (f x) (map f xs)"
apply(induct_tac x xs rule: sep.induct)
apply simp_all done

where simp_all is a proof method that executes simplification to all sub-goals and done
is another Isar command used to conclude a proof attempt.

Isabelle provides a plethora of proof methods, which serve as ammunitions when used
by experienced Isabelle users; however, new Isabelle users sometimes spend hours or
days trying to prove goals using proof methods sub-optimal to their problems without
knowing Isabelle has already specialized methods that are optimized for their goals.

6.2.2 Overview of PaMpeR
Figure 6.1 illustrates the overview of PaMpeR. The system consists of two phases: the
upper half of the figure shows PaMpeR’s preparation phase, and the lower half shows its
recommendation phase.
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In the preparation phase, PaMpeR’s feature extractor converts the proof states in
existing proof corpora such as the Archive of Formal Proofs (AFP) [KNPT04] into a
database. This database describes which proof methods have been applied to what kind
of proof state, while abstracting proof states as arrays of boolean values. This abstraction
is a many-to-one mapping: it may map multiple distinct proof states into to the same
array of boolean values. Therefore, each array represents a group of proof states sharing
certain properties.

PaMpeR first preprocesses this database and generates a database for each proof method.
Then, PaMpeR applies a regression algorithm to each database and creates a regression
tree for each proof method. This regression algorithm attempts to discover combinations
of features useful to recommend which proof method to apply. Each tree corresponds to a
certain proof method, and each node in a tree corresponds to a group of proof states, and
the value tagged to each leaf node shows how likely it is that the method represented by
the tree is applied to these proof states according to the proof corpora used as training
sample.

For the recommendation phase, PaMpeR o�ers three commands, which_method, why_-
method, and rank_method. The which_method command first abstracts the state into a
vector of boolean values using PaMpeR’s feature extractor. Then, PaMpeR looks up the
regression trees and presents its recommendations in Isabelle/jEdit’s output panel. If you
wonder why PaMpeR recommends certain methods, for example auto, to your proof state,
type why_method auto. Then, PaMpeR tells you why it recommended auto to the proof
state in jEdit’s output panel. If you are curious how PaMpeR ranks a certain method,
let us say intro_classes, type rank_method intro_classes. This command shows
intro_classes’s rank given by PaMpeR in comparison to other proof methods. In the
following, we describe these steps in detail.

6.3 Processing Large Proof Corpora
The key component of PaMpeR is its feature extractor: the extractor converts proof goals,
chained facts, and proof contexts into arrays of boolean values by applying assertions to
them.

6.3.1 Representing a Proof State as an Array of Boolean Values
Currently we employ 108 assertions manually written in Isabelle’s implementation lan-
guage, Standard ML, based on our expertise in Isabelle/HOL. Table 6.1 shows selected
assertions we used in PaMpeR. Most of these assertions fall into two categories: assertions
about proof goals themselves, and assertions about the relation between proof goals and
information stored in the corresponding proof context.

Note that PaMpeR’s assertions do not directly rely on any user-defined constants because
PaMpeR’s developers cannot access concrete definitions of user-defined constants when
developing PaMpeR. For example, we can check if the first proof goal has a constant
defined in the Set.thy file in Isabelle/HOL, but we cannot check if that sub-goal has a
constant defined in the proof script that some user developed after we released PaMpeR.
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However, by investigating how Isabelle/HOL works, we implemented assertions that
can check the meta-information of proof goal even without knowing their concrete
specifications when developing PaMpeR. For example, the lemma presented in Section
6.2.1 has a function, sep, which was defined with the fun keyword. PaMpeR’s feature
extractor checks if the underlying proof context contains a lemma of name sep.elims.
If the context has such a lemma, PaMpeR infers that a user defined sep using either the
fun keyword or the function keyword, rather than other keywords such as primcorec
or definition.

We wrote some assertions to reflect our own expertise in Isabelle/HOL. One example
is the assertion that checks if the proof goal or chained facts involve the constant,
Filter.eventually, defined in Isabelle’s standard library. We developed such an
assertion because we knew that the proof method called eventually_elim can handle
many proof goals involving this constant. But in some cases we were not sure which
assertion can be useful to decide which method to use. For example, we have assertions
to check if a proof goal has constants defined in Set.thy, Int.thy, or List.thy as these
theory files define commonly used concepts in theorem proving. But their e�ects to proof
method selection were unclear until we conducted an extensive evaluation described in
Section 6.6.

More importantly, we did not know numerical estimates on which assertion is more
useful than others when developing these assertions. For instance, we guessed that the
assertion to check the use of the constant Filter.eventually to be useful to recommend
the use of the eventually_elim method, but we did not have means of comparing
the accuracy of this guess with other hints prior to this project. To obtain numerical
assessments for proof method prediction, we applied the multi-output regression algorithm
described in Section 6.4.

The evaluation in Section 6.6 corroborates that it is possible to derive meaningful
advice about proof methods. This implies that some parts of the expertise necessary to
select appropriate proof methods are based on the meta-information about proof states
or the information available within Isabelle’s standard library, and our assertion-based
feature extractor preserves some essence of proof states while converting them into simpler
format.

6.3.2 Database Extraction from Large Proof Corpora
The first step of the preparation phase is to build a database from existing proof corpora.
We modified the proof method application commands, apply and by, in Isabelle and
implemented a logging mechanism to build the database. The modified apply and by
take the following steps to generate the database:

1. apply assertions to the current proof state,

2. represent the proof state as an array of boolean values,

3. record which method is used to that array,

4. apply the method as the standard apply or by command, accordingly.
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This step requires a slight modification to the Isabelle source code to allow us to overwrite
the definition of these command. This way, we build its database by running the target
proof scripts.

The current version of PaMpeR available at our website [Nag] is based on the database
extracted from Isabelle’s standard library and the AFP, but the database extraction
mechanism is not specific to this library. In case users prefer to optimise PaMpeR’s
recommendation for their own proof scripts, they can take the same approach following
the instructions at our website [Nag], even though this process tends to require significant
computational resources.

This overwriting of apply and by is the only modification we made to Isabelle’s source
code, and we did so only to build the database for our machine learning algorithm. As
long as users choose to use the o�-the-shelf default learning results, they can use PaMpeR
without ever modifying Isabelle’s source code. In that case, they only have to include the
theory file PaMpeR/PaMpeR.thy into their own theory file using the Isar keyword import
just as a normal theory file to use PaMpeR.

Note that logging mechanism ignores the apply commands that contain composite
proof methods to avoid data pollution. When multiple proof methods are combined
within a single command, the naive logging approach would record proof steps that
are backtracked to produce the final result. One exemplary data point in an extracted
database would look as the following:

induct, [1,0,0,1,0,0,0,0,1,0,0,1,0,...]

where induct is the name of method applied to this proof state and the nth element in
the list shows the result of the nth assertion of the feature extractor when applied to the
proof state.

The default database construction from Isabelle standard library and the AFP took
about 6,021 hours 43 minutes of CPU time, producing a database consisting of 425,334
unique data points. We used three multi-core server machines3 to reduce the clock time
necessary to obtain this dataset. Unfortunately, this database is heavily imbalanced:
some proof methods are used far more often than others. We discuss how this imbalance
influenced the quality of PaMpeR’s recommendation in Section 6.6.

6.4 Machine Learning Databases
In this section, we explain the multi-output regression tree construction algorithm we
implemented in Standard ML for PaMpeR. We chose a multi-output algorithm because
there are in general multiple valid proof methods for each proof goal, and we chose a
regression algorithm rather than classification algorithm because we would like to provide
numerical estimates about how likely each method would be useful to a given proof
goal. We chose a regression tree construction algorithm [BFOS84] because this simple

3One of them has 2 Intel(R) Xeon(R) CPUs E5-2698 v3 @ 2.30GHz with 16 cores for each and with
hyperthreading, the other two have 2 Intel(R) Xeon(R) CPUs E5-2690 v4 @ 2.60GHz with 14 cores
for each with hyperthreading.
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algorithm allows us to produce qualitative explanations as to why PaMpeR recommends
certain methods and it works well for small datasets for rarely used methods as shown in
Section 6.6.The comparisons of various machine learning algorithms remain as our future
work.

6.4.1 Preprocess the Database

We first preprocess the database generated in Section 6.3.2. This process produces a
separate database for each proof method from the raw database, which describes the use
of most proof methods appearing in the target proof corpora.

Among the class of problem transformation methods for multi-output regression
problems, this straightforward approach is called single-target method: it first transforms
a single multi-output problem into several single-target problems, then applies a regression
algorithm to each of them separately, then combines the results of each regression
algorithm to build a single predictor for the original multi-output problem.

For example, if our preprocessor finds the example line discussed in Section 6.3.2, it
considers that an ideal user represented by the proof corpora decided to use the induct
method but not other methods, such as auto or coinduction, and produces the following
line in the database for induct:

used, [1,0,0,1,0,0,0,0,1,0,0,1,0,...]

And the preprocessor adds the following line in the databases for other proof methods
appearing in the proof corpora:

not, [1,0,0,1,0,0,0,0,1,0,0,1,0,...]

Note that the resulting databases do not always represent a provably correct choice of
proof methods but conservative estimates. In principle, there could be multiple equally
valid proof methods for a single proof state, but existing proof corpora describe only
one way of attacking it. For example, Nipkow et al. applied the induct_tac method
to the lemma in Section 6.2.1, but we can prove this lemma with another method for
mathematical induction (induction) as follows:

lemma "map f (sep x xs) = sep (f x) (map f xs)"
apply(induction x xs rule: sep.induct)
apply simp_all done

For this reason, this preprocessing may misjudge some methods to be inappropriate to
a proof state represented by a feature vector in some cases. Unfortunately, exploring all
the possible combinations of proof methods for each case is computationally infeasible:
some proof methods work well only when they are followed by other proof methods or
they are applied with certain arguments, and the combination of these proof methods
and arguments explodes quickly.
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On the other hand, we can reasonably expect that the proof method appearing in our
training sample is the right choice to the proof state represented by the feature vector,
since Isabelle mechanically checks the proof scripts. Furthermore, we built the default
recommendation using Isabelle’s standard library, which was developed by experienced
Isabelle developers, and the AFP, which accepts new proofs only after peer reviews by
Isabelle experts. This allowed us to avoid low quality proof scripts that Isabelle can
merely process but are inappropriate. Therefore, we consider the approximation PaMpeR’s
preprocessor makes to be a realistic point of compromise and show the e�ectiveness of
this approach in Section 6.6.

6.4.2 Regression Tree Construction
After preprocessing, we apply our regression tree construction algorithm to each created
database separately. We implemented our tree construction algorithm from scratch in
Standard ML for better flexibility and tool integration.

In general, the goal of the regression tree construction is to partition the feature
space described in each database into partitions of sub-spaces that lead to the minimal
Residual Sum of Squares (RSS)4 while avoiding over-fitting. Intuitively, RSS denotes the
discrepancy between the data and estimation based on a model. The RSS in our problem
is defined as follows:

RSS =
Jÿ

j=1

ÿ

iœRj

(usedi ≠ [usedRj )2 (6.1)

where Rj stands for the jth sub-space, to which certain data points (represented as
lines in database) belong. The value of usedi is 1.0 if the data point represented by the
subscript i says the method was applied to the feature vector, and it is 0.0 if the data
point represented by the subscript i says otherwise. [usedRj is the average value of used
among the data points pertaining to the sub-space Rj .

Computing the RSS for every possible partition of the database under consideration is
computational infeasible. Therefore, PaMpeR’s tree construction takes a top-down, greedy
approach, called recursive binary splitting [JWHT13].

In recursive binary splitting, we start constructing the regression tree from the root
node, which corresponds to the entire dataset for a given method. First, we select a
feature in such a way we can achieve the greatest reduction in RSS at this particular
step. We find such feature by computing the reduction of the RSS by each feature by one
level. For each feature, we split the database into two sub-spaces, Rused(j) and Rnot(j)
as follows:

Rused(j) = {used|usedj = 1.0} and
Rnot(j) = {used|usedj = 0.0}

(6.2)

where j stands for the number representing each feature. Then, for each feature repre-
sented by j, we compute the following value:

4RSS is also known as the sum of squared residuals (SSR).
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ÿ

i:xiœRused(j)
(usedi ≠ [usedRused(j))2+

ÿ

i:xiœRnot(j)
(usedi ≠ [usedRnot(j))2

(6.3)

and choose the feature j that minimizes this value.
Second, we repeat this partition procedure to each emerging sub-node of the regression

tree under construction until the depth of tree hits our pre-defined upper limit, three.
After reaching the maximum depth, we compute the average value of used(j) in the

corresponding sub-space R for each leaf node. We consider this value as the expectation
that the method is useful to proof states abstracted to the combination of feature values
to that leaf node.

PaMpeR records these regression trees in a text file, so that users can avoid the com-
putationally intensive data extraction and regression tree construction processes unless
they want to optimize the learning results based on their own proof corpora.

Note that if we add more assertions to our feature extractor in future, the complexity
of this algorithm increases linearly with the number of assertions given a fixed depth
of regression tree, since the partition only takes the best step at each level instead of
exploring all the combinations of partitions.

6.5 Recommendation Phase
Once finishing building regression trees for each proof method appeared in the given
proof corpora, one can extract recommendations from PaMpeR. When imported to users’
theory file, PaMpeR automatically reads these trees using the read_regression_trees
command in PaMpeR/PaMpeR.thy.

PaMpeR provides three new commands to provide two kinds of information: the which_-
method command tells which proof methods are likely to be useful for a given proof state;
the why_method command takes a name of proof method and tells why PaMpeR would
recommend the proof method for the proof state; the rank_method command shows the
rank of a given method to the proof state in comparison to other proof methods. In the
following, we explain how these three commands produce recommendations from the
regression trees produced in the preparation phase.

6.5.1 Faster Feature Extractor
Before applying the machine learning algorithm, we were not sure which assertion
produces valuable features, but after applying the machine learning algorithm, we can
judge which assertions are not useful, by checking which features are used to branch each
regression tree. The build_fast_feature_extractor command in PaMpeR/ PaMpeR.thy
constructs a faster feature extractor from the regression trees built in the preparation
phase and the full feature extractor to reduce the waiting time of PaMpeR’s users. It
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builds the faster feature extractor by removing assertions that do not result in a branch
in the regression trees.

6.5.2 The which_method Command
When users invoke the which_method command, PaMpeR applies the faster feature ex-
tractor to convert the ongoing proof state into a feature vector, which consists of those
features that are deemed to be important to make a recommendation. The speed of this
faster feature vector depends on both the regression trees and what each proof state
contains. As a rule of thumb, if the proof goal has less terms, it tends to spend less time.

Then, PaMpeR looks up the corresponding node in each regression tree and decides the
expectation that the method is the right choice for the proof state represented by the
feature vector. PaMpeR computes this value for each proof method it encountered in the
training proof corpora, by looking up a node in each regression tree. Finally, PaMpeR
compares these expectations and shows the 15 most promising proof methods with their
expectations in Isabelle/jEdit’s output panel. In the on-going example from Section 6.2.1,
a user can know which method to use by typing the which_method command as follows:

lemma "map f (sep x xs) = sep (f x) (map f xs)"
which_method

Then, PaMpeR shows the following message in the output panel for the top 15 methods5:

Promising methods for this proof goal are:
simp with expectation of 0.4119
auto with expectation of 0.1593
rule with expectation of 0.0874
induction with expectation of 0.06137
metis with expectation of 0.05260 ...

Attentive readers might have noticed that PaMpeR’s recommendations are not identical to
the model answer provided by Nipkow et al. This, however, does not immediately mean
PaMpeR’s recommendation is not valuable: in fact, PaMpeR recommended the induction
method at the fourth place out of 239 proof methods, and induction is also a valid
method for this proof goal as discussed in Section 6.4.1.

6.5.3 The why_method Command
Our rather straightforward machine learning algorithm makes PaMpeR’s recommendation
explainable. If you wonder why PaMpeR recommends a certain method, for example
case_tac, to your proof goal, type why_method case_tac in the proof script. PaMpeR
first checks features used to evaluate the expectation for the method and their feature
values. Second, PaMpeR shows qualitative explanations tagged to both these features and
their values in jEdit’s output. If you wonder why PaMpeR recommended induction in
the above example, type the following:

5Note that we truncated the message due to the space restriction here.
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lemma "map f (sep x xs) = sep (f x) (map f xs)"
why_method induction

Then, you will see this message in jEdit’s output panel:

Because it is not true that the context has locally
defined assumptions.
Because the underlying proof context has a recursive
simplification rule related to a constant appearing in
the first subgoal.

The first reason corresponds to the first branching at the root node in the regression tree
for the induction method, and the second reason corresponds to the second branching
in the tree. In this case, PaMpeR found that the proof goal involves the constant, sep,
and the underlying proof context contains a simplification rule, sep.simps(3), which
involves a recursive call of sep as following:

sep.simp(3):
sep ?a (?x # ?y # ?zs) = ?x # ?a # sep ?a (?y # ?zs)

6.5.4 The rank_method Command
Sometimes users already have a guess as to which proof method would be useful to
their proof state, but they want to know how PaMpeR ranks the proof method in mind.
Continuing with the above example, if you want to know how PaMpeR ranks conduction
for this proof state, type the following:

lemma "map f (sep x xs) = sep (f x) (map f xs)"
rank_method coinduction

Then, PaMpeR warns you:

coinduction 123 out of 239

indicating that PaMpeR does not consider coinduction to be the right choice for this
proof goal, before you waste your time on emerging sub-goals appearing after applying
coinduction.

6.6 Evaluation
We conducted a cross-validation to assess the accuracy of PaMpeR’s which_method com-
mand. For this evaluation, we used Isabelle’s standard library and the AFP as follows:
First, we extracted a database from these proof corpora. This database consists of
425,334 data points. Second, we randomly chose 10% of data points in this database
to create the evaluation dataset. Third, we built regression trees from the remaining
90%. There is no overlap between the evaluation dataset and training dataset. Then,
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we applied regression trees to each data point in the evaluation dataset and counted
how often PaMpeR’s recommendation coincides with the proof methods chosen by human
proof authors.

Since there are often multiple equally valid proof methods for each proof state, it is
only reasonable to expect that which_method should be able to recommend the proof
method used in the evaluation dataset as one of the most important methods for each
proof method invocation. Therefore, for each proof method, we measured how often
each proof method used in the evaluation dataset appears among the top n methods in
PaMpeR’s recommendations.

Table 6.2 shows the results for the 15 proof methods that are most frequently used in
the training data in the descending order.

For example, the top row for simp should be interpreted as following: The simp method
was used 102,441 times in the training data. This amounts to 26.8% of all proof method
invocations in the training data that are recorded by PaMpeR. In the evaluation dataset,
simp was used 11,385 times, which amounts to 26.8% of proof method invocations in the
evaluation dataset that are recorded by PaMpeR. For 58% out of 11,385 simp invocations
in the evaluation dataset, PaMpeR predicted that simp is the most promising method for
the corresponding proof states. For 98% out of 11,385 simp invocations in the evaluation
dataset, PaMpeR recommended that simp is either the most promising method or the
second most promising method for the corresponding proof states.

Note that the numbers presented in this table are not the success rates of PaMpeR’s
recommendation but its conservative estimates. Assume PaMpeR recommends simp as the
most promising method and auto as the second most promising method to a proof goal,
say pg, in the evaluation dataset, but the human proof author of pg chose to apply auto
to this proof goal. This does not immediately mean that PaMpeR failed to recommend
auto in the first place, because both simp and auto might be equally suitable for pg.
Therefore, the 58% for simp mentioned above should be interpreted as follows: PaMpeR’s
recommendation coincides with the choice of experienced Isabelle user for 58% of times
where human engineers applied simp when PaMpeR is allowed to recommend only one
proof method, but the real success rate of PaMpeR’s recommendation can be higher than
58% for these cases. To avoid the confusion with success rate, we introduce the term,
coincidence rate, for this measure. Appendix of our technical report [NH18b] presents
three tables to provide the complete list of the evaluation results.

The overall results of this evaluation are as follows: PaMpeR learnt 239 methods from
Isabelle’s standard library and the AFP: 160 of them are defined within Isabelle’s standard
library, and the others are user-defined proof methods specified in the AFP entries.

Out of the 239 proof methods PaMpeR learnt from the training dataset, 171 proof
methods appeared in the evaluation dataset. Out of these 171 proof methods within
the evaluation dataset, 133 methods are defined in Isabelle’s standard library, and 38
methods were defined by the AFP authors.

The distribution of proof method usage is heavily imbalanced. The three most frequently
used proof methods (simp, auto, and rule) account for 59.1% of all data points in the
training dataset, and the ten most frequently used methods account for 79.2% in the
training dataset. Similarly in the evaluation dataset, the top three methods account for
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58.9%, and the top ten methods for 79.1%.
Fig. 2 illustrates this imbalance, in which the horizontal axis represents the rank of

method usage for a proof method and the vertical axis stands for the number of methods
invocations for that proof method. For instance, the square located at the top-left corner
denotes that the most frequently used proof method in the training dataset (simp) is used
102,441 times. And the circle located at (6, 1093) denotes that the sixth most frequently
used method in the evaluation dataset (fastforce) is used 1,093 times in the evaluation
dataset. With the use of logarithmic scale on the vertical axis, this figure presents the
serious imbalance of proof method invocations occurring in Isabelle’s standard library
and the AFP.

Fig. 3 summarises the overall performance of PaMpeR. In this figure the horizontal
axis represents the number of proof methods PaMpeR is allowed to recommend (15 by
default), whereas the vertical axis represents the number of proof methods, for which
PaMpeR achieves certain coincidence rates.

For example, the square at (3, 23) means that PaMpeR can achieve 50% of coincidence
rate for 23 methods if PaMpeR is allowed to recommend three most promising methods.
Similarly, PaMpeR achieves 50% of coincidence rate for 58 methods when recommending
10 methods and for 72 methods when recommending 15 methods.

The number of methods PaMpeR that achieved the four coincident rates (25%, 50%,
75%, and 90%) reached a plateau when PaMpeR is allowed to recommend about 60 proof
methods.

Overall, PaMpeR’s recommendations tend to coincide with human engineers’ choice
when Isabelle has only one method that is suitable for the proof goal at hand, whereas
PaMpeR’s recommendations tend to di�er from human engineers’ choice when there are
multiple equally valid proof methods for the same goal. For example, PaMpeR’s coincidence
rates are low for less commonly used general-purpose methods, such as safe, clarimp,
best, bestsimp because multiple general purpose proof methods can often handle the
same proof goal equally well.

A careful observation at the raw evaluation results provided in the Appendix of the
technical report reveals that PaMpeR provides valuable recommendations when proof
states are best handled by special purpose proof methods, such as unfold_locales,
transfer, eventually_elim, standard, and so on.

PaMpeR’s regression tree construction does not severely su�er from the imbalance among
proof method invocation, even though class imbalances often cause problems in other
domains such as fraud detection and medical diagnosis [HG09]. The complete evaluation
results in Appendix of the report show that PaMpeR achieved 50% of coincidence rate for
34 proof methods that appear less than 0.1% of times in the training dataset.

The reason the imbalance did not cause serious problems to PaMpeR is that some of
these rarely used methods are specialised proof methods, for which we can write assertions
that can abstract the essence of the problem very well. Another reason is the fact that
commonly used proof methods tend to hold up each other’s share, since they address
similar problems, lowering expectations for commonly used general purpose methods
where both specialised methods and general purpose methods can discharge proof goals.

On the other hand, PaMpeR did not produce valuable recommendations to some special
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Figure 6.2: Method usage in large proof corpora.

purpose proof methods, such as vector and normalization, for which we did not manage
to develop assertions that capture the properties shared by the proof goals that these
methods can handle well. Writing suitable assertions for these remain as our future work.

Some of the proof methods appearing in our evaluation dataset are clearly outside the
scope of PaMpeR. For example, cartouche, tactic, ml_tactic, rotate_tac do not have
much semantic meaning: tactic is simply an interface between Isabelle’s source code
language, Standard ML, and Isabelle’s proof language, Isar, whereas rotate_tac simply
rotates the order of premises when a proof goal has multiple premises. Another good
example of proof methods outside the scope of PaMpeR is the my_simp method. This
method was defined in the standard library to test the domain specific language, Eisbach,
for writing new proof methods: my_simp is simply a synonym of simp and nobody is
expected to use my_simp. Predicting such methods is not a very meaningful task for
PaMpeR.

To our surprise, Table V in Appendix of our technical report [NH18b] shows that
PaMpeR’s recommendation achieved 50% of coincidence rate for 12 methods out of 38
user-defined proof methods defined outside Isabelle’s standard library appearing in the
evaluation dataset when PaMpeR is allowed to provide 15 most promising proof methods,
even though PaMpeR’s developers did not know anything about these proof methods at the
time of development. This suggests that one does not need to know the problem specific
information about proof goals to predict the use of some user-defined proof methods.
For example, PaMpeR achieves 100% of coincidence rate for sepref when allowed to
recommend only four methods, by checking if the first sub-goal has a schematic variable
and if the first sub-goal has variables of type record.
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Figure 6.3: Coincidence rate for PaMpeR.

6.7 Discussion and Future Work

Prior to PaMpeR, Isabelle had the print_methods command, which merely lists the proof
methods defined in the corresponding proof context in alphabetical order ignoring the
properties of the proof goal at hand. Therefore, new Isabelle/HOL users have to go
through various documentations and the archive of mailing lists to learn how to prove
lemmas in Isabelle/HOL independently.

Choosing the right methods was a di�cult task for new ITP users especially when
they should choose special-purpose proof methods, since new users tend not to know
even the existence of those rarely used proof methods. Some proof methods are strongly
related to certain definitional mechanisms in Isabelle. Therefore, when Isabelle experts
use such definitional mechanisms, they can often guess which proof methods they should
use later. But this is not an easy task for new users. And this problem is becoming
severer nowadays, since large scale theorem proving projects are slowly becoming popular
and new ITP users often have to take over proof scripts developed by others and they
also have to discharge proof goals specified by others. PaMpeR addressed this problem
by systematically transferring experienced users’ knowledge to less experienced users.
We plan to keep improving PaMpeR by incorporating other Isabelle users intuitions as
assertions.

Our manually written feature extractor may seem to be naive compared to the recent
success in machine learning research: in some problem domains, such as image recognition
and the game of Go, deep neural networks extract features of the subject matters via
expensive training. Indeed, others have applied deep neural networks to theorem proving,
but without much success [ISA+16, LISK17].
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The two major problems of automatic feature extraction for theorem proving is the lack
of enormous database needed to train deep neural networks and the expressive nature of
the underlying language, i.e. logic. The second problem, the expressive nature of logic,
contributes to the first problem: self-respecting proof engineers tend to replace multiple
similar propositions with one proposition from which one can easily conclude similar
propositions, aiming at a succinct presentation of the underlying concept.

What is worse, when working with modern ITPs, it is often not enough to reason
about a proof goal, but one also has to take its proof context into consideration. A proof
context usually contains numerous auxiliary lemmas and nested definitions, and each of
them is a syntax tree, making the e�ective automatic feature extraction harder.

Furthermore, whenever a proof author defines a new constant or prove a new lemma,
Isabelle/HOL changes the underlying proof context, which a�ects how one should attack
proof goals defined within this proof context. And proof authors do add new definitions
because they use ITPs as specification tools as well as tools for theorem proving. Some of
these changes are minor modifications to proof states that do not severely a�ect how to
attack proof goals in the following proof scripts, but in general changing proof contexts
results in, sometimes unexpected, problems.

For this reason, even though the ITP community has large proof corpora, we essentially
deal with di�erent problems in each line of proof corpus. For example, even the AFP has
396 articles consisting of more than 100,000 lemmas, only 4 articles are used by more than
10 articles in the AFP, indicating that many authors work on their own specifications,
creating new problems. This results in an important di�erence between theorem proving
in an expressive logic and other machine learning domains, such as image recognition
where one can collect numerous instances of similar objects.

We addressed this problem with human-machine cooperation, the philosophy that
underpins ITPs. Even though it is hard to extract features automatically, experienced
ITP users know that they can discharge many proof goals with shallow reasoning. We
encoded experienced Isabelle users’ expertise as assertions to simulate their shallow
reasoning. Since these assertions are carefully hand-written in Isabelle/ML, they can
extract features of proof states (including proof goal, chained facts, and its context)
despite the above mentioned problems.

Currently PaMpeR recommends only which methods to use and shows why it suggests
that method. This is enough for special purpose methods that do not take parameters.
For other methods, such as induct, it is often indispensable to pass the correct parameters
to guide methods. If you prefer to know which arguments to pass to the proof method
PaMpeR recommends, we would invite you to use PSL [NK17], the proof strategy language
for Isabelle/HOL, which attempts to find the right combination of arguments via an
iterative deepening depth first search based on rough ideas about which method to use.
If you want to have those rough ideas, use PaMpeR.

PaMpeR constructs regression trees of a fixed height. We set the height to a small number,
three, to avoid over-fitting. It might be possible that advanced pruning methods can
improve the accuracy of PaMpeR’s recommendation. Furthermore, since we developed 108
assertions based on our limited expertise, it is likely that we have missed out information
valuable to recommend proof methods when abstracting proof states using assertions.
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Our cross-validation showed that some simple assertions, such as checking the existence
of certain constants in proof goals, turned out to be useful. Therefore, it might be possible
to find more useful assertions by systematically enumerating more assertions of this kind
to check the existence of other constants appearing in proof corpora. Unfortunately, the
database construction based on 108 assertions already consumed serious computational
resources, and database construction based on generated assertions remains as our future
work due to the limitation of resources currently available to PaMpeR’s developers.

When conducting the cross-evaluation, we focused on the coincidence rate for each
method. It would be worthwhile to compare the results of PaMpeR’s overall coincidence
rate for all methods with the corresponding overall coincidence rate that would be
produced by a naive system that recommends proof methods in order of their frequency
in training data without constructing decision trees.

Finally, our choice of machine learning algorithm is not final. We currently use regres-
sion tree construction algorithm based on a problem transformation method because the
straightforward algorithm lets us produce qualitative explanations of PaMpeR’s recom-
mendation; however, other machine learning algorithms might lead to higher coincidence
rates. The comparison of various machine learning algorithms on the dataset remains as
our future work.

6.8 Conclusion and Related Work
We presented the design and implementation of PaMpeR. In the preparation phase, PaMpeR
learns which method to use from existing proof corpora using regression tree construction
algorithm. In the recommendation phase, PaMpeR recommends which proof methods to
use to a given proof goal and explains why it suggests that method. Our evaluation
showed that PaMpeR tends to provide valuable recommendations especially for specialised
proof methods, which new Isabelle users tend not to be aware of. We also identified
problems that arise when applying machine learning to proof method recommendation
and proposed our solution to them.

Related Work ML4PG [KH17] extends a proof editor, Proof General, to collect proof
statistics about shapes of goals, sequence of applied tactics, and proof tree structures.
It also clusters the gathered data using machine learning algorithms in MATLAB and
Weka and provides proof hints during proof developments. Based on learning, ML4PG
lists similar proof goals proved so far, from which users can infer how to attack the proof
goal at hand, while PaMpeR directly works on proof methods. Compared to ML4PG,
PaMpeR’s feature extractor is implemented within Isabelle/ML, which made it possible to
investigate not only proof goals themselves but also their surrounding proof context.

Gauthier et al. developed TacticToe for HOL4 [GKU17]. It selects proved lemmas
similar to the current proof goal using premise selection and applies tactics used to these
similar goals to discharge the current proof goal. Compared to TacticToe, the abstraction
via assertions allows PaMpeR to provide valuable recommendations even when similar
goals do not exist in the problem domain.
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Several people applied machine learning techniques to improve the so-called Hammer-
style tools. For Isabelle/HOL, both MePo [MP09] and MaSh [KBKU13] decreased the
quantity of facts passed to the automatic provers while increasing their quality to improve
Sledgehammer’s performance. Their approaches attempt to choose facts that are likely
to be useful to the given proof goal, while PaMpeR suggests proof methods that are likely
to be useful to the goal.

MePo judges the relevance of facts by checking the occurrence of symbols appearing in
proof goals and available facts, while MaSh computes the relevance using sparse naive
Bayes and k Nearest Neighbours. They detect similarities between proof goals and
available facts by checking mostly formalization-specific information and only two piece
of meta information, while PaMpeR discards most of problem specific information and
focus on meta information of proof goals: the choice of relevant fact is a problem specific
question, while the choice of proof method largely depends on which Isabelle’s subsystem
is used to specify a proof goal.

The original version of MaSh was using machine learning libraries in Python, and
Blanchette et al. ported them from Python to Standard ML for better e�ciency and
reliability. Similarly, an early version of PaMpeR was also using a Python library [PVG+11]
until we implemented the regression tree construction algorithm in Standard ML for
better tool integration and flexibility. Both MaSh and PaMpeR record learning results
in persistent states outside the main memory, so that users can preserve the learning
results even after shutting down Isabelle.

Blanchette et al. analysed the AFP, looking at sizes and dependencies for theory files
[BHMN15]. Matichuk et al. investigated the seL4 proofs and two articles in the AFP
to find the relationship between the size of statement and the size of proof [MMA+15].
None of them analysed the occurrence of proof methods in their target proof corpora
nor developed a recommendation system based on their results. Moreover, PaMpeR’s
database construction is more active compared to their work: it applies 108 hand-written
assertions to analyse the properties of not only each proof goal but also the relationship
between each goal and its background context and chained facts.
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6 PaMpeR: Proof Method Recommendation System for Isabelle/HOL

Table 6.1: Selected Assertions.

• Assertions about proof goals themselves
– constants defined in Isabelle’s standard library

ú check if the first goal has the BNF_Def.rel_fun constant or the
Fun.map_fun constant

ú check if the first proof goal has Orderings.ord_class.less_eq,
Orderings.ord_class.less, or Groups.plus_class.plus.

ú check if the first goal and its chained facts have Filter.eventually

– constants defined in Isabelle’s standard library at certain locations in the first
proof goal

ú check if the outermost constant of the first goal is the meta-logic universal
quantifier

ú check if the first goal has the HOL existential quantifier but not as the
outermost constant

– terms of certain types defined in Isabelle’s standard library
ú check if the first goal has a term of type Word.word

ú check if the first goal has a schematic variable
– existence of constants defined in certain theory files

ú check if the first goal has a constant defined in the Nat theory
ú check if the first goal has a constant defined in the Real theory
ú check if the first goal has a constant defined in the Set theory

• Assertions about the relation between proof goals and proof contexts.
– types defined with a certain Isar keyword

ú check if the goal has a term of a type defined with the datatype keyword
ú check if the goal has a term of a type defined with the codatatype keyword
ú check if the goal has a term of a type defined with the record keyword

– constants defined with a certain Isar keyword
ú check if the goal has a constant defined with the lift_definition key-

word
ú check if the goal has a constant defined with the primcorec keyword
ú check if the goal has a constant defined with the inductive keyword or

inductive_set keyword.
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Chapter 7

Simple Dataset for Proof Method
Recommendation in Isabelle/HOL

Publication Details
Yutaka Nagashima. Simple dataset for proof method recommendation in
Isabelle/HOL. In Christoph Benzmüller and Bruce R. Miller, editors, Intelli-
gent Computer Mathematics - 13th International Conference, CICM 2020,
Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture Notes
in Computer Science, pages 297–302. Springer, 2020

Abstract
Recently, a growing number of researchers have applied machine learning to assist users
of interactive theorem provers. However, the expressive nature of underlying logics and
esoteric structures of proof documents impede machine learning practitioners, who often
do not have much expertise in formal logic, let alone Isabelle/HOL, from achieving a
large scale success in this field. In this data description, we present a simple dataset
that contains data on over 400k proof method applications along with over 100 extracted
features for each in a format that can be processed easily without any knowledge about
formal logic. Our simple data format allows machine learning practitioners to try
machine learning tools to predict proof methods in Isabelle/HOL without requiring
domain expertise in logic.

7.1 Introduction
As our society relies heavily on software systems, it has become essential to ensure
that our software systems are trustworthy. Interactive theorem provers (ITPs), such as
Isabelle/HOL [NPW02], allow users to specify desirable functionalities of a system and
prove that the corresponding implementation is correct in terms of the specification.

A crucial step in developing proof documents in ITPs is to choose the right tool for a
proof goal at hand. Isabelle/HOL, for example, comes with more than 100 proof methods.
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7 Simple Dataset for Proof Method Recommendation in Isabelle/HOL

Proof methods are sub-tools inside Isabelle/HOL. Some of these are general purpose
methods, such as auto and simp. Others are special purpose methods, such as intro_-
classes and intro_locales. The Isabelle community provides various documentations
[NPW02] and on-line supports to help new Isabelle users learn when to use which proof
methods.

Previously, we developed PaMpeR [NH18a], a proof method recommendation tool for
Isabelle/HOL. Given a proof goal specified in a proof context, PaMpeR recommends a list
of proof methods likely to be suitable for the goal. PaMpeR learns which proof method
to recommend to what kind of proof goal from proof documents in Isabelle’s standard
library and the Archive of Formal Proofs [KNPT04].

The key component of PaMpeR is its elaborate feature extractor. Instead of applying
machine learning algorithms to Isabelle’s proof documents directly, PaMpeR first applies
113 assertions to the pair of a proof goal and its underlying context. Each assertion
checks a certain property about the pair and returns a boolean value. Some assertions
check if a proof goal involves certain constants or types defined in the standard library.
Others check the meta-data of constants and types appearing in a goal. For example, one
assertion checks if the goal has a term of a type defined with the codatatype keyword.

When developing PaMpeR, we applied these 113 assertions to the proof method invoca-
tions appearing in the proof documents and constructed a dataset consisting of 425,334
unique data points.

Note that this number is strictly smaller than all the available proof method invocations
in Isabelle2020 and the Archive of Formal Proofs in May 2020, from which we can find
more than 900k proof method invocations. One obvious reason for this gap is the
ever growing size of the available proof documents. The other reason is that we are
intentionally ignoring compound proof methods while producing data points. We decided
to ignore them because they may pollute the database by introducing proof method
invocations that are eventually backtracked by Isabelle. Such backtracking compound
methods may reduce the size of proof documents at the cost of introducing backtracked
proof steps, which are not necessary to complete proofs. Since we are trying to recommend
proof methods appropriate to complete a proof search, we should not include data points
produced by such backtracked steps.

We trained PaMpeR by constructing regression trees [BFOS84] from this dataset. Even
though our tree construction is based on a fixed height and we did not take advantage of
modern development of machine learning research, our cross evaluation showed PaMpeR
can correctly predict experts’ choice of proof methods for many cases. However, decision
tree construction based on a fixed height is an old technique that tends to cause overfitting
and underfitting. We expect that one can achieve better performance by applying other
algorithms to this dataset.

In the following we present the simple dataset we used to train PaMpeR. Our aim is
to provide a dataset that is publicly available at Zenodo [Nag20d] and easily usable for
machine learning practitioners without backgrounds in theorem proving, so that they
can exploit the latest development of machine learning research without being hampered
by technicalities of theorem proving.
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7.2 The PaMpeR Dataset

7.2 The PaMpeR Dataset
Each data point in the dataset consists of the following three entries:

• the location of a proof method invocation,

• the name of the proof method used there,

• an array of 0s and 1s expressing the proof goal and its context.

The following is an example data point:

Functors.thy119 simp 1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,...

This data point describes that in the theory file named Functors.thy, a proof author
applied the simp method in line 119 to a proof goal represented by the sequence of 1s
and 0s where 1 indicates the corresponding assertion returns true while 0 indicates the
otherwise.

This dataset has important characteristics worth mentioning. Firstly, this dataset is
heavily imbalanced in terms of occurrences of proof methods. Some general purpose
methods, such as auto and simp, appear far more often than other lesser known methods:
each of auto and simp accounts more than 25% of all proof method invocations in the
dataset, whereas no proof methods account for more than 1% of invocations except for
the 15 most popular methods.

Secondly, this dataset only serves to learn what proof methods to apply, but it does not
describe how to apply a proof method. None of our 113 assertions examines arguments
passed to proof methods. For some proof methods, notably the induct method, the
choice of arguments is the hardest problem to tackle, whereas some methods rarely take
arguments at all. We hope that users can learn what arguments to pass to proof methods
from the use case of these methods in existing proof documents once they learn which
methods to apply to their goal.

Thirdly, it is certainly possible that PaMpeR’s feature extractor misses out certain
information essential to accurately recommend some methods. This dataset was not built
to preserve the information in the original proof documents: we built the dataset, so that
we can e�ectively apply machine learning algorithms to produce recommendations.

Finally, this dataset shows only one way to prove a given goal, ignoring alternative
possible approaches to prove the same goal. Consider the following goal: "True ‚
False". Both auto or simp can prove this goal equally well; however, if this goal
appeared in our dataset our dataset would show only the choice of the proof author, say
auto, ignoring alternative proofs, say simp.

One might guess that we could build a larger dataset that also includes alternative
proofs by trying to complete a proof using various methods, thus converting this problem
into a multi-label problem. That approach would su�er from two problems. Firstly, there
are infinitely many ways to apply methods since we often have to apply multiple proof
methods in a sequence to prove a conjecture. Secondly, some combinations of methods
are not appropriate even though they can finish a proof in Isabelle. For example, the
following is an alternative proof for the aforementioned proposition:
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lemma "True ‚ False" apply(rule disjI1) apply auto done

This is a valid proof script, with which Isabelle can check the correctness of the conjecture;
however, the application of the rule method is hardly appropriate since the subsequent
application of the auto method can discharge the proof without the preceding rule. For
these reasons we take the proof methods chosen by human proof authors as the correct
choice while ignoring other possibilities.

7.3 Overview of 113 Assertions
The 113 assertions we used to build the dataset roughly fall into the following two
categories:

1. assertions that check terms and types appearing in the first sub-goal, and

2. assertions that check how such terms and types are defined in the underlying proof
context.

The first kind of assertions directly check the presence of constructs defined in the
standard library. For example, the 56th assertion checks if the first sub-goal contains
Filter.eventually, which is a constant defined in the standard library since the presence
of this constant may be a good indicator to recommend the special purpose proof method
called eventually_elim. A possible limitation of these assertions is that these assertions
cannot directly check the presence of user-defined constructs because such constructs
may not even exist when we develop the feature extractor.

The second kind of assertions address this issue by checking how constructs appearing
in the first sub-goal are defined in the proof context. For example, the 13th assertion
checks if the first sub-goal involves a constant that has one of the following related rules:
the code rule, the ctr rule, and the sel rule.

These related rules are derived by Isabelle when human engineers define new constants
using the primcorec keyword, which is used to define primitively corecursive functions.
Since this assertion checks how constants are defined in the background context, it can
tell that the proof goal at hand is a coinductive problem. Therefore, if this assertion
returns true, maybe the special purpose method called coinduct would be useful, since
it is developed for coinductive problems. The advantage of this assertions is that it can
guess if a problem is a coinductive problem or not, even though we did not have that
problem at hand when developing the assertion.

Due to the page limit, we expound the further details of the 113 assertions in our
accompanying Appendix [Nag20a].

7.4 The Task for Machine Learning Algorithms
The task for machine learning algorithms is to predict the name of a promising proof
method from the corresponding array of boolean values. Since we often have multiple
equivalently suitable methods for a given proof goal, this learning task should be seen as
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a multi-output problem: given an array of boolean values machine learning algorithms
should return multiple candidate proof methods rather than only one method. Further-
more, this problem should be treated as a regression problem rather than a classification
problem, so that users can see numerical estimates about how likely each method is
suitable for a given goal.

7.5 Conclusion and Related Work
We presented our dataset for proof method recommendation in Isabelle/HOL. Its simple
data format allows machine learning practitioners to try out various algorithms to improve
the performance of proof method recommendation.

Kaliszyk et al. presented HolStep [KCS17], a dataset based on proofs for HOL Light
[Har96]. They developed the dataset from a multivariate analysis library [Har13] and
the proof of the Kepler conjecture [HAB+17]. They built HolStep for for various tasks,
which does not include proof method prediction. While their dataset explicitly describes
the text representations of conjectures and dependencies of theorems and constants, our
dataset presents only the essential information about proof documents as an array of
boolean values.

Blanchette et al. mined the Archive of Formal Proofs [KNPT04] and investigated
the nature of proof developments, such as the size and complexity of proofs [BHMN15].
Matichuk et al. also studied the Archive of Formal Proofs to understand leading indicators
of proof size [MMA+15]. Neither of their projects aimed at suggesting how to write proof
documents: to the best of our knowledge we are the first to mine a large repository of
ITP proofs using hand crafted feature extractors.

Our dataset does not contain information useful to predict what arguments to pass to
each method. Previously we developed, smart_induct [Nag20e], to address this problem
for the induct method in Isabelle/HOL, using a domain-specific language for logical
feature extraction [Nag19a].

Recently a number of researchers have developed meta-tools that exploit existing proof
methods and tactics and brought stronger proof automation to ITPs [GKU17, NK17,
NP18, BLR+19, KH17, GWR15]. We hope that our dataset helps them improve the
performance of such meta-tools for Isabelle/HOL.
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Chapter 8

Goal-Oriented Conjecturing

Publication Details
Yutaka Nagashima and Julian Parsert. Goal-oriented conjecturing for Is-
abelle/HOL. In Intelligent Computer Mathematics - 11th International Con-
ference, CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceedings,
pages 225–231, 2018

Abstract
We present PGT, a Proof Goal Transformer for Isabelle/HOL. Given a proof goal and
its background context, PGT attempts to generate conjectures from the original goal
by transforming the original proof goal. These conjectures should be weak enough
to be provable by automation but su�ciently strong to prove the original goal. By
incorporating PGT into the pre-existing PSL framework, we exploit Isabelle’s strong
automation to identify and prove such conjectures.

8.1 Introduction
Consider the following two reverse functions defined in literature [NPW02]:

primrec itrev:: "’a list => ’a list => ’a list" where
"itrev [] ys = ys" | "itrev (x#xs) ys = itrev xs (x#ys)"

primrec rev :: "’a list => ’a list" where
"rev [] = []" | "rev (x # xs) = rev xs @ [x]"

How would you prove their equivalence "itrev xs [] = rev xs"? Induction comes
to mind. However, it turns out that Isabelle’s default proof methods, induct and
induct_tac, are unable to handle this proof goal e�ectively.

Previously, we developed PSL [NK17], a programmable, meta-tool framework for
Isabelle/HOL. With PSL one can write the following strategy for induction:

101



8 Goal-Oriented Conjecturing

strategy DInd = Thens [Dynamic (Induct), Auto, IsSolved]

PSL’s Dynamic keyword creates variations of the induct method by specifying di�erent
combinations of promising arguments found in the proof goal and its background proof
context. Then, DInd combines these induction methods with the general purpose proof
method, auto, and is_solved, which checks if there is any proof goal left after applying
auto. As shown in Fig. 8.1a, PSL keeps applying the combination of a specialization of
induct method and auto, until either auto discharges all remaining sub-goals or DInd
runs out of the variations of induct methods as shown in Fig. 8.1a.

This approach works well only if the resulting sub-goals after applying some induct
are easy enough for Isabelle’s automated tools (such as auto in DInd) to prove. When
proof goals are presented in an automation-unfriendly way, however, it is not enough to
set a certain combination of arguments to the induct method. In such cases engineers
have to investigate the original goal and come up with auxiliary lemmas, from which
they can derive the original goal.

In this paper, we present PGT, a novel design and prototype implementation1 of a
conjecturing tool for Isabelle/HOL. We provide PGT as an extension to PSL to facilitate
the seamless integration with other Isabelle sub-tools. Given a proof goal, PGT produces
a series of conjectures that might be useful in discharging the original goal, and PSL
attempts to identify the right one while searching for a proof of the original goal using
those conjectures.

8.2 System Description
8.2.1 Identifying Valuable Conjectures via Proof Search
To automate conjecturing, we added the new language primitive, Conjecture to PSL.
Given a proof goal, Conjecture first produces a series of conjectures that might be useful
in proving the original theorem, following the process described in Section 8.2.2. For
each conjecture, PGT creates a subgoal_tac method and inserts the conjecture as the
premise of the original goal. When applied to "itrev xs [] = rev xs", for example,
Conjecture generates the following proof method along with 130 other variations of the
subgoal_tac method:

apply (subgoal_tac "!!Nil. itrev xs Nil = rev xs @ Nil")

where !! stands for the universal quantifier in Isabelle’s meta-logic. Namely, Conjecture
introduced a variable of name Nil for the constant []. Applying this method to the goal
results in the following two new sub-goals:

1. (!!Nil. itrev xs Nil = rev xs @ Nil) ==> itrev xs [] = rev xs
1available at Github https://github.com/data61/PSL/releases/tag/v0.1.1. The example of this paper

appears in PSL/PGT/Example.thy.
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2. !!Nil. itrev xs Nil = rev xs @ Nil

Conjecture alone cannot determine which conjecture is useful for the original goal. In
fact, some of the generated statements are not even true or provable. To discard these
non-theorems and to reduce the size of PSL’s search space, we combine Conjecture with
Fastforce (corresponding to the fastforce method) and Quickcheck (corresponding
to Isabelle’s sub-tool quickcheck [Bul12]) sequentially as well as DInd as follows:

strategy CDInd = Thens [Conjecture, Fastforce, Quickcheck, DInd]

Importantly, fastforce does not return an intermediate proof goal: it either discharges
the first sub-goal completely or fails by returning an empty sequence. Therefore, when-
ever fastforce returns a new proof goal to a sub-goal resulting from subgoal_tac, it
guarantees that the conjecture inserted as a premise is strong enough for Isabelle to prove
the original goal. In our example, the application of fastforce to the aforementioned
first sub-goal succeeds, changing the remaining sub-goals to the following:

1. !!Nil. itrev xs Nil = rev xs @ Nil

However, PSL still has to deal with many non-theorems: non-theorems are often strong
enough to imply the original goal due to the principle of explosion. Therefore, CDInd
applies Quickcheck to discard easily refutable non-theorems. The atomic strategy
Quickcheck returns the same sub-goal only if Isabelle’s sub-tool quickcheck does not find
a counter example, but returns an empty sequence otherwise.

Now we know that the remaining conjectured goals are strong enough to imply the
original goal and that they are not easily refutable. Therefore, CDInd applies its sub-
strategy DInd to the remaining sub-goals and it stops its proof search as soon as it finds
the following proof script, which will be printed in Isabelle/jEdit’s output panel.

apply (subgoal_tac "!!Nil. itrev xs Nil = rev xs @ Nil")
apply fastforce apply (induct xs) apply auto done

Fig. 8.1b shows how CDInd narrows its search space in a top-down manner. Note that
PSL lets you use other Isabelle sub-tools to prune conjectures. For example, you can use
both nitpick [Bla10, BN10a] and quickcheck: Thens [Quickcheck, Nitpick] in CDInd.
It also let you combine DInd and CDInd into one: Ors [DInd, CDInd].

8.2.2 Conjecturing
Section 8.2.1 has described how we identify useful conjectures. Now, we will focus on how
PGT creates conjectures in the first place. PGT introduced both automatic conjecturing
(Conjecture) and automatic generalization (Generalize). Since the conjecturing func-
tionality uses generalization, we will only describe the former. We now walk through the
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goal

Dynamic ( Induct )

Auto

IsSolved

(a) Search tree of DInd

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

(b) Search tree of CDInd

Figure 8.1: PSL’s proof search with/without PGT.

Extract constants and common sub-terms from the original goal T

Generalize T to produce C0, . . . , Cn

Call conjecture for goal oriented conjec-
turing (Fig. 8.3) for each T and C0, . . . , Cn

Clean & return
Figure 8.2: The overall workflow of Conjecture.

main steps that lead from a user defined goal to a set of potentially useful conjectures, as
illustrated in Fig. 8.2. We start with the extraction of constants and sub-terms, continue
with generalization, goal oriented conjecturing, and finally describe how the resulting
terms are sanitized.

Extraction of Constants and Common Sub-terms. Given a term representation T of
the original goal, PGT extracts the constants and sub-terms that appear multiple times in
T . In the example from Section 8.1, PGT collects the constants rev, itrev, and [].

Generalization. Now, PGT tries to generalize the goal T . Here, PGT alone cannot
determine over which constant or sub-terms it should generalize T . Hence, it creates a
generalized version of T for each constant and sub-term collected in the previous step.
For [] in the running example, PGT creates the following generalized version of T : !!Nil.
itrev xs Nil = rev xs.

Goal Oriented Conjecturing. This step calls the function conjecture, illustrated in
Fig. 8.3, with the original goal T and each of the generalized versions of T from the
previous step (C0, . . . , Cn). The following code snippet shows part of conjecture:
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8.2 System Description

Input: the original goal T and generalized versions of T (= C0, . . . , Cn)

Extract constants in T and C0, . . . , Cn

For each constant extracted above, find related
constants from the corresponding simp rules

Traverse generalized conjectures and mutate their sub-terms in a top-down manner

Figure 8.3: The workflow of the conjecture function.

fun cnjcts t = flat (map (get_cnjct generalisedT t) consts)
fun conj (trm as Abs (_,_,subtrm)) = cnjcts trm @ conj subtrm
| conj (trm as App (t1,t2)) = cnjcts trm @ conj t1 @ conj t2
| conj trm = cnjcts trm

For each T and Ci for 0 Æ i Æ n, conjecture first calls conj, which traverses the term
structure of each T or Ci in a top-down manner. In the running example, PGT takes some
Ck, say !!Nil. itrev xs Nil = rev xs, as an input and applies conj to it.

For each sub-term the function get_cnjct in cnjcts creates new conjectures by
replacing the sub-term (t in cnjcts) in T or Ci (generalisedT) with a new term. This
term is generated from the sub-term (t) and the constants (consts). These are obtained
from simplification rules that are automatically derived from the definition of a constant
that appears in the corresponding T or Ci.

In the example, PGT first finds the constant rev within Ck. Then, PGT finds the simp-
rule (rev.simps(2)) relevant to rev which states, rev (?x # ?xs) = rev ?xs @ [?x],
in the background context. Since rev.simps(2) uses the constant @, PGT attempts to
create new sub-terms using @ while traversing in the syntax tree of !!Nil. itrev xs
Nil = rev xs in a top-down manner.

When conj reaches the sub-term rev xs, get_cnjct creates new sub-terms using
this sub-term, @ (an element in consts), and the universally quantified variable Nil.
One of these new sub-terms would be rev xs @ Nil2. Finally, get_cnjct replaces the
original sub-term rev xs with this new sub-term in Ck, producing the conjecture: !!Nil.
itrev xs Nil = rev xs @ Nil.

Note that this conjecture is not the only conjecture produced in this step: PGT, for
example, also produces !!Nil. itrev xs Nil = Nil @ rev xs, by replacing rev xs
with Nil @ rev xs, even though this conjecture is a non-theorem. Fig. 8.4 illustrates
the sequential application of generalization in the previous paragraph and goal oriented
conjecturing described in this paragraph.

Clean & Return Most produced conjectures do not even type check. This step removes
them as well as duplicates before passing the results to the following sub-strategy (Then

2Note that Nil is a universally quantified variable here.
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   goal

generalize

goal oriented conjecturing

T C0 C1

T

Figure 8.4: PSL’s sequential generalization and goal oriented conjecturing.

[Fastforce, Quickcheck, DInd] in the example).

8.3 Conclusion
We presented an automatic conjecturing tool PGT and its integration into PSL. Currently,
PGT tries to generate conjectures using previously derived simplification rules as hints. We
plan to include more heuristics to prioritize conjectures before passing them to subsequent
strategies.

Most conjecturing tools for Isabelle, such as IsaCoSy [JDB11] and Hipster [JRSC14],
are based on the bottom-up approach called theory exploration [Buc00]. The drawback
is that they tend to produce uninteresting conjectures. In the case of IsaCoSy the user is
tasked with pruning these by hand. Hipster uses the di�culty of a conjecture’s proof to
determine or measure its usefulness. Contrary to their approach, PGT produces conjectures
by mutating original goals. Even though PGT also produces unusable conjectures internally,
the integration with PSL’s search framework ensures that PGT only presents conjectures
that are indeed useful in proving the original goal. Unlike Hipster, which is based on a
Haskell code base, PGT and PSL are an Isabelle theory file, which can easily be imported to
any Isabelle theory. Finally, unlike Hipster, PGT is not limited to equational conjectures.

Gauthier et al. described conjecturing across proof corpora [GK15]. While PGT creates
conjectures by mutating the original goal, Gauthier et al. produced conjectures by using
statistical analogies extracted from large formal libraries [GKU16].
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8.3 Conclusion

Appendix

Screenshot of Isabelle/HOL with PGT.
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Chapter 9

Conclusion

9.1 Summary
This dissertation introduced various artificial intelligence (AI) approaches to assist
theorem proving in Isabelle/HOL.

What makes my approaches unique compared to other AI-based theorem proving
projects is the deliberate choice of representations for meta-reasoning in Isabelle/HOL.

Chapter 3 introduced the proof strategy language, PSL, to encode procedural heuristics
as strategies. As discussed in Chapter 8, this language is also used to specify abductive
reasoning to identify valuable auxiliary lemmas. The main drawback of PSL is that this
language cannot assist proof engineers if the interpreter does not complete a proof search.

To complement this weakness, Chapter 6 presented PaMpeR, a tool that suggests which
proof method to use without completing a proof search. Even though PaMpeR relies on a
simple machine learning algorithm, known as regression tree construction, our evaluation
showed that it produces accurate recommendations for many methods because PaMpeR
transforms proof databases into a simple data format explained in Chapter 7 before
building regression trees. PaMpeR, however, does not recommend what arguments to pass
to each proof methods.

smart_induct in Chapter 5 addressed this problem for the induct method: it suggests
what arguments to pass to the induct method without completing a proof search.
For smart_induct to produce valuable recommendations across problem domains, the
heuristics used in smart_induct were encoded in a domain-specific language, LiFtEr,
introduced in Chapter 4.

9.2 Towards a Stronger Automation for Proof by Induction
I conclude this dissertation by identifying some of the remaining challenges to develop a
stronger proof automation for inductive theorem prover.

9.2.1 From LiFtEr to SeLFiE
The evaluation results shown in this dissertation proved the overall validity of my
approaches. But they also showed weaknesses. In particular, the evaluation of smart_-
induct in Chapter 5 revealed that smart_induct tends to be to be too slow for smooth
user-experience or to guide a proof search as a part of an automatic prover. Furthermore,
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the evaluation also showed that the recommendations of smart_induct tend to be
unreliable when appropriate inductive proofs involve variable generalisation.

We consider that the poor accuracy of smart_induct’s recommendation stems from
the limited capacity of its implementation language, LiFtEr: heuristics written in LiFtEr
are not able to analyse semantics of proof goals, even though it is often necessary to
analyse how each constant in a proof goal is defined to decide which variables to generalise
before applying induction.

What is much needed to improve smart_induct’s speed and accuracy is a new domain-
specific language (DSL) that satisfies the following three criteria.

• The DSL preserves the domain-agnostic nature of LiFtEr.

• The DSL allows experts to encode heuristics that analyse not only syntactic
structures of proof goals but also the semantics of relevant constants.

• The DSL’s interpreter can quickly analyse a given combination of arguments to the
induct tactic in terms of a given heuristic.

To satisfy these criteria, I started working on SeLFiE, which is a promising candidate
to replace LiFtEr [Nag20b]. I expect that SeLFiE’s semantic-awareness and its fast
interpreter improve both the accuracy and speed of smart_induct.

9.2.2 Towards United Reasoning
Another remaining challenge is that the approaches presented in this dissertation are
implemented as separate tools, each of which takes advantage of a di�erent style of
reasoning.

• PSL in Chapter 3 enhances the deductive reasoning of Isabelle/HOL by allowing
human engineers to provide procedural guidance for proof search.

• PGT in Chapter 8 extends PSL with abductive reasoning: it explicitly produces
hypotheses, which upon success serve as auxiliary lemmas to prove the original
goal.

• PaMpeR in Chapter 6 and smart_induct in Chapter 5 enrich Isabelle/HOL with
inductive reasoning: they suggest next promising moves based on an available
database or human expertise.

Each of them provides unique strength; however, none of them can automatically prove
di�cult inductive problems all by itself. What is needed beyond this dissertation is the
framework to integrate such di�erent styles of reasoning, so that they can complement
the weakness of one reasoning style with the strength of other styles. I envision that such
framework, which I call united reasoning [NAG20f], will realise a stronger automation
tool for inductive theorem proving.
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