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Abstract

The field of Artificial Intelligence has seen great advances with the use of Deep Neural
Networks. However, the problem of creating a system capable of abstract reasoning
remains unsolved.

One way to force AI to perform abstract reasoning is to directly learn an abstract task
– such as Automated Theorem Proving. In ATP, the goal is to construct a formal proof
of a mathematical statement. This requires finding a correct sequence of inferences in an
exponentially large space of possibilities. This search can be guided by a Deep Neural
Network.

Toward this end, I have worked on creating a neural architecture that would work well
with mathematical formulas and provide a way to generate training data to train such
neural networks.

A different way of tackling the abstract reasoning problem is to use Inductive Logic
Programming. In this machine learning paradigm, the task is to construct a logic program
to explain given data – which naturally tends to be abstract and general. In this field,
I did work on both improving existing ILP methods and integrating ILP with Deep
Learning.
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Abstract in Polish

W dziedzinie sztucznej inteligencji nastąpił ogromny postęp dzięki zastosowaniu Głębokich
Sieci Neuronowych. Jednak problem stworzenia systemu zdolnego do abstrakcyjnego
rozumowania pozostaje nierozwiązany.

Jednym ze sposobów zmuszenia Sztucznej Inteligencji (AI) do wykonywania abstrak-
cyjnych rozumowań jest bezpośrednie uczenie abstrakcyjnego zadania - na przykład
Automatyczne Dowodzenie Twierdzeń (ATP). W ATP, celem jest skonstruowanie formal-
nego dowodu twierdzenia matematycznego. Wymaga to znalezienia poprawnej sekwencji
wnioskowań w wykładniczo dużej przestrzeni możliwości. Poszukiwania te mogą być
kierowane przez głęboką sieć neuronową.

W tym celu pracowałem nad stworzeniem architektury neuronowej, która będzie dobrze
pracować z formułami matematycznymi i nad zapewnieniem sposobu na generowanie
danych treningowych do trenowania takich sieci neuronowych.

Innym sposobem rozwiązania problemu abstrakcyjnego rozumowania jest użycie In-
dukcyjnego Programowania w Logice (ILP). W tym paradygmacie uczenia maszynowego
zadaniem jest skonstruowanie programu logicznego który pasuje do zadanych danych
wejściowych – programy takie mają tendencję do bycia abstrakcyjnymi i ogólnymi. W tej
dziedzinie pracowałem zarówno nad ulepszeniem istniejących metod ILP, jak i integracją
ILP z Głębokimi Sieciami Neuronowymi.
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Abstract in German

Der Bereich der Künstlichen Intelligenz hat durch den Einsatz von Deep Neural Networks
große Fortschritte erzielt. Jedoch ein System zu konzipieren, welches in der Lage ist
abstrakte Schlussfolgerungen zu ziehen, bleibt ein ungelöstes Problem.

Eine Möglichkeit, Künstlicher Intelligenz abstraktes Denken beizubringen, besteht
darin abstrakte Aufgaben direkt zu erlernen, wie z.B.das automatisierte Beweisen von
Theoremen (ATP). Bei ATP besteht das Ziel darin, einen formalen Beweis für eine mathe-
matische Aussage zu konstruieren. Dazu muss eine korrekte Folge von Schlussfolgerungen
in einem exponentiell großen Raum von Möglichkeiten gefunden werden. Diese Suche
kann von einem tiefen neuronalen Netz geleitet werden.

Zu diesem Zweck habe ich an der Entwicklung einer neuronalen Architektur gearbeitet,
welche sich auf mathematische Formeln spezialisiert. Zudem habe ich eine Möglichkeit
geschaffen, Trainingsdaten zu erzeugen, solche neuronalen Netze zu trainieren.

Eine andere Art, das Problem des abstrakten Denkens anzugehen, ist die Verwendung
der induktiven Logikprogrammierung (ILP). Bei diesem Paradigma des maschinellen
Lernens besteht die Aufgabe darin, ein logisches Programm zu konstruieren, um gegebene
Daten zu erklären - die natürlich dazu neigen, abstrakt und allgemein zu sein. In diesem
Bereich arbeite ich sowohl an der Verbesserung bestehender ILP-Methoden als auch an
der Integration von ILP mit Deep Learning.
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Chapter 1

Introduction

The field of Artificial Intelligence has seen great advances with the use of Deep Neural
Networks (DNN) [LBH15]. However, the problem of creating a system capable of abstract
reasoning remains unsolved [Cho19, CCE+18].

In [Cho19] an abstract reasoning challenge was introduced, which provides an example
of a task that current AI systems are incapable of, even though it is trivial for humans.
Some examples of such tasks are shown in Figure 1.1. The main difficulty (from the
point of view of DNNs) is the lack of a large training set – instead the AI has to infer
the pattern from a small number of examples.

Large Language Models (LLM) [RWC+19, BMR+20, ZRG+22, SFA+22] have been
shown to perform some reasoning necessary in text generation, and even perform simple
algorithms when properly prompted [BMR+20] but still struggle with logical relations
between statements. In [RKB+22] the authors show that LLM stuggle to infer whether
an indirect answer to a question meant yes or no (for example, “The sun was scorching.”
as an answer to “Was that hot?” means yes).

These models use an encoder part of the Transformer architecture [VSP+17] to predict
the next word in a natural language text. This task of language prediction requires the
model to be able to perform a great variety of tasks, which includes at least some abstract
reasoning.

One of the most promising current attempts at forcing Deep Neural Networks to
perform strict reasoning consists of giving a Language Model a few examples of an
algorithm being performed and prompting it to continue [NAGA+21, ZNL+22]. This
approach does seem to provide much better results over just asking for an answer, but
still seems to fall apart after a dozen steps. When prompted to reason step by step such
models are prone to giving incorrect inferences or asserting false claims (often referred to
as hallucinating).

This proves that while current AI systems are certainly very impressive, there is still
work to be done on their ability to perform strict reasoning. This thesis focuses on
various methods of providing Deep Neural Networks with the ability to manipulate and
construct complex abstractions, which in turn would allow for general reasoning well
outside of a training distribution.

One way to force AI to perform abstract reasoning is to directly learn an abstract task
– such as Automated Theorem Proving. In ATP, the goal is to construct a formal proof
of a mathematical statement. This requires finding a correct sequence of inferences in an
exponentially large space of possibilities. This search can be guided by a Deep Neural

1



1 Introduction

Figure 1.1: Examples of tasks from the Abstraction and Reasoning Challenge [Cho19]

2



1.1 Formal mathemathics

⊢ P ⊢ P → Q

⊢ Q

Figure 1.2: Example formal inference rule – modus ponens

Network. Such a network would necessarily need to use mathematical abstractions.
To allow guidance of Automated Theorem Provers with Deep Neural Networks, I

have worked on creating a neural architecture that would work well with mathematical
formulas [Pur20]. I also develop an algorithm that allows for training such networks
without a need for human-generated data [PK22], using a general game-playing algorithm
[SHS+17].

A different way of tackling the abstract reasoning problem is to use Inductive Logic
Programming [CD20, Mug91]. In this machine learning paradigm, the task is to construct
a logic program to explain given data – which naturally tends to be abstract and general.

It is worth mentioning that the task of program synthesis is in some way the same as
proof synthesis, through Curry-Howard isomorphism [BR67, How69]. It is not however
directly transferable, since this isomorphism is between proving a statement and writing
a functional program of a given type. In ILP, for one, we construct a logic program, and
also have to make it fit some data examples, rather than some type.

In the field of ILP, I am working on improving the existing ILP methods and integrating
ILP with Deep Learning. I show how to improve a recent ILP system called “Popper”
[CM21a] by allowing it to use of higher-order predicates in its output programs [PCK22b].
I also work on merging ILP methods with DNNs by improving differentiable ILP system
δILP [EG18] by using a much larger dimensional search space for gradient descent
[PCK22a].

1.1 Formal mathemathics
Mathematical reasoning can be formalized into a set of formally defined rules [RW10].
This allows writing down mathematical proofs that can be mechanically verified to be
correct.

Having such proof does not mean the statement is absolutely certain and true, since
there still remains a question of whether the rules themselves are correct – a question that
can never be answered [Göd92]. Still, formal proofs can be used to verify the correctness
of critical programs and circuitry, giving greater confidence in them, as well as finding
potential errors.

This work is only concerned with the problem of finding such formal proof, that can
be programmatically verified.

1.2 Automated Theorem Proving
Automated Theorem Proving (ATP) is a method of formally proving statements auto-
matically, using a computer program. There are many limitations to this approach: for

3



1 Introduction

p ∧ (p→ q) ⊢ p ∧ (p→ q)
p ∧ (p→ q) ⊢ p

p ∧ (p→ q) ⊢ p ∧ (p→ q)
p ∧ (p→ q) ⊢ p→ q

(p ∧ (p→ q)) ⊢ q
⊢ (p ∧ (p→ q))→ q

Figure 1.3: Example formal proof in sequent calculus

¬((p ∧ (p→ q))→ q)

p ∧ (p→ q)

¬q

p

p→ q

¬p q

Figure 1.4: Example Tableux proof

example, the problem of deciding whether a statement is provable is undecidable – it is
even possible that the statement is true without being provable [Göd92].

It is technically possible to write a program that would find a proof of any provable
statement – for example, by searching through all possible proofs in increasing size – but
the program would run forever if the statement is unprovable. Moreover, this approach
would be highly intractable. In practice, the best results are achieved with heuristic
algorithms.

1.2.1 Saturation provers

A well-performing category of Automated Theorem Provers are Saturation provers. These
work by constructing an ever-expanding set of proven statements – consequences of
the input axioms. Usually, the prover attempts to prove false, thus proving that all
the axioms given are together contradictory. Therefore if we want to prove that some
conjecture is a consequence of some set of axioms, we add this conjecture to the set of
axioms negated. If from this set we can prove a contradiction, we know that if the axioms
hold, the conjecture must also hold (since the negated conjecture cannot hold).

Examples of saturation provers are E prover [SCV19] and Vampire [RV02].

4



1.3 Interactive Theorem Proving

1.2.2 Tableaux provers

Tableaux provers construct a branching tree of statements, with branching representing
different possible ways of satisfying given statements. For example, a statement p ∨ q
can be split into branches where p holds in one and q holds in the other.

To complete a proof each branch has to be closed by connecting two contradicting
statements, thus proving that all given statements cannot be true together. As before,
to prove a conjecture we add it negated as an assumption. An example of such proof is
in Figure 1.4. It starts with the negated conjecture at the top (¬((p ∧ (p→ q))→ q)).
The consequences of this conjecture are added below, in the same branch because a
negated implication being true means that both left side is true and right side is false.
Similarly, consequences of a conjunction (p ∧ (p→ q)) are added. Lastly, consequences
of a (non-negated) implication (p → q) are added in separate branches (because an
implication only guarantees one of those must hold). Then, both the branches contain a
statement with its negated above, thus finishing the proof.

The important choice when constructing a Tableaux is which statement’s consquences
to use next. This choice is additionally made more difficult in First-Order, where a
statement may need to be used multiple times, with different instantiations.

1.3 Interactive Theorem Proving

Since creating a computer program capable of proving any theorem in general, there have
been developed approaches that keep humans in the loop. Such Interactive Theorem
Provers (ITP) (also referred to as proof assistants) are systems in which people construct
the proofs, possibly with assistance from ATPs. Such proofs are also immediately verified.
Examples of ITPs are Isabelle [NPW02], Coq [BC13] and Mizar [BBG+18].

While this work does not deal directly with ITPs, it does use datasets of human-
constructed proofs that were constructed in these systems.

1.4 Guiding Automated Theorem Provers

In some ways, machine learning is a natural fit for theorem proving. For one, we do not
really need to care about testing robustness [GR14], as we have a built-in, absolute way
of testing performance – are the correct proofs successfully constructed. While it may be
useful during research, we do not really need to understand why do our heuristics give
the answers they do, as long as we can verify the final proof. There are no consequences
for the predictions being inaccurate, other than the failure to construct a proof.

Another reason to turn to machine learning is the fact that the problems in theorem
proving are in general undecidable. If we still want to be able to solve such problems
automatically, we have to use heuristics. Hand-crafted methods rarely (if ever) reach
the performance of a human working on a problem. At the same time, certain machine
learning methods achieved and surpassed human-level performance for certain tasks
[SHM+16].

5



1 Introduction

Finally, this direction of Artificial Intelligence research promises to create systems
capable of abstract reasoning, as mathematical problems (almost by definition) require
such capabilities. Therefore whatever solutions work well in this domain, would probably
help generally in creating AI systems capable of abstract reasoning.

1.4.1 Neural models for formulas

Currently, the most promising method of machine learning are Deep Neural Networks.
Therefore, it is an obvious idea to apply them to the task of guiding a theorem prover.
However, mathematical formulae are not a typical input for a neural network, which
generally process images and natural language text.

Recursive Neural Networks

Recursive Neural Networks (RNN) use a neural architecture where a neural layer is
applied recursively to the input (repeatedly, with the same weights). A simple example is
a model which takes as input a sequence of symbols, processing them one by one, using
the same network repeatedly (see figure 4.2).

A more complex way of using RNNs, is using the tree structure that mathematical
formulae naturally have. In this approach, the network is used to aggregate embeddings
of subtrees, recursively, in the end computing an embedding of the whole tree.

Graph Neural Networks

One natural idea for processing mathematical concepts with neural networks is to represent
them as graphs. However, unlike image processing, where convolutions and pooling is
a well-performing standard, there is no such architecture for Graph Neural Networks
(GNN).

A commonly used pattern is message passing, where every layer combines information
from neighboring nodes to compute the next layer’s node embeddings. The method of
combining can range from simple summing up embeddings of neighboring nodes to using
an attention mechanism [VCC+17].

This method however has several drawbacks. For one, information can only travel
one edge per layer, so combining information from far away nodes requires many layers.
This problem is made worse by the fact that GNNs tend to perform badly with a large
number of layers. Another problem is the fact that such a network can recognize graphs
only up to Weisfeiler–Lehman isomorphism test [WL68, XHLJ18], meaning that if the
test says the graphs are isomorphic, the networks will process the graphs as if they really
were exactly the same — even if they are not.

Autoencoders

Autoencoders [Kra91] are neural networks trained to compute the identity function on
some data. Their architecture usually contains some bottleneck, which forces the network
to learn patterns present in the data, to be able to reconstruct everything from smaller
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bottleneck information. This also means that all information about the input needs to be
somehow represented within the bottleneck, which is the property we use in this work.

1.4.2 Training data for theorem proving

To actually make use of a neural network we need to be able to provide it with training
data. One obvious approach is to use human-generated data and do imitation learning.
However, if we want to be able to solve difficult problems, merely imitating humans
might not be enough.

It would be better to learn from the ground truth, that is straight from mathematical
results. Some attempts at this have been made in the meantime, like [KUMO18, BSR+19]
where an algorithm tries to prove theorems from a given dataset and learns from successful
attempts – this however requires a robust dataset of theorems and presents a clear limit
of what can be learned. A different attempt [FAA+21] generates a dataset of synthetic
theorems and learns from it, thus removing the need for a human-provided dataset,
however, this allows for only a shallow exploration of possible theorems.

Mizar40 dataset

Mizar40 dataset [KU15] is extracted from the mathematical library of the Mizar proof
system [BBG+18]. The library covers all major domains of mathematics and includes
several proofs from theorem proving. As such, we believe that it is representative of the
capability of the developed encodings to generalize to mathematical theorem proving.
The dataset is structured as follows. Each theorem (goal) is linked to two sets of theorems.
One set, the positive examples, are theorems useful in proving the original theorem, and
one set, the negative examples, is a set of theorems that were not used in proving the
goal. Note that for each theorem its positive and negative example sets are the same size.
The negative examples are selected by the nearest neighbor heuristic.

TPTP

Thousands of Problems for Theorem Provers (TPTP) [Sut17] is a library of problems for
Automated Theorem Provers. It was collected with the purpose of testing and evaluating
ATP systems. It contains problems from multiple domains, from general algebra and
graph theory to biology and medicine.

The domains differ in the problems themselves as well as vocabulary that is used to
state said problems. For instance, in the set theory problem set one would find predicates
such as member, subset, and singleton whereas in the category theory dataset has
predicates such as v1_funct_2, and k12_nattra_1.

1.4.3 Adversarial training

Adversarial training is a machine learning method where one trains both a solver to the
task that we actually want to solve and an adversary that competes against the actual
solver.

7



1 Introduction

Such approaches can be greatly varied. For example in Generate Adversarial Networks
[GPAM+20] there are two DNNs trained: a generator, that generates images (the task
that we actually want) and a discriminator, that is trained to discriminate between real
images and the images generated by the generator. The generator has to learn to deceive
the discriminator, which eventually leads to generating images that look good to humans.

In AlphaZero [SHS+18] the algorithm learns to play two-player board games (like
Chess or Go) by playing against itself. There the adversary and the solver are one and
the same, but playing two different sides of the game.

1.4.4 AlphaZero algorithm

The AlphaZero [SHM+16] algorithm learns by playing the game against itself, then uses
the generated games to learn and improve. Then it generates better games and so on.
This allows a deep exploration of interesting and valuable areas in the space of possible
games by continuously using already learned knowledge to learn more.

The learned part of the algorithm is a Deep Neural Network that estimates the value
and policy of any given game state. Value is simply the estimated result of the game
when in a given state, while policy is a vector, describing a probability distribution over
available actions. This vector is learned via reinforcement learning, to maximize the
reward, defined by the outcome of a game.

1.4.5 Monte-Carlo Tree Search

To facilitate learning in this process the games need to be played a little better than
the currently learned the value and policy estimations would allow. Without that, there
would be nothing to learn from the playouts.

This is achieved by using Monte-Carlo Tree Search (MCTS). It is an exploration of a
tree of game states, checking possible ways the game could go, biased towards states that
the the neural network trained thus far estimates as most likely.

The exact formula used in AlphaZero [SSS+17] for choosing the next state to explore is

(
log nparent + cbase + 1

cbase
+ cinit

) √nparent

nchild + 1πchild + vchild

where

• cbase and cinit are hyperparameters

• nparent and nchild are numbers that the parent and the child node were explored
already

• πchild is the probability given by policy predicting network

• vchild is the value of the considered child state as estimated by the MCTS tree
explored thus far
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BK

mom(a, b). dad(e, b).
mom(a, c). dad(e, c).
mom(b, d). dad(c, f).

E+

gp(a, d). gp(e, d).
gp(a, f).

E−

gp(a, b). gp(b, c).
gp(c, f). gp(d, f).

Figure 1.5: Example Inductive Logic Programming problem: grandparent

gp(X,Y ):-mom(X,C), mom(C, Y )
gp(X,Y ):-mom(X,C), dad(C, Y )
gp(X,Y ):-dad(X,C), mom(C, Y )

gp(X,Y ):-p(X,C), p(C, Y )
p(X,Y ):-mom(X,Y )
p(X,Y ):-dad(X,Y )

Figure 1.6: Example solutions to the problem in figure 1.5

Whenever the algorithm wants to explore another node, it starts from the root and goes
down to a child with the highest score (defined by the formula above). After reaching a
leaf, a new game state is computed, and a neural network is used to estimate its value
and policy (v and π).

This formula means that to start with, the tree is explored proportionally to the
predicated policy π. This is also what would happen if all states had the same value
(each state would be visited a number of times proportional to policy). However, the
formula also takes into account values v, so the exploration is biased towards states with
high values (with the balance between value and policy dictated by c parameters).

1.5 Inductive Logic Programming

Inductive Logic Programming (ILP) [CD20] is a machine learning paradigm that explicitly
uses abstract reasoning – therefore investigating it and potential uses of it together with
Deep Learning is a promising direction towards an AI capable of abstract reasoning.
In ILP the goal is to induce a logic program that fits the given training data. While
its performance on many AI tasks is worse than that of Deep Learning, it has some
advantages. One of which is the ability to generalize from a small number of examples,
by constructing general, abstract rules.

A task in ILP is defined by its background knowledge (BK), along with positive (E+)
and negative (E−) examples. An example task is shown in figure 1.5 with possible
solutions shown in figure 1.6.

Usually, the ILP systems use constraints of the space of possible logic programs
(solutions) to make the search easier. An example of such constraint would be to only
consider programs defining a single predicate – which would exclude the solution on the
right in figure 1.6. These constraints are referred to as language bias.
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sum(X,Y ):-zero(Z), fold(add, X, Z, Y ).
sum(X,Y ):-empty(X), zero(Y ).
sum(X,Y ):-tail(X,Z), sum(Z,Q),

head(X,U), add(Q,U, Y ).

Figure 1.7: Two programs implementing the same predicate with and without Higher-
order predicates.

Figure 1.8: Inclusion of HO definitions increases the size of the search space, but can
lead to the search space containing a shorter solutions.

1.5.1 Learning From Failures paradigm

A recently developed ILP system is “Popper” [CM21a], which works by iteratively
constraining the search space of possible programs.

Whenever a program is generated that does not fit the training examples, it either
accepts something it should not, or does not accept something it should. In the first case,
other programs that accept everything this program does are also known to not be the
solutions, and can therefore be skipped – a constraint is added that forbids generating
such programs. Similarly, when the program rejects something it should accept, other
programs that accept no more than this program are forbidden.

After adding a constraint a new program is generated, and the loop continues until
either a solution is found or the search space is exhausted.

1.5.2 Higher-Order ILP

Allowing ILP systems to use higher-order predicates in their solutions has multiple
potential benefits. For one, by allowing the constructed program to use HO predicates,
we make solving a lot of problems much easier, even if the search space is increased by
introducing new background predicates. This is because, with the use of HO, the target
program can be much smaller – making it easier to find (see figures 1.7 and 1.8).

Another potential benefit is that many abstract concepts can be encoded as higher-order
predicates and a system capable of using them can potentially benefit from additional
layers of abstraction.

Higher-order support has been implemented for two ILP systems: Metagol and HEXMIL
[CMM20]. The authors have proven both theoretically and experimentally that using
higher-order can reduce the size of the program and the number of examples needed to
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learn it. An extension of a more recent ILP system Popper [CM21a] is done in this work
in chapter 6.

1.5.3 Differentiable ILP
A method of performing ILP by stochastic gradient descent [SMDH13] was proposed by
Evans and Grefenstette [EG18] (called δILP). This approach can potentially allow for
merging ILP and Deep Neural Networks together into one system trainable end-to-end.

This approach works by using fuzzy logic operators to compute inferences of a logic
program. Instead of simply being true or false, the values of predicates for given arguments
are represented as real numbers between 0 and 1.

Because the system limits itself only to the case with a finite number of atoms, the
inference of a logic program can be expressed as a simple logic formula, which can be
computed using fuzzy operators. This allows computing a loss value as binary cross-
entropy between the expected value (1 for positive examples and 0 for negative) and the
output of the system. Loss in turn allows for computing gradients (since fuzzy operators
are differentiable) that allow for finding a program through gradient descent.

To use gradient descent the logic program needs to be represented in a continuous
parameter space. This is achieved by splitting the program that we want to construct
into parts (in the original work the parts were simply separate predicate definitions) and
creating a list of all code snippets that could be used for this part. For each part, we then
create a parameter representing a distribution of all code snippets. During computation
of the learned program, whenever we would have to use a part of the code, we compute
values for every code snippet that the part could be. Then, we take a weighted average,
using the distribution from a parameter as weights. To allow for recursion we execute
this computation multiple times – this number of times is effectively a recursion limit.

Fuzzy truth values computes in this way are differentiable, and allow for computation of
gradients on the distribution parameters. These can be used to find which code snippets
create a correct program.

1.6 Content
In this dissertation, in chapter 3, I present my work on improving Graph Neural Networks.
Then, in chapter 4, I try to use autoencoding to learn useful embeddings on mathematical
formulae.

Chapter 5 presents my work on creating a learning algorithm that would learn to prove
theorems without human guidance, using adversarial methods.

The later part deals with Inductive Logic Programming, in chapter 6, I show an
augmentation of an existing, recently published ILP system that allows it to use higher-
order predicates. Later, I deal with an older ILP system, δILP, that learns through
gradient descent (the same as neural networks). I show that adding additional invented
predicates during learning (increasing the dimensionality of the search space) is beneficial
in this ILP method.
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Chapter 2

Contributions

The following chapter describes the publications included in this dissertation as chapters.
The details about the publication venue and my contributions to each publication are
outlined below.

2.1 Improving Expressivity of Graph Neural Networks
Publication Details

Stanislaw J. Purgal. Improving expressivity of graph neural networks. 2020
International Joint Conference on Neural Networks (IJCNN), pages 1–7,
2020

In this chapter, I investigate the limitations (and ways of overcoming them) of Graph
Neural Networks – namely the Weisfeiler-Lehman isomorphism limitation [WL68] and far-
away interactions. I augment a Transformer-based [VSP+17] Graph Attention Network
[VCC+17] by two modifications:

• random initial node embeddings — to facilitate the attention mechanism recognizing
different nodes, we add (by concatenation) a random vector to the initial embedding
of every node, with different random values every time the embeddings are evaluated

• expanding attention window — we use multi-headed attention [VSP+17], with
separate heads for different edge categories. Some of the attention heads only see
neighbors (as is standard), but some see exponentially expanding neighborhoods
(nodes in distance 2, 4, 8 and so on)

I prove experimentally that these modifications successfully deal with the problems
mentioned above as they help classify synthetic datasets built to expose these weaknesses.
When testing on a real-world chemical dataset, however, the modifications do not improve
the results.

My contribution

I am the sole author of this particular paper: I have proposed the described model,
implemented it, performed the experiments, and wrote the article.
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2.2 A Study of Continuous Vector Representations for Theorem
Proving

Publication Details

Stanisław Purgał, Julian Parsert, and Cezary Kaliszyk. A study of con-
tinuous vector representations for theorem proving. Journal of Logic and
Computation, 02 2021

In this chapter, we investigate the idea of using an autoencoder [Kra91] architecture to
train embedding for mathematical formulae. To this end, we train an encoder and a
decoder such that the tree shape of a formula including all symbols can be reconstructed
from the dense vector representation. We do that by training multiple decoder parts:
one that extracts the top symbol of the tree and one that extracts embedding vectors
of subtrees. We propose and evaluate two ways of training such autoencoders. One of
the approaches is to optimize the difference between a subtree encoding and the output
of a decoder. The second one is to optimize the chance of all symbols being correctly
predicted after recursively decoding the formula.

The syntactic and semantic logical properties that we aim to preserve include both
structural formula properties, the applicability of natural deduction steps, and even more
complex operations like unifiability. We propose datasets that can be used to train these
syntactic and semantic properties. We evaluate the viability of the developed encoding
across the proposed datasets as well as for the practical theorem proving problem of
premise selection in the Mizar corpus.

My contribution

I have proposed and implemented two ways of training a formula autoencoder. I have
then performed experiments testing the reconstruction ability as well as the performance
of a simple classifier neural network trained to use our pre-trained encoders. I have also
written the corresponding parts of the article.

2.3 Adversarial Learning to Reason in an Arbitrary Logic
Publication Details

Stanisław J. Purgał and Cezary Kaliszyk. Adversarial learning to reason
in an arbitrary logic. The International FLAIRS Conference Proceedings,
35, May 2022

We propose Monte-Carlo simulations guided by reinforcement learning that can work
in an arbitrarily specified logic, without any human knowledge or set of problems. Since
the algorithm does not need any training dataset, it can learn to work with any logical
foundation, even when there is no body of proofs or even conjectures available.

The approach uses the AlphaZero [SHS+17] algorithm to learn a strategy for a proposed
theorem proving game. This game has one player (the adversary) constructing a provable
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theorem and the second one (the prover) trying to prove it.
We train a neural network in the way AlphaZero does, without relying on any human

data (other than the definition of the logic system). After some training, we test the
capability of the prover using a human-generated set of theorems.

For a state estimation neural network, we use a variant of the Graph Neural Network
described in chapter 3.

We practically demonstrate the feasibility of the approach in multiple logical systems.
The approach is stronger than training on randomly generated data but weaker than the
approaches trained on tailored axiom and conjecture sets. It however allows us to apply
machine learning to automated theorem proving for many logics, where no such attempts
have been tried to date, such as intuitionistic logic or linear logic.

My contribution

I have proposed and implemented the system discussed in this paper, as well as performed
the experiments. I have written the parts of the article describing how the system works
and the experiments performed (sections 5.4 to 5.8).

2.4 Learning Higher-Order Logic Programs from Failures

Publication Details

Stanisław J. Purgał, David M. Cerna, and Cezary Kaliszyk. Learning higher-
order logic programs from failures. In Lud De Raedt, editor, Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22, pages 2726–2733. International Joint Conferences on Artificial
Intelligence Organization, 7 2022. Main Track

We augment the recently introduced Learning From Failures paradigm by allowing it
to use higher-order definitions.

The existing system Popper [CM21a] works in a loop, by generating a program, inferring
constraints (in the program space) by checking how the program fails, then generating a
new program, taking new (and old) constraints into account.

We extend this system by allowing it to use higher-order definitions, like fold or map.
We do this by making sure that whenever a HO predicate is used, a predicate needs to
be defined as its argument.

We prove that as long as the HO predicate is monotone with respect to subsumption
and entailment (p1 ≤θ p2 ⇒ H(p1) ≤θ H(p2)) the constraint system from Popper remains
sound. Most of examples of HO predicate (fold and map) are monotone.

Experimental results show that our extension significantly improves learning per-
formance without the burdensome human guidance required by existing systems. Our
theoretical framework captures a class of higher-order definitions preserving the soundness
of existing subsumption-based pruning methods.
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My contribution

I have proposed a way of synthesizing a higher-order logic program using the Learning
From Failures paradigm and described the limitations of this method (the requirement of
higher-order predicate to be monotonic). I have then implemented the method, using
code published by the authors of [CM21a]. I have also described my contributions in the
paper.

2.5 Differentiable Inductive Logic Programming in
High-Dimensional Space (contibution beyond the PhD)

The following work is not yet published but is also something I have worked on during
my PhD.

There is a problem with the δILP system [EG18], that it easily gets stuck in local
minima. We have hypothesized that increasing the dimensionality of the search space
would solve this problem. This increase was achieved by increasing the number of invented
predicates – additional predicates that can be used in the constructed program.

Because this increase would result in infeasibly large memory usage, we also modified
the system to split the constructed program into smaller parts. This approach was
considered by the original authors [EG18] in an appendix to their work. They did not
use it because it would result in even bigger problems with local minima – a problem
that we aim to overcome anyway.

Partially for this change, but also to improve efficiency we have developed new imple-
mentation of δILP, using PyTorch [PGM+19] library, that works much faster than the
existing version – both because of the improved implementation and smaller parts.

16



Chapter 3

Improving Expressivity of Graph Neural
Networks

3.1 Abstract
We propose a Graph Neural Network with greater expressive power than commonly used
GNNs — not constrained to only differentiate between graphs that Weisfeiler–Lehman
test recognizes to be non-isomorphic. We use a graph attention network with expanding
attention window that aggregates information from nodes exponentially far away. We
also use partially random initial embeddings, allowing differentiation between nodes that
would otherwise look the same. This could cause problems with a traditional dropout
mechanism, therefore we use a “head dropout", randomly ignoring some attention heads
rather than some dimensions of the embedding.

3.2 Introduction
Recently there has been a great interest in neural network architectures capable of
processing graphs [YJK+19, DHS+19, ZXC+18, YBY+19, XWZ+19]. They are applied
for tasks of molecule properties prediction [HKKS01], premise selection in theorem
proving [WTWD17], RNA sequence classification [RMBL19] etc.

Most Graph Neural Networks (GNNs) can recognize graphs only up to Weisfeiler–
Lehman isomorphism test (WL-test) [WL68, XHLJ18], meaning that if the test says the
graphs are isomorphic, the networks will process the graphs as if they were exactly the
same — even if they are not.

In our work, we seek to overcome two types of failure of the WL-test. First is when the
difference between graphs is only noticeable when considering long connections (eg. as in
fig. 3.1). Another failure that we correct is when we need to notice whether two indirect
connections lead to one and the same node or to two similar nodes (as in fig. 3.2).

The first failure is addressed in our proposed model by aggregating nodes with an
exponentially expanding window. This way we allow the network to notice a connection
of exponential length. This operation could be seen as an attempt to imitate operations
done in usual convolutions, such as pooling done in computer vision, which also aggregates
information from exponentially far away, although in a more structured way. Another

17



3 Improving Expressivity of Graph Neural Networks

a

b

a b

Figure 3.1: Graphs consisting of two paths

Figure 3.2: “Diamond” graphs that common GNNs cannot differentiate

operation we can be said to imitate is an expanding dilated convolution used in WaveNet
[vdODZ+16], which again aggregates information from far away. Both those approaches
use the intrinsic structure of the data to aggregate more information layer by layer rather
than trying to process larger and larger sets. Unfortunately, in general, there is no such
structure in graphs.

The second problem of the WL-test is solved by introducing a random identifier for
every node present in the graph. This preserves invariance under node permutation while
allowing the network to differentiate between nodes even if they all look the same — thus
allowing graph attention to be used even when no labels are present.

3.3 Preliminaries

We assume the reader to be familiar with the self-attention mechanism [VSP+17] and its
use in graph attention networks [VCC+17].

Graphs considered in this work are directed, with labeled nodes and edges. We allow
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all labels in a graph to be equal. Where we consider symmetric graphs, we model it
with directed graphs where for every edge there exists a symmetric edge in the other
direction. We do not consider multi-edges, though technically our model allows for edges
with multiple labels.

When presenting formulas for calculations done in our model we mark parts with
learnable parameters with subscript ϕ. We use || to mark concatenation and ⊙ to mark
point-wise multiplication (or Hadamard product).

3.4 Proposed model

Our proposed model modifies standard graph attention [VCC+17] in two ways:

• random initial node embeddings — to facilitate the attention mechanism recognizing
different nodes, we add (by concatenation) a random vector to the initial embedding
of every node, with different random values every time the embeddings are evaluated.

• expanding attention window — we use multi-headed attention [VSP+17], with
separate heads for different edge categories. Some attention heads only see neighbors
(as is standard), but some see exponentially expanding neighborhoods (nodes in
distance 2, 4 and so on).

3.4.1 Partially random initial node embeddings

In our model (expGNN), the initial embedding of a node is composed of two concatenated
components of the same length. One is a learnable embedding of a node label, the other
a random node identifier, a random vector composed of 1s and 0s (each possible with
probability 1

2).

n0
iϕ = Embedϕ(Label(ni)) ||

RandomSequence({0 : 1
2 , 1 : 1

2}))

This identifier is different every time an embedding is being calculated but stays the
same within one graph instance. This means that it is possible to differentiate between
nodes, even if their label and neighborhoods are the same.
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3.4.2 Expanding attention window

To facilitate the propagation of information within a graph (faster than one edge per
one layer), we propose an expanding attention window. In each layer, this window
expands exponentially, aggregating information from nodes further away. So, in layer n
we aggregate nodes that are within distance 2n.

3.4.3 Multiple attention filters
Since it is not clear that this expanding window would be helpful for every task, we use
different windows for different attention heads, with some aggregating only neighbors,
some using this expanding window, and some aggregating from all nodes in the graph.
Since we want the information to spread both ways, not only in the direction of edges,
we also use different heads where edges go in the opposite direction.

All attention head types used in our model are:

• Neighbouring nodes (different edge types separately)

• Reversed neighboring nodes (all edge types together)

• Expanding window (all edge types together)

• Reversed expanding window (all edge types together)

• All nodes in the graph

When working with an adjacency matrix, expanding the window can be done quite
efficiently, by calculating a new adjacency matrix:

An+1 = min(1, An ·An +An)
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Of course, when working with more optimized graph representations for sparse graphs,
this operation is very costly, as it makes the graph much denser.

3.4.4 Single layer architecture
For a single layer in our model we use residual connection [HZRS16], similar to that used
in Transformer [VSP+17], but also utilizing layer normalization [BKH16].

nn+1
iϕ = ReLU(nn

iϕ + FNNϕ(nn
iϕ||

FilteredMultiHeadn
ϕ(nn

iϕ,nn
∗ϕ,nn

∗ϕ)))

FNNϕ(x) = NormalizedLayerϕ(
ReLU(NormalizedLayerϕ(x)))

Multi-headed dot-product attention works as in [VSP+17], the only difference being
using different masks for different heads.

Attentionϕ(Q,K, V,M) = αVW V
ϕ

α = maskedSoftmax(M,β)

β =
(QWQ

ϕ )(KWK
ϕ )T

√
dk

maskedSoftmax(M,x) = expx⊙M∑ expx⊙M

FilteredMultiHeadn
ϕ(Q,K, V ) = concat(

Attentionϕ(Q,K, V,M1)
...
Attentionϕ(Q,K, V,Mh))

Normalized layer is defined in [BKH16] as:

NormalizedLayerϕ(x) = gϕ

σ
⊙ (a− µ) + bϕ

a = xAϕ

µ = 1
H

H∑
i=1

ai

σ =

√√√√ 1
H

H∑
i=1

(ai − µ)2

21



3 Improving Expressivity of Graph Neural Networks

previous embedding

filtered self-attention

||

+

normalized layer

ReLU

normalized layer

ReLU

next embedding

Figure 3.3: Single layer architecture
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3.4.5 Final aggregation for graph classification

The node embeddings resulting from a few layers described above (in our experiment 3)
are aggregated from all nodes in the graph using simple maximum. The resulting graph
embedding is fed to a two-layer feed-forward network.

3.4.6 Head dropout

The standard dropout [SHK+14] mechanism may conflict with the random initial embed-
dings. The network is supposed to rely on the random distribution of vector represen-
tations of the nodes in the graph. Using dropout changes this distribution, making it
different during training and during evaluation. This could (and a did few times during
the experiments) lead to a situation where loss goes down while the accuracy remains
poor.

To counteract this problem, and to force learning of different useful properties, we use
a "head dropout". Instead of removing some parts of vectors, we randomly ignore certain
attention heads. During training, each type of attention window (immediate neighbors,
expanding, reversed etc.) is ignored with some probability (in our experiments 0.1).

3.5 Experiments

We test the ability of our model to recognize properties that theoretically require
overcoming the limitation of the WL-test. To do that, we generate artificial datasets,
with graph labels determined by the tested property. To better validate generalizing
ability, we use more than one evaluation set, with a few different methods of generating
random graphs (but using the same property for labels).

For training datasets, we use uniform random graphs, where every edge exists with the
same probability. This probability is chosen to be such that about half of the generated
graphs have the property being tested.

The size of training datasets is 106 (one million), and the sizes of random testing
datasets are all 104 (ten thousand). The synthetic datasets used are available online1 in
a format compatible with [KKM+16].

3.5.1 Presence of a cycle in a symmetric graph

We generate symmetric graphs with 32 nodes and classify them by checking whether
there is a cycle in the graph.

Evaluation sets include:

• more random graphs from the same distribution as the training set

• uniform random graphs with 64 nodes (with lower edge-existence probability) and
with 16 nodes (with higher edge-existence probability)

1http://cl-informatik.uibk.ac.at/cek/ijcnn2020/
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• random trees

• random trees with one additional edge (creating a cycle)

• line graphs of length between 3 and 64

• cycles of length between 3 and 64

Random trees are generated by adding nodes one by one, attaching each one to a random
already existing node. Half of such generated trees also receive one additional edge
between a random pair of not connected nodes.

3.5.2 Presence of a clique 4

For training, again, we use random uniform graphs with 16 nodes. Evaluation sets include
also bigger (and sparser) graphs than those used in training.

In each set, the class on a graph depends on the presence of a clique 4 (a subset of 4
nodes where each node is connected to every other node).

3.5.3 Categorizing circulant skip links

We test our network on the dataset the most difficult dataset used in [MSRR19, DSSV19].
This dataset has 10 categories, with only 1 graph each. Each graph is a Gskip(41, R) with
R being one of {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}. A graph Gskip(N,R) contains N nodes
{1, ..., N}, such that a pair of nodes (a, b) is connected if (and only if) |a − b| ≡
1 or R (mod N) (see fig. 3.4 for an example).

In their tests [MSRR19, DSSV19] use 15 randomly permuted instances of each graph (for
a total of 150 graphs in the dataset). Since our network is invariant under permutations,
that would be pointless here, and we only use 10 graphs. For evaluation, however, since
our model is non-deterministic, we do use 150 graphs to get a better evaluation of our
accuracy.

Since no generalizing beyond the training set is necessary for this test, we do not use
dropout here.

3.5.4 Presence of a path from one highlighted node to the other

As earlier, the training set consists of uniformly random graphs, now with two nodes
being given special labels (a and b). The class of a graph depends on the existence of a
path from a to b. In the training set, all graphs have 32 nodes.

As a special testing case, we use graphs consisting of two paths. The highlighted
nodes can be either on the ends of one path or on two different paths (shown is figure
3.1). Those graphs are very similar and hard for commonly used GNNs to differentiate
between. We use paths of lengths from 2 to 32.
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Figure 3.4: Circulant skip links — Gskip(8, 2) and Gskip(8, 3)

Table 3.1: Presence of a clique 4 results

model accuracy
training size 16 size 32 size 64

GFN 0.8076 0.8142 0.5068 0.5092
GCN 0.9005 0.9088 0.5118 0.4887

GraphStar 0.9983 0.9772 0.5331 0.5092
expGNN 0.9129 0.9108 0.7349 0.5662

expanding window only 0.5016 0.4924 0.4955 0.4908
random init only 0.9293 0.9279 0.7401 0.5427

basic graph attention 0.5016 0.4924 0.4955 0.4908
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Table 3.3: Circulant skip links results

model accuracy
mean std max min

RP-GIN [MSRR19] 0.376 0.129 0.533 0.100
16-CLIP [DSSV19] 0.908 0.068 0.987 0.760

Ring-GNN [CVCB19] N/A 0.157 0.800 0.100
expGNN 0.978 0.015 0.993 0.947

expanding window only 0.100 0.000 0.100 0.100
random init only 0.687 0.030 0.740 0.647

basic graph attention 0.100 0.000 0.100 0.100

Table 3.4: Presence of node of degree 7 results

model accuracy
training size 16 size 32

GFN 1.0000 1.0000 1.0000
GCN 1.0000 1.0000 0.8300

GraphStar 1.0000 1.0000 1.0000
expGNN 0.9520 0.9534 0.5903

expanding window only 0.5863 0.5906 0.5385
random init only 0.9862 0.9873 0.6402

basic graph attention 0.5863 0.5906 0.5385

Table 3.5: Presence of a path results

model accuracy
training size 16 size 32 size 64 paths

GFN 0.8358 0.8453 0.8276 0.6775 0.5483
GCN 0.9706 0.7057 0.9696 0.6810 0.5161

GraphStar 0.9979 1.0000 0.9975 0.9925 0.5967
expGNN 1.0000 1.0000 1.0000 1.0000 0.8371

expanding window only 1.0000 1.0000 1.0000 0.9999 0.8629
random init only 0.9903 0.9984 0.9889 0.9853 0.5645

basic graph attention 0.9881 0.9977 0.9866 0.9859 0.5806
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Table 3.6: Chemical datasets results

model accuracy
SN12C MOLT-4 Yeast

GFN 0.9639 0.9374 0.8899
GCN 0.9592 0.9336 0.8871

GraphStar 0.9640 0.9394 0.8884
expGNN 0.9633 0.9335 0.8870

expanding window only 0.9656 0.9365 0.8875
random init only 0.9626 0.9347 0.8865

basic graph attention 0.9648 0.9365 0.8870

3.5.5 Presence of a node with 7 neighbors

In this dataset, we simply generate uniform graphs and check whether there is a node
with a degree of 7 or greater. For training, we use graphs of size 16, for testing we use
also bigger graphs of size 32.

3.5.6 Chemical datasets

We also test our model on a few chemical datasets from [KKM+16]. These were published
on [Yan], collected from the PubChem website2. Each dataset belongs to a certain type
of cancer screen with the outcome active or inactive.

3.5.7 Tested models

For comparison with our model we use several recently published graph neural archi-
tectures: Graph Feature Network[CBS19], Graph Convolutional Network (using the
implementation from the same work [CBS19]) and Graph Star Net [LHYG19].

The exception is the experiment with a circulant skip list, where those networks
mathematically can’t differentiate between graphs. There we compare with results
reported in other papers that also used this dataset [MSRR19, DSSV19, CVCB19]. Since
[CVCB19] does not report the mean of their results, we leave it as “N/A".

We also test variants of our model with only one of the two modifications, as well as
without both (making it a Graph Attention Network [VCC+17]).

3.5.8 Hyperparameters

In our model, we use 3 layers of graph message passing. In every layer, each node is
encoded in 128 dimensions. In dot-product attention, the queries and keys have 32
dimensions. Each type of attention head is used thrice. During training, each type has

2https://pubchem.ncbi.nlm.nih.gov/
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a 0.1 chance of being ignored. For optimization we use Adam optimizer [KB14] with
default β1 = 0.9, β2 = 0.999, ϵ = 1e-7 and learning rate 1e-3.

3.6 Results and discussion
3.6.1 Presence of a clique and a cycle
These two observed graph properties are on one hand simple, on the other according to
[XHLJ18] cannot really be expressed by usual GNNs. Somewhat surprisingly, results in
tables 3.1 and 3.2 show that GNNs still learn to recognize them with high accuracy given
a graph of the same size as those in the training set. However, changing the size of the
graph and the density of edges greatly lowers the accuracy, revealing that the learned
property is not actually what we wanted.

Our proposed model seems to be able to generalize the property to graphs of different
sizes much better.

3.6.2 Categorizing circulant skip links
The results in table 3.3 show that our model achieves better accuracy than reported in
[MSRR19, DSSV19, CVCB19].

We see that categorizing long skip links is impossible in 3 layers when not using the
expanding attention window. With it, however, even 3 layers are enough.

We note that [CVCB19] also reports 100% accuracy with Ring-GNN-SVN, a variant
of Ring-GNN that is given top eigenvalues of adjacency matrices, allowing for trivial
classification.

3.6.3 Presence of a node with degree 7 and presence of a path
The last two graph properties are things that can be trivially learned by some GNNs. For
most used models, the most basic property is the degree of a node (trivially extracted, or
in GFN [CBS19] just given as part of the initial embedding). In our model, learning to
extract the degree of a node is possible, but much harder (and, because it depends on
random initial embeddings, remains not 100% accurate). Instead, the basic property is
detecting a connection.

3.6.4 Chemical datasets
Experiments on chemical datasets (results shown in table 3.6) show that even though our
model has higher theoretical expressive power, it does not improve accuracy on chemical
benchmarks.

3.7 Related work
This work seeks to improve Graph Neural Networks. The core idea of GNNs [SGT+08]
is to generate new node embeddings by aggregating embeddings of neighboring nodes.
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Initially, a recurrent network would process the nodes until their embeddings converged
to some value. Currently, most networks use a constant number of layers that aggregate
nodes (as do we). GraphSAGE [HYL17] experiments with aggregating embeddings using
simple functions like mean and maximum.

Following spectral graph theory, Kipf et al. [KW16] propose a Graph Convolution
operator. It can be thought of as a sum aggregation, but with embeddings scaled by an
inverse of a square root of a node degree ( 1√

dn
or d− 1

2
n ), both before and after aggregation.

In [CBS19] some features are added to the initial node embeddings.
Graph Attention Networks, a type of GNNs that we build on, were introduced in

[VCC+17]. In this network attention mechanism, [BCB14] is used to aggregate the
embeddings. Attention extracts information from a set of vectors (representations of
things — in our case nodes) by first estimating the importance of every element of the
set and then calculating the weighted average (with weights depending on importance).
The importance calculation can be done using a smaller feedforward neural network
that given the context and the element estimates the importance of the element in the
context, or (as in [VSP+17]) by calculating a dot-product of some projection of context
representation with a projection of the element.

The attention mechanism allows for aggregating information of a set, rather than a
sequence (that is, ignore ordering of elements), which fits exactly what we need in graph
processing.

All of the above-mentioned networks allow information to travel only one edge per
network layer. To allow far information propagation a Graph Star Net was proposed
[LHYG19], where a global state (a few "star" nodes) is updated in every layer. This
allows information to propagate globally and to neighbors, but not anything in-between.
Thus, this network still suffers from the constraint of the WL-test. Our model allows
also far-but-not-global propagation, it is however much more computationally costly for
large graphs.

3.7.1 On Graph Attention without node labels

The output of an attention mechanism with a multiset of exactly the same elements
as the input will always be equal to that one element. This is because the output of
attention is essentially a weighted average, and if all elements are the same, the output
will be the same regardless of what (and how many) the weights are.

Because of this, in a simple graph attention network, when all the nodes have the
same embedding (eg. when no node labels are provided), they will remain the same after
however many layers. The network can only differentiate between having any neighbors
and having none.

The GraphStar network [LHYG19] gets around this problem by using attention across
both neighbors and a few global stars. In this way, after one layer the embedding depends
on the degree of a node (effectively nodes are given labels based on their degree).

Our proposed model uses random node identifiers, making a situation where all nodes
have the same embeddings extremely unlikely (effectively impossible).
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a

b

a

b

Figure 3.5: All immediate neighborhoods of a two paths graph (the same regardless of
whether a and b are connected)

3.7.2 Perception limits of GNNs

Xu et al. [XHLJ18] describe the expressive power of message-passing GNNs as equivalent
to the Weisfeiler-Lehman isomorphism test [WL68]. This means that a node embedding
can depend only on the node’s subtree structure of a certain depth (the depth being
equal to the number of layers). The graph classification then depends on the multiset of
subtree structures present in the graph. A network capable of distinguishing between
all multisets of subtree structures (of certain depth) is referred to in [XHLJ18] as a
maximally powerful GNN. Yet even such networks cannot differentiate between graphs
that WL-test deems isomorphic.

The work of [MSRR19] seeks to overcome this problem by using using a permutation-
sensitive aggregator and summing over all permutations. To make this computationally
feasible, they propose k-ary Relational Pooling.

A different approach is proposed in [DSSV19] where they use one-hot encoded coloring
of nodes added in a way that allows for differentiating between nodes.

A mechanism similar to our expanding window was described in [CLB17], where
multiple powers of adjacency matrix were used during aggregation (in their experiments
they were A2 and A4). Later in [CVCB19] they use a learnable mechanism to calculate
consecutive powers of adjacency matrix, that can in particular learn to express the property
very similar to our exponentially expanding window (what the model in [CVCB19] can
express is min(A2n

, 1), a window containing all nodes that can be reached in exactly 2n

steps). In this variant, the “adjacency matrices" don’t necessarily contain only 1s and 0s.
Our work seeks to expand the limit of the WL-test in two places: for one, by utilizing

expanding attention window we effectively increase the depth of subtree structures expo-
nentially. Since we also use direct neighborhood in some attention heads we theoretically
don’t lose any expressive power. Another way our model is more expressive is its ability
to recognize the connection to one and the same node from a connection to two identical
nodes. We achieve this by using random initial embeddings.

We should point out that because of the use of randomness we lose the property of
isomorphic graphs always having the same embedding — instead we have isomorphic
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graphs having the same distribution of embeddings.

3.8 Conclusion
We present a Graph Neural Network with more expressive power than any model we have
seen described. We show its ability to differentiate between graphs that other networks
cannot. What our models seem to excel at is classifying synthetic datasets of graphs
WL-test fails to recognize as non-isomorphic and generalization to previously unseen
graph sizes (and edge densities).

Future work includes translating this improvement to accuracy on chemical datasets.
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Chapter 4

A Study of Continuous Vector
Representations for Theorem Proving

4.1 Abstract
Applying machine learning to mathematical terms and formulas requires a suitable
representation of formulas that is adequate for AI methods. In this paper, we develop an
encoding that allows for logical properties to be preserved and is additionally reversible.
This means that the tree shape of a formula including all symbols can be reconstructed
from the dense vector representation. We do that by training two decoders: one that
extracts the top symbol of the tree and one that extracts embedding vectors of subtrees.
The syntactic and semantic logical properties that we aim to preserve include both
structural formula properties, the applicability of natural deduction steps, and even more
complex operations like unifiability. We propose datasets that can be used to train these
syntactic and semantic properties. We evaluate the viability of the developed encoding
across the proposed datasets as well as for the practical theorem proving the problem of
premise selection in the Mizar corpus.

4.2 Introduction
The last two decades saw an emergence of computer systems applied to logic and reasoning.
Two kinds of such computer systems are interactive proof assistant systems [HUW14]
and automated theorem proving systems [RV01]. Both have for a long time employed
human-developed heuristics and AI methods, and more recently also machine learning
components.

Proof assistants are mostly used to transform correct human proofs written in standard
mathematics to formal computer-understandable proofs. This allows for the verification
of proofs with the highest level of scrutiny, as well as automatic extraction of additional in-
formation from the proofs. Interactive theorem provers (ITPs) were initially not intended
to be used in standard mathematics, however, subsequent algorithmic developments and
modern-day computers allow for a formal approach to major mathematical proofs [Hal08].
Such developments include the proof of Kepler’s conjecture [HAB+17] and the four colour
theorem [Gon08]. ITPs are also used to formally reason about computer systems, e.g.
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have been used to develop a formally verified operating system kernel [KAE+10] and a
verified C compiler [Ler09]. The use of ITPs is still more involved and requires much more
effort than what is required for traditional mathematical proofs. Recently, it has been
shown that machine learning techniques combined with automated reasoning allow for
the development of proofs in ITPs that is more akin to what we are used to in traditional
mathematics [BKPU16].

Automated reasoning has been a field of research since the sixties. Most Automated
Theorem Proving systems (ATPs) work in less powerful logics than ITPs. They are
most powerful in propositional logic (SAT solvers), but also are very strong in classical
first-order logic. This is mostly due to a good understanding of the underlying calculus
and its variants (e.g. the superposition calculus for equality [BGLS92]), powerful low-level
programming techniques, and the integration of bespoke heuristics and strategies, many
of which took years of hand-crafting [SCV19, Vor14].

In the last decade, machine learning techniques became more commonly used in
tools for specifying logical foundations and for reasoning. Today, the most powerful
proof automation in major interactive theorem proving systems filter the available
knowledge [KvLT+12] using machine learning components (Sledgehammer [BGK+16],
CoqHammer [CK18]). Similarly, machine-learned knowledge selection techniques have
been included in ATPs [KSUV15]. More recently, techniques that actually use machine
learning to guide every step of an automated theorem prover have been considered [UVŠ11,
LISK17] with quite spectacular success for some provers and domains: A leanCoP strategy
found completely by reinforcement learning is 40% more powerful than the best human
developed strategy [KUMO18], and a machine-learned E prover strategy can again prove
more than 60% more problems than the best heuristically found one [CJSU19]. All these
new results rely on sophisticated characterizations and encoding of mathematics that are
also suitable for learning methods.

The way humans think and reason about mathematical formulas is very different from
the way computer programs do. Humans familiarize themselves with the concepts being
used, i.e. the context of a statement. This may include auxiliary lemmas, alternative
representations, or definitions. In some cases, observations are easier to make depending
on the representation used [GAA+13]. Experienced mathematicians may have seen
or proven similar theorems, which can be described as intuition. On the other hand,
computer systems derive facts by manipulating syntax according to inference rules. Even
when coupled with machine learning that tries to predict useful statements or useful proof
steps the reasoning engine has very little understanding of a statement as characterized
by an encoding. We believe this to be one of the main reasons why humans are capable of
deriving more involved theorems than modern ATPs, with very few exceptions [KVV13].

In this paper, we develop a computer representation of mathematical objects (i.e.
formulas, theorem statements, proof states), that aims to be more similar to the hu-
man understanding of formulas than the existing representations. Of course, human
understanding cannot be directly measured or compared to a computer program, so
we focus on an approximation of human understanding as discussed in the previous
paragraph. In particular, we mean that we want to perform both symbolic operations and
“intuitive steps” on the representation. By symbolic operations, we mean basic logical
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inference steps, such as modus ponens, and more complex logical operations, such as
unification. When it comes to the more intuitive steps, we would like the representation
to allow direct application of machine learning to proof guidance or even conjecturing.
A number of encodings of mathematical objects as vectors have been implicitly created
as part of deep learning approaches applied to particular problems in theorem prov-
ing [ACE+16, WTWD17, OKU19]. However, none of them have the required properties,
in particular, the recreation of the original statement from the vector is mostly impossible.

It may be important to already note, that it is impossible to perfectly preserve all
the properties of mathematical formulas in finite-length vectors of floating-point values.
Indeed, there are finitely many such vectors and there are infinitely many formulas. It is
nonetheless very interesting to develop encodings that will preserve as many properties
of as many formulas as possible, as this will be useful for many practical automated
reasoning and symbolic computation problems.

Contribution We propose methods for supervised and unsupervised learning of an
encoding of mathematical objects. By encoding (or embedding) we mean a mapping
of formulas to a continuous vector space. We consider two approaches: an explicit one,
where the embedding is trained to preserve a number of properties useful in theorem
proving and an implicit one, where an autoencoder of mathematical expressions is trained.
For this several training datasets pertaining to individual logical properties are proposed.
We also test our embedding on a known automated theorem proving problem, namely the
problem of premise selection. We do so using the Mizar40 dataset [KU15]. The detailed
contributions are as follows:

• We propose various properties that an embedding of first-order logic can preserve:
formula well-formedness, subformula property, natural deduction inferences, alpha-
equivalence, unifiability, etc. and propose datasets for training and testing these
properties.

• We discuss several approaches to obtaining a continuous vector representation of
logical formulas. In the first approach, representations are learned using logical
properties (explicit approach), and the second approach is based on autoencoders
(implicit approach).

• We evaluate the two approaches for the trained properties themselves and for
a practical theorem proving problem, namely premise selection on the Mizar40
dataset.

The paper extends our work presented at GCAI 2020 [PAK20], which discussed the
explicit approach to training an embedding that preserves properties. The new material
in this version comprises an autoencoding of first-order logic (this includes the training of
properties related to decoding formulas), new neural network models considered (WaveNet
model and Transformer model), and a more thorough evaluation. In particular, apart
from the evaluation of the embeddings on our datasets, we also considered a practical
theorem proving problem, namely premise selection on a standard dataset.
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Contents The rest of this paper is structured as follows. In Section 4.3 we introduce
the logical and machine learning preliminaries. In Section 4.4 we discuss related work.
In Section 4.5 we present two methods to develop a reversible embedding: the explicit
approach where properties are trained together with the embedding and the implicit
approach where autoencoding is used instead. In Section 4.6 we develop a logical
properties dataset and present the Mizar40 dataset. Section 4.7 contains an experimental
evaluation of our approach. Finally Section 4.8 concludes and gives an outlook on future
work.

4.3 Preliminaries

4.3.1 Logical Preliminaries

In this paper, we will focus on first-order logic (FOL). We only give a brief overview, for
a more detailed exposition see Huth and Ryan [HR00].

An abstract Backus-Naur Form (BNF) for FOL formulas is presented below. The two
main concepts are terms (4.1) and formulas (4.2). A formula can either be an Atom
(which has terms as arguments), two formulas connected with a logical connective, or
a quantified variable or negation with a formula. Logical connectives are the usual
connectives negation, conjunction, disjunction, implication and equivalence. In addition,
formulas can be universally or existentially quantified.

term := var | const | f(term, . . . , term) (4.1)
formula := Atom(term, . . . , term) (4.2)

| ¬formula | formula ∧ forumla
| formula ∨ formula
| formula→ formula | formula↔ formula
| ∃ var. formula | ∀ var. formula

For simplicity we omitted rules for bracketing. However, the “standard” bracketing
rules apply. Hence, a formula is well-formed if it can be produced by (4.2) together
with the mentioned bracketing rules. The implementation is based on the syntax of
the FOL format used in the “Thousands of Problems for Theorem Provers” (TPTP)
library [Sut17]1. This library is very diverse as it contains data from various domains
including set theory, algebra, natural language processing and biology all expressed in
the same logical language. Furthermore, its problems are used for the annual CASC
competition for automated theorem provers. Our data sets are extracted from and
presented in TPTP’s format for first-order logic formulas and terms. An example for a
TPTP format formula is ![D]: ![F]: (disjoint(D,F) <=> ~intersect(D,F)) which
corresponds to the formula ∀d. ∀f. disjoint(d, f) ⇐⇒ ¬ intersect(d, f). As part of the
data extraction, we developed a parser for TPTP formulas where we took some liberties.

1The full BNF is available at: http://www.tptp.org/TPTP/SyntaxBNF.html
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For example, we allow for occurrences of free variables, something the TPTP format
would not allow.

To represent formulas we use labeled, rooted trees. So every node in our trees has
some label attached to it, and every tree has a special root node. We refer to the label of
the root as the top symbol.

4.3.2 Neural Networks

Neural networks are a widely used machine learning tool for approximating complicated
functions. In this work, we experiment with several neural architectures for processing
sequences.

Convolutional Neural Networks Convolutional neural networks (Figure 4.1 on page 37)
are widely used in computer vision [KSH17] where they usually perform two-dimensional
convolutions. However, in our case, the input of the network are string representations of
formulas, which is a one-dimensional object. Therefore, we only need one-dimensional
convolutions.

In this kind of network, convolutional layers are usually used together with spatial
pooling, which reduces the size of the object by aggregating several neighbouring cells
(pixels or characters) into one. This is illustrated in Figure 4.1 on page 37.

  Convolutional layer

Max pooling

Convolutional layer

Figure 4.1: Convolutional network

Long-Short Term Memory Long-Short Term Memory networks [HS97] are recurrent
neural networks – networks that process a sequence by updating a hidden state with every
input token. In an LSTM [HS97] network, the next hidden state is computed using a
forget gate, which in effect makes it easier for the network to preserve information in the
hidden state. LSTMs are able to learn order dependence, thanks to the ability to retain
information long-term, while at the same time passing short-term information between
cells. A bidirectional network [SP97] processes sequences to directions and combines the
final state with the final output.
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Figure 4.2: Bidirectional LSTM network

WaveNet WaveNet [vdODZ+16] is also a network based on convolutions. However,
it uses an exponentially increasing dilation. That means that the convolution layer
does not gather information from cells in the immediate neighborhood, but from cells
increasingly further away in the sequence. Figure 4.3 on page 38 illustrates how the
dilation increases the deeper in the network we are. This allows information to interact
across large (exponentially large) distances in the sequence (i.e. formula). This kind
of network performed well in audio-processing [vdODZ+16], but also in proof search
experiments [LISK17].

Figure 4.3: WaveNet network

Transformer Transformer networks have been successfully applied to natural language
processing [VSP+17]. These networks consist of two parts, an encoder, and a decoder.
As we are only interested in encoding we use the encoder architecture of a Transformer
network [VSP+17]. This architecture uses the attention mechanism to allow the exchange
of information between every token in the sequence. An attention mechanism first
computes attention weights for each pair of interacting objects, then uses a weighted
average of their embeddings to compute the next layer. In Transformer, the weights are

38



4.4 Related work

computed as dot-product of “key” and “query” representations for every token. This
mechanism is illustrated in Figure 4.4 on page 39.

keys query

weights

values

Figure 4.4: Transformer encoder network

Autoencoders [Kra91] are neural networks trained to express identity function on some
data. Their architecture usually contains some bottleneck, which forces the network to
learn patterns present in the data, to be able to reconstruct everything from smaller
bottleneck information. This also means that all information about the input needs to be
somehow represented within the bottleneck, which is the property we use in this work.

4.4 Related work

The earliest application of machine learning to theorem provers started in the late
eighties. Here we discuss only the deep-learning-based approaches that appeared in
recent years. As neural networks started being used for symbolic reasoning, specific
embeddings have been created for particular tasks. Alemi et al. [ACE+16] have first
shown that a neural embedding combined with CNNs and LSTMs can perform better
than manually defined features for premise selection. In a setup that also included the
WaveNet model, it was shown that formulas that arise in the automated theorem prover
E as part of its given clause algorithm can be classified effectively, leading to proofs found
more efficiently [LISK17].

Today, most neural networks used for mathematical formulas are variants of Graph
Neural Network [HYL17] – a kind of neural network that repeatedly passes messages
between neighboring nodes of a graph. This kind of network is applied to the problem
of premise selection by Wang et al. [WTWD17]. Later work of Paliwal et al. [PLR+20]
experimented with several ways of representing a formula as a graph and also consider
higher-order properties.

A most extreme approach to graph neural networks for formulas was considered in
[OKU19], where a single hypergraph is constructed of the entire dataset containing all
theorems and premises. In this approach, the symbol names are forgotten, instead, all
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references to symbols are connected within the graph. This allows constructing the graph
and formulate message passing in a way that makes the output of network invariant under
reordering and renaming, as well as symmetric under negation. A different improvement
was recently proposed by Rawson and Reger [RR19], where the order of function and
predicate arguments is uniquely determined by asymmetric links in the graph embedding.

The work of [CAC+19] also uses graph neural networks with message passing, but
after applying this kind of operation they aggregate all information using a Tree LSTM
network [TSM15]. This allows for representing variables in formulae with single nodes
connected to all their occurrences, while also utilizing the tree structure of a formula.
A direct comparison with works of this kind is not possible, since in our approach we
explicitly require the possibility of decoding the vector back into formulas, and the other
approaches do not have this capability.

Early approaches trying to apply machine learning to mathematical formulas have
focused on manually defining feature spaces. In certain domains manually designed
feature spaces prevail until today. Recently Nagashima [Nag19] proposed a domain-
specific language for defining features of proof goals (higher-order formulas) in the
interactive theorem prover Isabelle/HOL and defined more than 60 computationally
heavy but useful features manually. The ML4PG framework [KHG12] defines dozens
of easy to extract features for the interactive theorem prover Coq. A comparison of
the different approaches to manually defining features in first-order logic together with
features that rely on important logical properties (such as anti-unification) was done by
the last author [KUV15]. Continuous representations have also been proposed for simpler
domains, e.g. for propositional logic and for polynomials by Allamanis et al. [ACKS17].

We are not aware of any work attempting to auto-encode logical formulas. Some
efforts were however done to reconstruct a formula tree. Gauthier [Gau20] trained a tree
network to construct a new tree, by choosing one symbol at a time, in a manner similar
to sequence-to-sequence models. Here, the network was given the input tree, and the
partially constructed output tree and tasked with predicting the next output symbol
in a way similar to Tree2Tree models [CAR18]. Neural networks have also been used
for translation from informal to formal mathematics, where the output of the neural
network is a logical formula. Supervised and unsupervised translation with Seq2Seq
models and transformer models was considered by Wang et al. [WBKU20, WKU18],
however there the language considered as input was natural language. As such it cannot
be directly compared to our current work that autoencodes formulas. Autoencoder-based
approaches have also been considered for programming language code, in particular, the
closest to the current work was proposed by Dumančić et al. [DGMB19] where Prolog
code is autoencoded and operations on the resulting embedding are compared to other
constraint solving approaches.

In natural language processing, pre-training on unsupervised data has achieved great
results in many tasks [MSC+13, DCLT19]. Multiple groups are working on transferring
this general idea to informal mathematical texts, mostly by extending it to mathematical
formulas in the ArXiv [YM18]. This is, however, done by treating the mathematical
formulas as plain text and without taking into account any specificity of logic.
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4.5 Approach

As previously mentioned, our main objective is an encoding of logical formulas. In
particular, we are interested in networks that take the string representation of a formula
as an input and return a continuous vector representation thereof. This representation
should preserve properties and information that is important for problems in theorem
proving. We considered two approaches, an implicit and an explicit approach. In the
explicit approach, we defined a set number of logical properties (c.f. Section 4.7.2) and
related classification problems and trained an encoding network with the loss of these
classifiers. The implicit approach is based on autoencoders where we train a network
that given a formula encodes it and then decodes it back to the same formula. In theory,
this means that the encoding (i.e. continuous vector representation) preserves enough
information to reconstruct the original formula. In particular, this means that the tree
structure of a formula is learned from its string representation. We will now explain the
two approaches in detail starting with the explicit one.

4.5.1 Explicit Approach

The general setup for this approach is depicted in Figure 4.5 on page 42. The green box
in Figure 4.5 on page 42 represents an encoding network for which we consider different
models which we discuss later in this section. This network produces an encoding enc(ϕ)
of a formula ϕ. This continuous vector representation is then fed into classifiers that
recognise logical properties (c.f. Section 4.6.1). The total loss L is calculated by taking
the sum of the losses LP of each classifier of the properties p ∈ P discussed before. L
is then propagated back into the classifiers and the encoding network. This setup is
end-to-end trainable and ensures, that the resulting embedding preserves the properties
discussed in Section 4.6.1. We train the network on this setup and evaluate the whole
training setup (encoding network and classifiers) on unseen data in Section 4.7. However,
it is important to note that we are only interested in the encoding network. Hence, we
can extract the encoding network (c.f. Figure 4.5 on page 42) and discard the classifiers
after training and evaluation. A drawback of this explicit method is that we are working
under the assumption that the logical properties that we select are sufficient for the tasks
that the encodings are intended for in the end. That is, the encodings may only preserve
properties that are helpful in classifying the trained properties but not further properties
that the network is not trained with. Hence, if the encodings are used for tasks that are
not related to the logical properties that the classifiers are trained with, the encodings
may be of no use.

Classifiers The classifiers’ purpose is to train the encoding network. This is implemented
by jointly training the encoding networks and classifiers. There are two philosophies that
can go into designing these classifiers. The first is to make the classifiers as simple as
possible, i.e. a single fully connected layer. This means that in reality, the classifier can
merely select a subspace of the encoding. This forces the encoding networks to encode
properties in a “high-level” fashion. This is advantageous if one wants to train simpler
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Input formula ϕ

Encoding Network

enc(ϕ)

Modus PonensWell-formedness . . .
Classifiers

∑
p∈P Lp

Loss

Figure 4.5: The property training framework. The bottom area contains the classifiers
that get one or more continuous representations of formulas enc(ϕ) as input.
If the classifier takes two formulas as input (i.e. alpha-equivalence), we gather
enc(ϕ1) and enc(ϕ2) separately and forward the pair (enc(ϕ1), enc(ϕ2)) to the
classifier. The encoding networks are described subsequently (cf. Figure 4.6
on page 43).

machine learning models with the encodings. On the other hand, when using multiple
layers in the classifiers more complex relationships can be recognised by the classifiers
and the encoding networks can encode more complex features without having to keep
them “high-level”. In this scenario, however, if the problems for the classifiers are too
easy it could happen that only the classifier layers are trained and the encoding network
layers remain “untouched” i.e. do not change the char-level encoding significantly. We
chose a middle ground by using two fully connected layers, although we believe that o e
could investigate further solutions to this problem (e.g. adding weights to loss).

Encoding Models We considered 20 different encoding models. However, they can be
grouped into ten CNN based models and ten LSTM based models. We varied different
settings of the models such as embedding dimension, output dimensions as well as adding
an additional fully connected layer. The layouts of the two model types are roughly
depicted in Figure 4.6 on page 43. The exact dimensions and sizes of the models are
discussed in Section 4.7.
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Input ϕ

Embedding Layer

Convolution

Pooling

. . .

Convolution

Pooling

Fully Connected Layer(s)

Projection Layer

Fully Connected Layer(s)

Projection Layer

Bidirectional LSTM layers

Embedding Layer

Input ϕ

enc(ϕ) enc(ϕ)

Figure 4.6: The encoding models we considered with the layers that the input passes
through. The left diagram depicts CNN-based models, while the right one
depicts LSTM-based models. The dashed boxes describe layers that are
optional for these model types.

CNN based models The models based on CNNs are depicted on the left in Figure
4.6 on page 43. The first layer is a variable size embedding layer, the size of which can
be changed. Once the formulas have been embedded, we pass them through a set of
convolution and (max) pooling layers. In our current model, we have 9 convolution
and pooling layers with increasing filter sizes and ReLUs as activation functions. The
output of the final pooling layer comprises the encoding of the input formula. In the
second model, we append an additional set of fully connected layers after the convolution
and pooling layers. However, these do not reduce the dimensionality of the vector
representation. For that, we introduce a third type of models, which we call embedding
models. In embedding models, the last layer is a projection layer which we tested with
output dimensions 32 and 64. Note that between the last pooling layer and the projection
layer one can optionally add fully connected layers like in the previous model. In Section
4.7 we evaluate these models.

LSTM based models The LSTM based models are depicted on the right side in Figure
4.6 on page 43. Much like in previous models, the first layer is an embedding layer. The
output of which gets fed into bidirectional LSTM layers. The output of these layers
serves as the encoding of our input formulas. As with the CNN based models, we also
considered models where an additional set of fully connected or projection layers is added.
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4.5.2 Implicit Approach
As previously mentioned the implicit approach does not work with specific logical
properties. We use autoencoders to encode formulas and subsequently retrieve the original
formula from the encoding. As such the encoding has to contain enough information
about the original formula to reconstruct it from the encoding. Therefore, this method
eliminates one of the major drawbacks of the previous approach where the encodings are
dependent on the selected logical properties. Figure 4.7 on page 44 depicts a high-level
overview of this setup.

We want to train the encoder to generate such continuous vector encodings that can
be decoded. For this, we want the possibility to extract top symbol of a formula, as well
as the encodings of all its subformulas. These two qualities would indeed enforce the
encoding having the complete information about the entire tree-structure of a formula.

To achieve that, we train a top symbol classifier and subtree extractors together
with the encoder. The top symbol classifier is a single layer network that given the
encoding of a tree classifies it by its top symbol. The subtree extractors are single linear
transformations that output an encoding of the i-th subtree. Both encoders and decoders
are trained together end-to-end using unlabelled data. As with the explicit approach, we
are not interested in decoder networks, and only use them to force the encoder to extract
all information from the input. The data (formulas) is provided in a string form but we
require the ability to parse this data into trees.

decoder

ϕ

encoder

top symbol classifier 1st subtree extractor i-th subtree extractor

enc(ϕ)

enc(ϕ1) enc(ϕi)classification

Figure 4.7: Tree autoencoder mechanism

Difference training

Our first approach is to train the top symbol classifier using cross-entropy loss and
subtree extractor on mean square error loss using a dataset of all input trees and all their
subtrees (Figure 4.8 on page 45).

The first loss is forcing the embedding to contain information about the top symbol,
and the second is about the subtrees. In the second loss, we force the result of extracting
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ϕ

encoder

top symbol classifier

enc(ϕ)

cross entropy loss

encoder

enc(ϕi)

mean squared error loss

i-th sub-tree extractor

+

encoder

ϕ

enc(ϕ)

ϕi

Figure 4.8: Difference training mechanism

a subtree to be equal to the embedding of a subtree itself. Because of this, we need an
encoding of the subtree by itself, and for this, we need the input string of a subtree. In
formulae datasets, this is generally easy to achieve.

This method of training can be viewed as training on two datasets simultaneously. One
dataset consists of formulas with their top symbol, and the other consists of formulas with
their i-th subformula and the index i. The first dataset makes sure that the embedding
of a formula contains information about its top symbol, and the second one makes sure
that the embedding contains information about the embedding of all its subformulas.
Together, those requirements force the embedding to contain information about the entire
formula, in a form that is easily extracted with linear transformations.

Theoretically minimizing this loss enforces the ability to reconstruct the tree, however,
given a practical limit on the size of the encoding, reconstruction fails above a certain
tree depth. We do need to restrict the size of the encoding to one that will be useful for
practical theorem proving tasks, like premise selection, etc. With such reasonable limits,
we will later in the paper see that we can recover formulas of depth up to about 5, which
is a very significant part of practical proof libraries.

Recursive training

In this method we only use the cross-entropy loss on top symbol classification. We
compute encodings of subtree recursively (using subtree extractor transformations) and
classify their top symbols as well (and so on recursively). All classification losses from a
batch are summed together into one total loss that is used for back-propagation.

This is similar to tree recursive neural networks [GK96], like Tree LSTM [TSM15]
except pushing information in the other direction (from root to leaves) – we reconstruct
the tree from embedding and get a loss in every node.

In this approach, gradient descent can learn to recognize top symbols of subtrees
even deep down the input tree. It is however much harder to properly parallelize this
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ϕ
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top symbol classifier

enc(ϕ)
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ith sub-tree extractor1st sub-tree extractor

top symbol classifier
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1st sub-tree extractor

top symbol classifier

top symbol classifier

cross entropy loss cross entropy loss+ + +

Figure 4.9: Recursive training mechanism

computation, making it much less efficient.

Encoders

As described above the encoding network is independent of the training setup. That is
for both, difference and recursive training different encoding models can be used. This is
similar to the explicit approach where we also consider different encoding networks. Here,
in addition to the already considered CNN s and LSTM s, we will also consider WaveNet
and Transformer models (introduced in Section 4.3).

All these models receive as input a text string representation of a formula (a char-
acter level learned embedding). As output, they all provide a high-dimensional vector
representation of a formula.

4.6 Datasets

We will consider two datasets for our training and for the experiments. The first one is a
dataset used to train logical properties, that we believe a formula embeddings should
preserve. The dataset is extracted from TPTP. TPTP is a database of problems stated in
first-order logic. It contains first-order problems from graph theory, category theory, and
set theory among other fields. These datasets differ in the problems themselves as well as
vocabulary that is used to state said problems. For instance, in the set theory problem
set one would find predicates such as member, subset, and singleton whereas in the
category theory dataset has predicates such as v1_funct_2, and k12_nattra_1. The
second dataset is the Mizar40 dataset [KU15], a known premise selection dataset. The
neural network training part of the dataset consists of pairs of theorems and premises
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together with their statements, as well as the information if the premise was useful in
the proof or not. Half are positive examples and half are negatives.

4.6.1 Logical properties dataset
We introduce some properties of formulas that we will consider in subsequent sections
and describe how the data was extracted.

Well-formedness: As mentioned above it is important that the encoding networks
preserve the information of a formula being well-formed. The data set was created by
taking TPTP formulas as positive examples and permutations of the formulas as negative
examples. We generate permutations by randomly iteratively swapping two characters
and checking if the formula is well-formed, if it is not, we use it as a negative example.
This ensures that the difference between well-formed formulas and non well-formed
formulas is not too big.

subformula: Intuitively, the subformula relation maps formulas to a set of formulas that
comprise the original formula. Formally, the subformula relation is defined as follows:

sub(ϕ) =



{ϕ} if ϕ is Atom
sub(ψ) ∪ {ϕ} if ϕ is ¬ψ
sub(ψ1) ∪ sub(ψ2) ∪ {ϕ} if ϕ is ψ1 ∧ ψ2

sub(ψ1) ∪ sub(ψ2) ∪ {ϕ} if ϕ is ψ1 ∨ ψ2

sub(ψ1) ∪ sub(ψ2) ∪ {ϕ} if ϕ is ψ1 → ψ2

sub(ψ1) ∪ sub(ψ2) ∪ {ϕ} if ϕ is ψ1 ↔ ψ2

sub(ψ) ∪ {ϕ} if ϕ is ∀x. ψ
sub(ψ) ∪ {ϕ} if ϕ is ∃x. ψ

Notice, how we never recursively step into the terms. As the name suggests we only recurse
over the logical connectives and quantifiers. Hence, g(x) is not a subformula of ¬f(g(x), c)
whereas f(g(x), c) is (since “¬” is a logical connective of formulas). Importantly, the
subformula property preserves the tree structure of a formula. Hence, formulas with
similar sets of subformulas are related by this property. Therefore, we believe that
recognizing this property is important for obtaining a proper embedding of formulas.
In the presented dataset the original formulas ϕ are taken from the TPTP dataset.
Unfortunately, finding negative examples is not as straightforward, since each formula
has infinitely many formulas that are not subformulas. In our dataset, we only provide
the files as described above (positive examples). To create negative examples during
training, we randomly search for formulas that are not a subformula. Since we want to
have balanced training data we search for as many negative examples as positive ones.

Modus Ponens: One of the most natural logical inference rules is called modus ponens.
The modus ponens (MP) allows the discharging of implications as shown in the inference
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rule (4.3). In other words, the consequent (right-hand side of implication) can be proven
to be true if the antecedent (left-hand side of implication) can be proven.

P P → Q

Q
(4.3)

Using this basic inference rule we associate two formulas ϕ and ψ with each other if
ϕ can be derived from ψ in few inference steps with modus ponens and conjunction
elimination without unification and matching. It turns out that despite its simplicity,
modus ponens makes for a sound and complete proof calculus for the (undecidable)
fragment of first-order logic known as Horn Formulas [BGG97].

Example 4.1. We can associate the two formulas ϕ := ∀x. ((P (x)→ Q(x))∧P (x)) and
ψ := ∀x. Q(x) with each other, since ψ can be proven from ϕ using the modus ponens
inference rule (and some others).

Providing data for this property required more creativity. We had two approaches:
Option one involves generating data directly from the TPTP dataset, while the other
option comprised synthesizing data ourselves with random strings. In the data set, we
provide both alternatives are used. First, we search for all formulas in the TPTP set
that contained an implication and added the antecedent using a conjunction. We paired
this formula with the formula containing only the consequent. We tried to introduce
heterogeneity to this data by swapping around conjuncts and even adding other conjuncts
in-between. Secondly, we synthesize data using randomly generated predicate symbols.

Alpha-Equivalence: Two formulas or terms are alpha equivalent if they are equal modulo
variable renaming. For example, the formulas ∀x y. P (x)∧Q(x, y) and ∀z y. P (z)∧Q(z, y)
are alpha equivalent. Alpha equivalence is an important property for two reasons. First,
it implicitly conveys the notion of variables and their binding. Second, one often works
on alpha equivalence classes of formulas, and hence, alpha equivalent formulas need to
be associated with each other.

Term vs Formula: We generally want to be able to distinguish between formulas and
terms. This is a fairly simple property, especially since it can essentially be read off the
BNFs 4.1 and 4.2. However, it is still important to distinguish these two concepts, and a
practical embedding should be able to do so.

Unifiability: Unifiability plays an important role in many areas of automated reasoning
such as resolution or narrowing [BN98]. Unifiability is a property that only concerns
terms. Formally, two terms are unifiable if there exists a substitution σ such that
s · σ ≈ t · σ. Informally, a substitution is a mapping from variables to terms and the
application of a substitution is simply the replacing of variables by the corresponding
terms. Formally one needs to be careful that other variables do not become bound by
substitutions. Example 4.2 showcases these concepts in more detail.
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Example 4.2. Substitution and Unifiability: The terms t = f(g(x), y)) and s = f(z, h(0))
are unifiable, since we can apply the substitution: {z 7→ g(x), y 7→ h(0)} such that
t · σ = f(g(x), h(0)) = f(g(x), h(0)) = s · σ.

Syntactic unification, which is the type of unification described above is quite simple
and can be realized with a small set of inference rules. Note that we only consider
the relatively simple syntactic unification problem. Interestingly, adding additional
information such as associativity or commutativity can make unification an extremely
complex problem [BN98]. Putting unification into a higher-order setting makes it even
undecidable [Hue02]. Both of these problems could be considered in future work.

4.6.2 Mizar40 dataset
Mizar40 dataset [KU15] is extracted from the mathematical library of the Mizar proof
system [BBG+18]. The library covers all major domains of mathematics and includes a
number of proofs from theorem proving. As such, we believe that it is representative of
the capability of the developed encodings to generalize to theorem proving. The dataset
is structured as follows. Each theorem (goal) is linked to two sets of theorems. One
set, the positive examples, are theorems useful in proving the original theorem, and one
set, the negative examples, is a set of theorems that were not used in proving the goal.
Note that for each theorem its positive and negative example set are the same size. The
negative examples are selected by a nearest neighbor heuristic2. Using this data we
generate pairs (consisting of a theorem and a premise) and assign them a class based on
whether the premise was useful in proving the theorem.

4.7 Experiments
Since the explicit approach does not allow for decoding formulas, we separately evaluate
the two approaches. We first discuss the evaluation of the explicit approach. We first
discuss the performance of the different encoding models with respect to the properties,
they were trained with as well as separate evaluation, where we train a simple model with
the resulting encodings. Then in Section 4.7.2 we discuss the evaluation of the implicit
approach based on autoencoders. We discuss the decoding accuracy, performance on
logical properties discussed previously, and the theorem proving task of premise selection.

4.7.1 Experiments and Evaluation of Explicit Approach
We will present an evaluation of the explicit encoding models. First, we consider the
properties the models have been trained with (cf. Section 4.3). Here, we have two
different ways of obtaining evaluation and test data. We also want the encoding networks
to generalize to, and preserve properties that it has not specifically been trained on.
Therefore, we encode a set of formulas and expressions and train an SVM (without kernel
modifications) with different properties on them.

2A more detailed description of the dataset can be found here: https://github.com/JUrban/deepmath
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For the first and more straightforward evaluation, we use the data extracted dataset
from the Graph Theory and Set Theory library described in Section 4.6.1 as training data.
One could split this data before training into a training set and evaluation set so that the
network is evaluated on unseen data. In this approach, however, constants, formulas, etc.
occurring in the evaluation data may have been seen before in different contexts. For
example, considering the Set Theory library, terms and formulas containing union(X,Y),
intersection(X,Y), etc. will occur in training data and evaluation data. Indeed, in
applications such as premise selection, such similarities and connections are actually
desired, which is one of the reasons we use character-level encodings. Nevertheless, we
will focus on more difficult evaluation/test data. We will use data extracted from the
Category Theory library as evaluation data and the Set/Graph Theory data for training.
Hence, training and evaluation sets are significantly different and share almost no terms,
constants, formulas, etc. We train the models on embedding dimensions 32, 64, and 128
(we only consider 64 for projective models). The input length, i.e. the length of the
formulas was fixed to 256 since this includes almost all training examples. The CNN
models had 8 convolution/pooling layer pairs of increasing filter sizes (1 to 128), while
the LSTM models consisted of 3 bidirectional LSTM layers each of dimension 256. In
the “Fully Connected”-models we append two additional dense layers. Similarly, for the
projective models, we append a dense layer with a lower output dimension.

The evaluation results of the models are shown in Table 4.1.
The multi-label subformula classification is not relevant for this evaluation since training

and testing data are significantly different. However, the binary subformula classification
is useful and proves to be a difficult property to learn3. Surprisingly, adding further
fully connected layers seems to have no major effect for this property regardless of the
underlying model. In contrast, the additional dense layers vastly improve the accuracy of
the modus ponens classifier (from 49% to 97% for the simple CNN based model with
embedding dimension 32). It does not make a difference whether these dense layers are
projective or not. Interestingly, every LSTM model even the ones with dense layers fail
when classifying this property. Similar observations although with a smaller difference
can be made with the term-formula distinction. Classifying whether two terms are
unifiable or not seems to be a task where LSTMs perform better. Generally, the results
for unifiability are similarly good across models. When determining whether a formula is
well-formed, CNN based models again outperform LSTMs by a long shot. In addition, a
big difference in performance can be seen between CNN models with additional layers
(projective or not) appended. Unsurprisingly alpha equivalence is a difficult property to
learn especially for CNNs. This is the only property where LSTMs clearly outperform
the CNN models. Thus combining LSTM and CNN layers into a hybrid model might
prove beneficial in future works. In addition, having fully connected layers appears to be
necessary in order to achieve accuracies significantly above 50%.

Generally, varying embedding dimensions does not seem to have a great impact on
the performance of a model, regardless of the considered property. As expected, adding

3The binary subformula classification describes the following problem: Given two formulas, decide if
one is a subformula of the other.
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Table 4.1: Accuracies of classifiers working on different encoding/embedding models. The
models were trained on the Graph/Set theory data set and the evaluation was
done on the unseen Category Theory data set. The LSTM based models are
in grey. (Pr = Projection)
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additional fully connected layers has no negative effect. This leads us to distinguish two
types of properties: Properties where additional dense layers have a big impact on the
results (modus-ponens, well-formedness, alpha-equivalence), and those where the effect
of additional layers is not significant (unifiability, term-formula, bin. subformula). It
does not seem to make a big difference whether the appended dense layers are projective
or not. Even the embedding models that embed the formulas to an 8th of the input
dimension perform very well. Another way of classifying the properties is to group
properties where CNNs perform significantly better (modus-ponens, well-formedness),
and conversely where LSTMs are preferable (alpha equivalence).

Alternative Problems and Properties We also want the encodings of formulas to
retain information about the original formulas and properties that the networks have
not specifically been trained on. We want the networks to learn and preserve unseen
structures and relations. We conduct two lightweight tests for this. First, we train simple
models such as SVMs to recognize certain structural properties such as the existence
of certain quantifiers, connectives, etc. (that we did not specifically train for) in the
encodings of formulas. To this end, we train SVMs to detect logical connectives such
as conjunction, disjunction, implication, etc. These classifications are important since
logical connectives were not specifically used to train the encoding networks but are
important nevertheless. Here, the SVMs correctly predict the presence of conjunctions,
etc. with an accuracy of 85%. We also train an ordinary linear regression model to
predict the number of occurring universal and existential quantifiers in the formulas.
This regression correctly predicts the number of quantifiers with an accuracy of 94%
(after rounding to the closest integer). These results were achieved by using the CNN
based model with fully connected layers. We also evaluated the projective models with
this method. We achieved 70% and 84% for classification and regression respectively
using the CNN model with a fully connected and a projection layer. When using models
that were trained using single layer classifiers as discussed in Section 4.5.1 we get better
results for simple properties such as the presence of a conjunction.

4.7.2 Experiments and Evaluation of Implicit Approach

We also evaluate the encoding models based on the autoencoder setup. In our experiments,
we first learn from unlabelled data. Hence, we take the entire dataset and discard all
labels and simply treat them as formulas. Using this dataset we train encoders and
decoders in 100k optimization steps. First we evaluate how a simple feed-forward network
performs when tasked with classifying formulas based on their embeddings. To this end,
we train a feed-forward network to classify input vectors according to properties given in
the dataset (logical properties or whether the premise is useful in proving the conjecture).
Those input vectors are given by an encoder network whose weights are frozen during
this training. The classifier networks have 6 layers each with size 128 and nonlinear
ReLU activation functions. Since the classification tasks for some properties require two
formulas, the input of those classifiers is the concatenated encoding of the input formulas.
We split the classification datasets into training, validation and test sets randomly, in
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proportions 8-1-1. Every thousand optimization steps we evaluate the validation loss
(the loss on the validation set) and report test accuracy from the lowest validation loss
point during training.

Hyperparameters All autoencoding models were trained for 100k steps, using the Adam
optimizer [KB14] with learning rate 1e− 4, β1 = 0.9, β2 = 0.999, ϵ = 1e− 8. All models
work with 128 dimensional sequence token embeddings, and the dimensionality of the
final formula encoding was also 128. All models (except for LSTM) are comprised of 6
layers. In the convolutional network after every convolutional layer, we apply maximum
pooling of 2 neighboring cells. In the Transformer encoder, we use 8 attention heads.
The autoencoders were trained for 100k optimization steps and the classifiers for 30k
steps. The batch size was 32 for difference training, 16 for recursive training, and 32 for
classifier networks.

Decoding accuracy

Difference tr. Recursive tr.
Formula Symbol Formula Symbol

Mizar40 dataset

Convolutional 0.000 0.226 0.005 0.658
WaveNet 0.000 0.197 0.006 0.657

LSTM 0.000 0.267 0.063 0.738
Transformer 0.000 0.290 0.006 0.691

Logical properties dataset

Convolutional 0.440 0.750 0.886 0.984
WaveNet 0.420 0.729 0.865 0.981

LSTM 0.451 0.759 0.875 0.979
Transformer 0.474 0.781 0.916 0.990

Table 4.2: Decoding accuracy of tested encoders. “Formula” indicates the share of
formulas successfully decoded. “Symbol” is the average amount of correctly
decoded symbols in a formula.

After training the autoencoders (Figure 4.11 on page 55) using the unlabelled datasets
we test their accuracy. That is, we determine how well the decoder can retrieve the
original formulas. This is done recursively. First, the formula is encoded, then its top
symbol is determined by the top symbol classifier and encodings of its subformulae are
determined using subtree extractors. Then top symbols of those subformulae are found
and so on. The results are presented in Table 4.2 on page 53. From the table, it is
clear that the recursive training outperforms the difference training regardless of the
encoding model or dataset. This result is not unexpected as the design of the recursive
training is more considerate of the subformulas (i.e. subtrees). Hence, a wrong subtree
prediction has a larger impact in the loss of the recursive training than in the difference
training. Figure 4.10 on page 54 shows a plot of the decoding accuracy as the depth of
the formula increases. Unsurprisingly, for very shallow formulas both types of networks
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Figure 4.10: Decoding accuracy of formulas over formula depth in the logical properties
dataset.

perform comparably, with the difference training accuracy dropping to almost zero as the
formulas reach depths 5. On the other hand, the recursive models can almost perfectly
recover formulas up to depth 5, which was our goal.

Logical properties

We also test if the encodings preserve logical properties presented in Section 4.6.1. In
theory, this information still has to be present in some shape or form, but we want to
test whether a commonly used feed-forward network can learn to extract them.

The results are shown in Table 4.3 on page 56. Comparing the models we notice a
surprising result. Indeed, for some properties, the difference training performs on-par or
even better than recursive training. This stands in contrast to the decoding accuracy
presented previously where the recursive training outperforms the difference training
across the board. This is likely due to the fact that some of the properties can be decided
based only on the small top part of the tree, which the difference training does learn
successfully (see Figure 4.10 on page 54).

Premise selection

As described before premise selection is an important task in interactive and automated
theorem proving. We test the performance of our encodings for the task of premise
selection on the Mizar40 dataset (described in Section 4.6.2). The experiment (as
described in Section 4.7.2) involves first training the encoder layer to create formula
embeddings, then training a feed-forward network to classify formulas by their usefulness
in constructing a proof. The results are shown in Table 4.4 on page 57. Our general
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Difference training, Logical property dataset Difference training, Mizar dataset

Recursive training, Logical property dataset Recursive training, Mizar dataset

Figure 4.11: Loss during training. The top two graphs present loss during difference
training, and the bottom two graphs during recursive training. Note a
different vertical scale for the four graphs, this is because the losses for the
different training modes and datasets are hard to compare, however, all four
converge well.

decodable embeddings are better than the non-neural machine learning models, albeit
perform slightly worse than the best classifiers currently in literature (81%) [CAC+19]
(Which are non-decodable and single-purpose).

4.8 Conclusion

We have developed and compared logical formula encodings (embedding) inspired by
the way human mathematicians work. The formulas are represented in an approximate
way, namely as dense continuous vectors. The representations additionally allow for
the application of reasoning steps as well as the reconstruction of the original symbolic
expression (i.e. formula) that the vector is supposed to represent. The explicit approach
enforces a number of properties that we would like the embedding to preserve. For
example, basic structural properties (subformula property, etc) can be recovered, natural
deduction reasoning steps can be recognized, or even unifiability between formulas can
be checked (although with less precision) in the embedding. In the second approach,
we propose to autoencode logical formulas. Here, we want the encoding of formulas
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Difference tr. Recursive tr.

Subformula

Convolutional 0.736 0.870
WaveNet 0.787 0.877

LSTM 0.755 0.891
Transformer 0.711 0.923

Modus Ponens

Convolutional 0.920 0.893
WaveNet 0.903 0.866

LSTM 0.941 0.916
Transformer 0.498 0.946

Term vs Formula

Convolutional 1.000 0.979
WaveNet 1.000 0.990

LSTM 1.000 0.995
Transformer 1.000 1.000

Unifiability

Convolutional 0.988 0.975
WaveNet 0.991 0.991

LSTM 0.990 0.990
Transformer 0.989 0.990

Well-formedness

Convolutional 0.969 0.988
WaveNet 1.000 0.992

LSTM 1.000 1.000
Transformer 0.996 0.996

Alpha equivalence

Convolutional 0.998 0.998
WaveNet 0.998 1.000

LSTM 0.483 1.000
Transformer 0.990 1.000

Table 4.3: Logical property classification accuracy on test set.

to preserve enough information so that the encoded symbolic expression (formula) can
be recovered from the embedding alone. As such sufficient information for the same
logical and structural operations must be present. In addition, this also allows the actual
computation of results of the inference steps or unifiers. We considered two different
training setups for the autoencoders. One is called difference training and the other is
recursive training. In order to train and evaluate the approaches, we developed several
logical property datasets transformed from subsets of the TPTP problem set.

Apart from an evaluation on the TPTP dataset, we also evaluated the approaches
on premise selection problems originating from the whole Mizar Mathematical Library.
As expected, both difference and recursive training are less performant on the Mizar 40
dataset than on the logical properties dataset. We know of two reasons for this. First,
the Mizar dataset is much bigger, both when it comes to the number of constants, types,
but also the number of formulas and their average sizes. As such, fitting all the formulas
in vectors of the same size is going to be less precise. Second, the formulas in the Mizar
dataset are more uniformly distributed. As we use models with the same numbers and
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Difference tr. Recursive tr.
Convolutional 0.681 0.696

WaveNet 0.676 0.696
LSTM 0.665 0.703

Transformer 0.670 0.704

Table 4.4: Premise selection accuracy on test set.

sizes of layers, memorizing parts of the Mizar dataset is clearly a more complex task.
Despite these problems, the results are promising for both the formula reconstruction
task and the original theorem proving tasks like premise selection.

The code of our embedding, the dataset, and the experiments are available at:
http://cl-informatik.uibk.ac.at/users/cek/logcom2020/

Future work could include considering further logical models and their variants. We
have so far focused on first-order logic, however, it is possible to do the same for simple
type theory or even more complex variants of type theory. This would allow us to do the
premise selection analysis presented in this work for the libraries of more proof assistants.
Finally, the newly developed capability to decode an embedding of a first-order formula
could also be a useful technique to consider for conjecturing [GKU16] or proof theory
exploration [CJRS13]. Finally, we imagine that then a reversible encoding of logical
formulas could improve the proof guidance of first-order logic theorem provers.
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Chapter 5

Adversarial Learning to Reason in an
Arbitrary Logic

5.1 Abstract
Existing approaches to learning to prove theorems focus on particular logics and datasets.
In this work, we propose Monte-Carlo simulations guided by reinforcement learning
that can work in an arbitrarily specified logic, without any human knowledge or set of
problems. Since the algorithm does not need any training dataset, it is able to learn to
work with any logical foundation, even when there is no body of proofs or even conjectures
available. We practically demonstrate the feasibility of the approach in multiple logical
systems. The approach is stronger than training on randomly generated data but weaker
than the approaches trained on tailored axiom and conjecture sets. It however allows us
to apply machine learning to automated theorem proving for many logics, where no such
attempts have been tried to date, such as intuitionistic logic or linear logic.

5.2 Introduction
In the last decade for many logical systems machine learning approaches have managed
to improve on the best human heuristics. This worked well for example in classical
first-order logic guiding the superposition calculus [JCO+20], tableaux calculus [OKU20],
or even in higher-order logic [FB16]. In all these works strategies based on machine
learning can significantly improve on the best human-designed ones.

To train such machine-learned strategies, datasets of problems and baselines on these
problems are required. In particular successful proofs (and in some cases also unsuccessful
proofs [KUMO18]) are gathered and used to train a machine-learned version of the prover.

In this work, we consider the same problem but without a fixed logic and without a
dataset of problems given. We apply a policy-guidance algorithm (known for example
from AlphaZero [SHS+17]) to proving in an arbitrary logic without a given problem set.
In particular we:

• propose a theorem-construction game that allows for learning theorem proving with
AlphaZero, without relying on training data;
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• propose the first dataset for learning for multiple logics, together with learning
baselines for this dataset.

• propose an adjusted Monte-Carlo Tree Search that is able to take into account
certain (sure) information, when a player makes multiple moves (explained in
“Certain Value Propagation” section);

• evaluate the trained prover on the dataset showing that it improves proof capability
in various considered logics; and

• as many other problems and games can be directly encoded as logical problems we
show that the proposed universal learning for logic also works on some encoded
games, such as Sokoban.

5.3 Related Work

[SHS+17] have shown that Monte-Carlo tree search combined with reinforcement learning
applied to policy and value functions can generalize to multiple logical games (Go, Chess,
Shogi).

The work of [FAA+21] focuses on classical first-order logic without equality and the
resolution calculus (so only one of the many logics we consider) and (like us) does not
use the complete TPTP problems, but only the axiom sets to learn. There is however a
significant overlap between the axioms and conjectures in other problems. The resulting
prover does learn to prove theorems but is significantly weaker than E-prover on the
TPTP problems. The idea to use only the axioms has already been considered by
[BLRS19]. Even if no original conjectures are exposed to the prover, the dataset used for
training is quite large, in comparison with ours, where no formulas are given at all.

As already discussed in the introduction, there are many approaches to applying
MCTS with policy and guidance learning in various fixed calculi and on fixed datasets
[KUMO18, RR19]. The results are better than those we are able to get here, but no new
logics or problems are tried and generalization and transfer have been very limited so far.
The AlphaZero algorithm has also been applied in theorem proving to the synthesis of
formulas [BG19] and functions [Gau20].

Kaiser et al. demonstrated that theorem proving can be used to solve many games,
such as the ones in the General Game Playing competition [KS11]. With the current
work, we show that learning for logic can be also applied to these games.

5.4 Preliminaries

5.4.1 AlphaZero

The core of the AlphaZero algorithm [SHS+17] is learning from self-play. It trains a
neural network to evaluate the states of a game to estimate the final outcome of the
game as well as a policy maximizing the expected outcome. Using the neural network in
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the current stage of learning a lot of playouts are generated, then this data is used as
training data for further improvement.

For training value estimation, the algorithm uses the actual outcomes of the games.
To train policy estimation, a Monte-Carlo Tree Search (MCTS) is used to compute a
better policy, then the network is trained to return this better policy.

5.4.2 Monte-Carlo Tree Search
To train the policy evaluating network, we need to provide it with a somewhat better
policy. This is done by exploring a tree of possible moves. It is a guided exploration,
biased towards the moves pointed to by the policy and to where the value estimations
are higher.

A tree is constructed with every node representing a state of the game. Each of
those states is evaluated using the neural network. When deciding where to add a new
node (thus exploring a branch of the game further) the MCTS algorithm takes into
account both the value and the policy estimations from the neural network (biased toward
following the policy and higher values), as well as how well a branch was already explored
(biased to explore yet unexplored branches more).

After adding a set amount of nodes to the tree, the new better policy is defined to be
proportional to the number of nodes explored below each of the immediate children of
the root node (representing the state for which we are computing a better policy).

5.5 Approach
5.5.1 The theorem-construction game
We propose a two-player game such that a system trained to play the game well could be
used to effectively prove the theorems of a given logic system. The first player (referred
to as adversary) constructs a provable statement, while the other player (referred to
as prover) tries to prove it. The goal of the adversary is to construct such a theorem,
that the prover will fail to prove it. However, because of the available game moves
(construction steps), the statements are always provable.

Adversary constructs a theorem

Prover proves the theorem

fail

succeed

succeed

fail

Adversary winsProver wins

Figure 5.1: High-level overview of the theorem-construction game.

We represent the game objects using Prolog-like terms, where a term can be either
a variable or a pair of an atom and a list of subterms. In the examples, we use the
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convention of marking variables with capital letters, and denoting compound terms as an
atom name followed by a list of subterms in brackets (skipped when the list is empty).
For example tee(A, implies(B, false)), which can also be expressed with operators like
(A ⊢ (B → ⊥)).

The construction game is defined for a given set of inference rules. An inference
rule is a pair of a term and a list of terms, that can share variables. For example
tee(A, and(B,C))← tee(A,B), tee(A,C), equivalent to (A ⊢ (B∧C))← (A ⊢ B), (A ⊢
C).

For the prover, a game state consists of a list of terms that need to be proven (together
with the information that the prover is making the move). During their move, a player
can choose one of the given inference rules (the action space is the set of inference rules),
and apply it to the first term of the list. The left side of the rule is then unified with
that term. If the unification fails, the player making the move loses. If it succeeds, the
term is removed from the list, and the right side of the rule (after unification) is added.

The adversary (the player constructing a theorem) makes moves in much the same way,
except instead of starting with a theorem to be proven, it starts with a single variable.
Applying inference rules to prove this variable will unify it with some term. If the proof
is successfully completed, this variable we started with will be unified with a provable
theorem. We keep track of this variable in the game state. When the adversary finishes
its proof, we pass the constructed theorem to the prover, after replacing all remaining
variables with fresh constants.

The second player tries to prove the theorem, winning when the list is empty. To
better illustrate the working of our theorem-construction game we present the rules of a
concrete game in Figure 5.2 and an example playout in Figure 5.3.

A,B ⊢ A← (5.1)
A ⊢ (B → C)← (B,A ⊢ C) (5.2)
A ⊢ (B ∧ C)← (A ⊢ B), (A ⊢ C) (5.3)

A ⊢ B ← (A ⊢ (B ∧ C)) (5.4)
A ⊢ B ← (A ⊢ (C ∧B)) (5.5)
A ⊢ B ← (A ⊢ ⊥) (5.6)

Figure 5.2: A subset of propositional logic inference rules used in the example in figure
5.3

5.5.2 Certain Value Propagation

The AlphaZero [SHS+17] algorithm utilizes a neural network to estimate state values (a
number in range (−1, 1), we will call it vθ) and policies (a vector with as many dimensions
as the size of the action space). Then a Monte Carlo Tree Search (MCTS) [KS06] is used
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rule terms to be proven constructed theorem
X X

2 A,B ⊢ C B ⊢ A→ C
3 (A,B ⊢ D), (A,B ⊢ E) B ⊢ A→ (D ∧ E)
4 (A,B ⊢ (D ∧ F )), (A,B ⊢ E) B ⊢ A→ (D ∧ E)
1 (D ∧ F ), B ⊢ E B ⊢ (D ∧ F )→ (D ∧ E)
6 (D ∧ F ), B ⊢ ⊥ B ⊢ (D ∧ F )→ (D ∧ E)
5 (D ∧ F ), B ⊢ (G ∧ ⊥) B ⊢ (D ∧ F )→ (D ∧ E)
1 B ⊢ (D ∧ ⊥)→ (D ∧ E)

b ⊢ (d ∧ ⊥)→ (d ∧ e)
2 (d ∧ ⊥), b ⊢ (d ∧ e)
6 (d ∧ ⊥), b ⊢ ⊥
5 (d ∧ ⊥), b ⊢ (A ∧ ⊥)
1 Prover won

Figure 5.3: An example of a playout of the theorem-construction game with the inference
rules shown in figure 5.2

to compute better estimates of value and policy. This is done by exploring the tree of
possible playouts, with a bias toward where value and policy lead to.

During this exploration, MCTS maintains a better value estimation of every state (we
will refer to it as v), which is defined to be the average of vθ of all explored descendants.
We will use an equivalent definition, as the weighted average of immediate children, with
weights being the number of visits of a given node (the difference will become important).

v(n) = vθ(n) + ∑
d<n vθ(d)

|d : d < n|+ 1 =

=
vθ(n) + ∑

c∈children(n) v(c) ∗ (|d : d < c|+ 1)
|d : d < n|+ 1

In our version of MCTS, for every node, we keep track of a lower and upper bound for
possible node values. For non-final nodes, these are simply (−1, 1) (as this is the range
of possible outcomes), but for the final nodes, the bounds are both equal to the final
reward. These bounds are propagated up the tree in a natural way (taking into account
state ownership). Then, for every node we compute a new vc value, which is simply v
adjusted to fall within lower-upper bounds – so eg. if the lower bound is higher than v,
then vc will be equal to the lower bound. Then, when computing v for the nodes above
we use this new vc value rather than the old v.

vc(n) = max(lower(n),min(upper(n), v(n)))

v(n) =
vθ(n) + ∑

c∈children(n) vc(c) ∗ (|d : d < c|+ 1)
|d : d < n|+ 1

.
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v = −0.46
vθ = −0.1

v = −0.6
vθ = −0.6

v = 0.5
vθ = 0.3

v = 0.2
vθ = 0.2

v = 1
(final)

v = −0.76
vθ = 0.1
(−1, 1)
vc = −0.7

v = −0.6
vθ = −0.6

(−1, 1)
vc = −0.6

v = 0.5
vθ = 0.3

(1, 1)
vc = 1

v = 0.2
vθ = 0.2
(−1, 1)
vc = 0.2

v = 1
(final)
(1, 1)
vc = 1

Figure 5.4: Examples of value estimation in MCTS without Certain Value Propagation
(left) and with (right). State ownership (which player is making a move) is
marked with color.

Additionally, whenever the value estimation of a state is determined to be −1 (the
lowest possible outcome), this state will be avoided. This avoidance is applied both to
MCTS exploration and the choice of an action to take during playouts.

The impact of certain value propagation on the final performance of the prover is
shown in Fig. 5.5.

5.5.3 Auxiliary replays

To facilitate the prover learning to prove theorems constructed by the adversary we
add additional auxiliary replays. These come from the games won by the adversary
when the prover fails to prove a constructed theorem. Because of the way the theorem
was constructed we know how to prove it – we just need to apply the same moves that
the adversary used to construct it. Using this fact, we create a replay that shows how
the theorem could be proven. In this replay, the policy is not computed using MCTS,
but rather is just a one-hot vector pointing to the move that the adversary made when
constructing the theorem.

With these auxiliary replays, our algorithm can be considered to train on artificially
constructed theorems, that at first come from simply randomly applying inference rules,
but later on uses neural guidance to find theorems that the prover cannot yet prove.
However, as mentioned earlier, we only do this for theorems that the prover failed to
prove.

The impact of including auxiliary replays on the final performance of the prover is
shown in figure 5.5.

64



5.5 Approach

5.5.4 Balancing training data

Since the theorem proving game (explain in section “The theorem-construction game”) is
asymmetrical, simply using all replay data for training would result in an unbalanced
dataset. On top of this, we use auxiliary replays (explained in section “Auxiliary replays”),
further disturbing the training data.

To deal with this imbalance we apply training data balancing. Replays are split into
parts according to which player won, and the third set of auxiliary replays. All training
batches contain the same number of examples from each part.

However, this means disturbing the way the Mean Square Error loss works for value
estimation. Consider a value estimation of the starting state. Normally, optimal loss
for it would be achieved if the estimate was the average outcome of the game, but with
balancing the optimal loss will be achieved by estimating the value to be 0 (mean between
losing and winning). This problem affects every state that occurs multiple times in the
training dataset.

To counteract this problem, the value loss is weighted in proportion to the size of the
part of the data, from which the point originates. So if a player A won in proportion
4 : 1, the training batches would include games won by this player in proportion 1 : 1,
but 4

5 of the loss (and therefore gradients) would be determined by data from games won
by the player A. For auxiliary replays, this weight is set to 0 and only policy is learned
from them.

The impact of balancing training data and weighing the value loss on the final perfor-
mance of the prover is shown in figure 5.5.
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all modifications no value weights no certain value propagation
unbalanced training no auxiliary replays

Figure 5.5: The impact of our modifications on our algorithm. Solved first-order classical
tableaux test problems over time (episodes) with 5k games per episode.
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5.5.5 Applicability

As mentioned in section “The theorem-construction game”, our algorithm works with
a logic system defined by a set of inference rules. This set of rules can be thought of
as a Prolog program, and since Prolog is Turing-complete our method can (at least
theoretically) be used to learn to reason in any formally defined (and decidable) context.
As an example of wide applicability, we train our system to solve Sokoban puzzles. This
can be done by defining rules of the game as inference rules of a pseudo-“logic system”.

This of course does not mean that the system will always work well. For example,
a saturation prover requires all terms used in the proof to be fully determined from
the start. This negates the advantage of the adversary player, who normally can still
modify the constructed theorem late into its proof. Because of this, the probability of
constructing a theorem that an untrained prover cannot prove becomes really low – so
low that potentially no such theorems will be generated for the initial training set. In
such a situation, nothing can be learned from such data and the system is stuck. This
problem could potentially be overcome by simply generating enough playouts, but in our
experiments with using a saturation prover, the system got stuck after the first step, with
the prover winning all games. This was the case in our experiments using a saturation
proving method, with 104 games generated per episode (possibly more games could help).

5.5.6 Failure states

Another consequence of the game being asymmetrical is the possibility of the training
getting stuck when one player starts winning every time. The mechanism of auxiliary
replays mentioned above counteracts this to some extent, allowing the prover to still
learn even if the adversary is always successfully constructing a hard enough theorem.
If the prover was winning every game, however, we would need to rely on exploration
for the adversary to find something hard to prove. This situation is however virtually
impossible, because of the exploration noise used during playouts. This should lead to
adversary towards theorems where the prover is uncertain and sometimes loses due to
exploration noise, and then to theorems where the prover fails.

There is however another failure state which if reached would be entirely stable. It is
possible because the construction of theorems is inherently easier than proving. Consider
a theorem ∃xhash(x) = y. It is easy to prove such a theorem if one can choose what y is
going to be. If y is already decided, proving such a theorem becomes extremely difficult.
So difficult in fact, that we cannot hope that a neural network would be able to learn to
do this.

If the adversary found such a space of Uninteresting Hard Theorems, it would never
learn to do anything else. After all, it is a winning strategy for this game. The prover,
even using the auxiliary replays would never learn to do anything useful in this situation,
and would gradually forget all the useful knowledge learned previously.

This does not seem to happen in any of our experiments. In some of our considered
logic systems, it is not even clear that such an Uninteresting Hard Theorem space exists.

66



5.6 Evaluation

5.5.7 Neural architecture

For evaluating state value and policy we use a Graph Neural Network similar to the
one described in [Pur20]. It is essentially a Graph Attention Network [VCC+17] using
dot-product attention from the Transformer model [VSP+17] with different attention
masks for different attention heads. One Graph Neural Network is used to create a single
vector representation of the graph, which is then fed to the final layers to estimate policy
and value.

Graph Neural
Network

value

policy

input graph

Game states are represented as syntactic graphs. One graph contains all terms that
need to be proven, together with information about which player the state belongs to,
and (for the adversary player) the state of the constructed theorem. An example of such
a graph is shown in figure 5.6.

A single Graph Neural Network is used to evaluate the states for both players, the
prover and the adversary.

5.6 Evaluation

To test the impact of our method of adversarial training we compare an algorithm trained
using our theorem-construction game with a prover trained using uniformly generated
random data (an approach somewhat similar to [FAA+21]).

The methods are tested on a dataset not seen by either approach. This test dataset is
human-generated (see section “Considered logics” for details on each test dataset) and is
often very far outside the training distribution.

5.6.1 Baseline

We generate baseline training data by applying inference rules randomly. This is essentially
the adversary from our game doing random moves. Because this does not require
evaluating states with a neural network, generating such data is much cheaper, so we
generate more playouts – 106 (we note that not all playouts result in a constructed
theorem).

We use all data generated this way to train a network to estimate policy and value.
The policy is a one-hot vector pointing to what the adversary did to construct a theorem,
and the value is 0.99n with n being the number of moves left to do.
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Figure 5.6: An example graph representing the game state from the game in figure 5.3
after initial 4 moves.

5.6.2 Setup

We implemented the proposed theorem-construction game engine SWI-Prolog [WSTL10]
using PyTorch [PGM+19] for the proposed adversarial neural architecture.

We train our system in episodes, first generating 104 playouts, then training the neural
network using these playouts as training data. This step is repeated multiple times, and
after every one, we evaluate the system using the test dataset.

5.6.3 Experiments

To test how much the prover has learned, we play the game in a similar way to when
training, except skipping the construction phase, and instead using a theorem from the
test set. During such testing we forgo forcing exploration – we do not add exploration
noise in Monte-Carlo Tree Search and use the most probable action instead of choosing
randomly. Also, when a final state is found during MCTS exploration, we just follow a
path to it.

For termination during testing, we use a limit on explored states – nodes added to the
MCTS tree. Because a part of the tree can be reused for the next state (the part below
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logic baseline

best
during
game

training

total
solved
during

training
int. prop. sequent 12 12 13

classical FO sequent 42 39 40
classical FO tableaux 73 79 83

classical FO Hilbert 38 37 38
modal K prop. sequent 2 5 7
modal T prop. sequent 6 12 13

modal S4 prop. sequent 2 6 8
modal S5 prop. sequent 4 24 24

linear prop. sequent 37 34 39
sokoban solving 4 10 12

Table 5.1: Results of training in all tested logics – int. and prop. stand for intuitionistic
and propositional

the node that was chosen) this does not imply any strict turn limit.

5.6.4 Considered logics

Intuitionistic We train our prover on sequent calculus in propositional intuitionistic
logic [HR00]. For test theorems, we use a part of the ILTP library [ROK05].

Classical We run three experiments with classical first-order logic, trying out three
different proof systems. One is sequential calculus, the same as used with intuitionistic
logic, another is the Tableaux connection prover [Häh01], and lastly the rather unwieldy
Hilbert system. For the test set, we use a small subset of the Mizar40 dataset [KU15] of
formulas that do not use equality.

Linear We also train in linear logic [Gir87], only in the propositional setting. For the
evaluation we use the LLTP [OdPPR20] library, most of which is taken from ILLTP
[OdPPR19]. We also use a few hand-written examples.

Modal In another experiment, we train the prover to work with modal propositional
logic [BvBW07], in four variants: K, T, S4, S5. Each of those extends the definition of
the logic by an additional rule.

For evaluation, we use the propositional part of the QMTLP library [RO11]. The set
of test theorems is expanded for each consecutively added rule.
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Figure 5.7: A few examples of Sokoban problems

Sokoban Sokoban is a classic puzzle game, where the goal is to push boxes into their
target positions. The puzzle is PSPACE-complete [Cul97]. We only generate puzzles of
size 6 by 6. For testing, we use a dataset available online1 (only the problems that can
fit into a 6 by 6 grid). A few examples of such problems are shown in figure 5.7.

5.7 Results and Discussion

The results of the evaluation are presented in table 1. We compare the baseline against
the last model trained in the adversarial setup and additionally list the number of unique
problems solved in all training epochs. For all modal logics as well as for classical
first-order Tableaux the proposed adversarial theorem-construction game leads to many
more solved problems. For a number of other logical calculi, the adversarial version
is slower but leads to finding solutions different than those trained in the supervised
setting, therefore leading to a large number of total solutions found. This is the case
for intuitionistic sequent calculus and linear logic. Among the tried calculi, only for the
classical sequent-calculus and Hilbert calculus, there is no advantage - this is likely due
to the fact that the calculus is much closer to the syntax and the learned baseline can
generalize enough. Finally, for the encoded Sokoban games the results are particularly
good, with many games solved only in the adversarial-logical setting. We believe, that
the adversary learns to construct more and more complex Sokoban-encoded proof games,
while the player learns to solve them, in a way similar to curriculum learning.

«««< HEAD

5.7.1 Forwards vs. backwards conjecturing

During our experiments we briefly considered implementing a different method of con-
structing theorems, namely forward constructing: starting from assumptions, working
towards the theorem. This method is used in [FAA+21] to generate synthetic data
(though without any training for the generator).

The problem with forward constructing (and the reason we decided not to use it) can

1https://sourceforge.net/projects/sokoban-solver-statistics/
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be illustrated using the following inference rule (disjunction elimination):

(T ⊢ C)← (T ⊢ A ∨B), (T ⊢ A→ C), (T ⊢ B → C)

«««< HEAD For the adversary to ever successfully apply such a rule, it would first
have to construct three statements specifically fitting the rule. In the initial phase of
random exploration that would be extremely unlikely. Moreover, the policy predictor will
quickly learn that applying this rule always ends in failure, thus making its use even more
unlikely after some training. In backward construction the rule can easily be applied, and
simply results in three new statements that consequently need to be proven. =======
For the adversary to ever successfully apply such a rule, it would first have to construct
three statements specifically fitting the rule. In the initial phase of random exploration
that would be extremely unlikely. Moreover, the policy predictor will quickly learn that
applying this rule always ends in failure, thus making its use even more unlikely after
some training. In backwards construction the rule can easily be applied, and simply
results in three new statements that consequently need to be proven. »»»> master

This problem essentially does not exists in the case of a saturation prover, which uses
a single inference rule that can be applied anywhere.

5.7.2 Comparison with existing methods
Saturation provers are the state-of-the-art for first-order theorem proving are. These are
designed narrow down the search space compared to possibly applying any inference rule
at any point. Moreover, their solutions often involve millions of inference steps, while in
our case the limit of moves is in the order of 102. As such many problems from the test
dataset may not even technically be solvable by our system.

«««< HEAD For these reasons, our system performs a lot worse than these in their
respective domains. It can however be applied to any formally defined domain and
is (as far as the authors know) the only proposed theorem proving system that may
continuously learn and improve without any dataset. ======= For these reasons,
our system performs a lot worse than these in their respective domains. It can however
be applied to any formally defined domain and is (as far as the authors know) the only
proposed theorem-proving system that may continuously learn and improve without any
dataset. »»»> master

5.8 Conclusions
We presented an algorithm for learning to reason in an arbitrary logic. The system, given
only a formal definition of a logic, learns to construct increasingly harder problems in
the logic and learns to prove them. We show that the system does learn to perform
better than a baseline system trained using uniformly generated logical problems. The
performance is of course weaker than that of domain-specific Automated Theorem Provers
and provers trained on tailored datasets. We are, however, able to construct automatically
the first efficient learned automated theorem provers for some logics where none existed
before, including various modal logics.
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Future work includes encoding more intricate theorem proving calculi, in order to
compare them with the more tailored machine-learned systems. Furthermore, for most of
the considered logics, the performance on the test sets has stagnated after a few episodes.
It remains an open question if trying a compute power comparable with AlphaZero
[SHS+17] would produce significantly better results.

Acknowledgements This work has been supported by the ERC starting grant no.
714034 SMART.
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Chapter 6

Learning Higher-Order Logic Programs from
Failures

6.1 Abstract

Learning complex programs through inductive logic programming (ILP) remains a
formidable challenge. Existing higher-order enabled ILP systems show improved accuracy
and learning performance, though remain hampered by the limitations of the underlying
learning mechanism. Experimental results show that our extension of the versatile Learn-
ing From Failures paradigm by higher-order definitions significantly improves learning
performance without the burdensome human guidance required by existing systems. Our
theoretical framework captures a class of higher-order definitions preserving soundness of
existing subsumption-based pruning methods.

6.2 Introduction

Inductive Logic Programming, abbreviated ILP, [Mug91, NCWSC97] is a form of sym-
bolic machine learning which learns a logic program from background knowledge (BK )
predicates and sets of positive and negative example runs of the goal program.

Naively, learning a logic program which takes a positive integer n and returns a
list of list of the form [[1], [1, 2], · · · , [1, · · · , n]] would not come across as a formidable
learning task. A logic program is easily constructed using conventional higher-order (HO)
definitions.

allSeqN(N,L):- iterate(succ, 0, N,A), map(p,A, L).
p(A,B):- iterate(succ, 0, A,B).

The first iterate1 produces the list [1, · · · , N ] and map applies a functionally equivalent
iterate to each member of [1, · · · , N ], thus producing the desired outcome. However,
this seemingly innocuous function requires 25 literals spread over five clauses when written

1See Appendix of arXiv:2112.14603 for HO definitions.
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6 Learning Higher-Order Logic Programs from Failures

Figure 6.1: Inclusion of HO definitions increases the size of the search space, but can
lead to the search space containing a shorter solutions.

as a function-free, first-order (FO) logic program, a formidable task for most if not all
existing FO ILP approaches [CDEM22].

Excessively large BK can, in many cases, lead to performance loss [Cro20, SKB03].
In contrast, adding HO definitions increases the overall size of the search space, but
may result in the presence of significantly simpler solutions (see Figure 6.1). Enabling a
learner, with a strong bias toward short solutions, with the ability to use HO definitions
can result in improved performance. We developed an HO-enabled Popper [CM21a]
(Hopper), a novel ILP system designed to learn optimally short solutions. Experiments
show significantly better performance on hard tasks when compared with Popper and
the best performing HO-enabled ILP system, MetagolHO [CMM20]. See Section 6.5.

Existing HO-enabled ILP systems are based on Meta-inter-pretive Learning (MiL) [MLPT14].
The efficiency and performance of MiL-based systems is strongly dependent on signifi-
cant human guidance in the form of metarules (a restricted form of HO horn clauses).
Choosing these rules is an art in all but the simplest of cases. For example, iterate,
being ternary (w.r.t. FO arguments), poses a challenge for some systems, and in the case
of HEXMILHO [CMM20], this definition cannot be considered as only binary definitions
are allowed (w.r.t. FO arguments).

Limiting human participation when fine-tuning the search space is an essential step
toward strong symbolic machine learning. The novel Learning from Failures (LFF)
paradigm [CM21a], realized through Popper, prunes the search space as part of the
learning process. Not only does this decrease human guidance, but it also removes
limitations on the structure of HO definitions allowing us to further exploit the above-
mentioned benefits.

Integrating HO concepts into MiL-based systems is quite seamless as HO definitions
are essentially a special type of metarule. Thus, HO enabling MiL learners requires
minimal change to the theoretical foundations. In the case of LFF learners, like Popper,
the pruning mechanism influences which HO definitions may be soundly used (See page
813 of [CM21a]).

We avoid these soundness issues by indirectly adding HO definitions. Hopper uses FO
instances of HO definitions each of which is associated with a set of unique predicates
symbols denoting the HO arguments of the definition. These predicates symbols occur in
the head literal of clauses occurring in the candidate program iff their associated FO
instance occurs in the candidate program. Thus, only programs with matching structure
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may be pruned. We further examine this issue in Section 6.4 and provide a construction
encapsulating the accepted class of HO definitions.

Succinctly, we work within the class of HO definitions that are monotone with respect
to subsumption and entailment; p1 ≤θ(|=) p2 ⇒ H(p1) ≤θ(|=) H(p2) where p1 and p2 are
logic programs, and H(·) is an HO definition incorporating parts of p1 and p2. Similar
to classes considered in literature, our class excludes most cases of HO negation (see
Section 6.4.4). However, our framework opens the opportunity to invent HO predicates
during learning (an important open problem), though this remains too inefficient in
practice and is left to future work.

6.3 Related Work

The authors of [CMM20] (Section 2) provide a literature survey concerning the synthesis
of Higher-Order (HO) programs and, in particular, how existing ILP systems deal
with HO constructions. We provide a brief summary of this survey and focus on
introducing the state-of-the-art systems, namely, HO extensions of Metagol [CM16] and
HEXMIL [KEI18]. Also, we introduce Popper [CM21a], the system Hopper is based on.
For interested readers, a detailed survey of the current state of ILP research has recently
been published [CDEM22].

6.3.1 Predicate Invention and HO Synthesis

Effective use of HO predicates is intimately connected to auxiliary Predicate Invention
(PI). The following illustrates how fold/4 can be used together with PI to provide a
succinct program for reversing a list:

reverse(A,B):- empty(C), fold(p, C,A,B).
p(A,B,C):- head(C,B), tail(C,A).

Including p in the background knowledge is unintuitive. It is reasonable to expect the
synthesizer to produce it. Many of the well known, non-MiL based ILP frameworks do not
support predicate invention, Foil [Qui90], Progol [Mug95], Tilde [Blo99], and Aleph [Sri01]
to name a few. While there has been much interest, throughout ILP’s long history,
concerning PI, it remained an open problem discussed in “ILP turns 20” [MRP+12].
Since then, there have been a few successful approaches. Both ILASP [LRB14] and
δILP [EG18] can, in a restricted sense, introduce invented predicates, however, neither
handles infinite domains nor are suited for the task we are investigating, manipulation of
trees and lists.

The best-performing systems with respect to the aforementioned tasks are Metagol [CM16]
and HEXMIL [KEI18]; both are based on Meta-interpretive Learning (MiL) [MLPT14],
where PI is considered at every step of program construction. However, a strong language
bias is needed for an efficient search procedure. This language bias comes in the form of
Metarules [CM14], a restricted form of HO horn clauses.

75



6 Learning Higher-Order Logic Programs from Failures

Definition 6.1 ([CT20]). A metarule is a second-order Horn clause of the form A0 ←
A1, · · · , An, where Ai is a literal P (T1, · · · , Tm), s.t. P is either a predicate symbol or a
HO variable and each Ti is either a constant or a FO variable.

For further discussion see Section 6.3.2. Popper [CM21a], does not directly support PI,
though, it is possible to enforce PI through the language bias (Poppi is an PI-enabled
extension [CM21b]). Popper ’s language bias, while partially fixed, is essentially an
arbitrary ASP program. The authors of [CM21a] illustrate this by providing ASP code
emulating the chain metarule2 (see Appendix A of [CM21a]). We exploit this feature to
extend Popper, allowing it to construct programs containing instances of HO definitions.
Hopper, our extension, has drastically improved performance when compared with Popper.
Hopper also outperforms the state-of-the-art MiL-based ILP systems extended by HO
definitions. For further discussion of Popper see Section 6.3.3, and for Hopper see
Section 6.4.

6.3.2 Metagol and HEXMIL

We briefly summarize existing HO-capable ILP systems introduced by A. Cropper et
al. [CMM20].

Higher-order Metagol

In short, Metagol is a MiL-learner implemented using a Prolog meta-interpreter. As
input, Metagol takes a set of predicate declarations PD of the form body_pred(P/n), sets
of positive E+ and negative E− examples, compiled background knowledge BK c, and
a set of metarules M . The examples provide the arity and name of the goal predicate.
Initially, Metagol attempts to satisfy E+ using BK c. If this fails, then Metagol attempts
to unify the current goal atom with a metarule from m ∈M . At this point Metagol tries
to prove the body of metarule m. If successful, the derivation provides a Prolog program
that can be tested on E−. If the program entails some of E−, Metagol backtracks and
tries to find another program. Invented predicates are introduced while proving the body
of a metarule when BK c is not sufficient for the construction of a program.

The difference between Metagol and MetagolHO is the inclusion of interpreted back-
ground knowledge BK in. For example, map/3 as BK in takes the form:

ibk([map,[],[],_],[]).
ibk([map,[A|As],[B|Bs],F],[[F,A,B],[map,As,Bs,F]]).

Metagol handles BK in as it handles metarules. When used, Metagol attempts to prove
the body of map, i.e. F (A,B). Either F is substituted by a predicate contained in BK c

or replaced by an invented predicate that becomes the goal atom and is proven using
metarules or BK in.

A consequence of this approach is that substituting the goal atom by a predicate defined
as BK in cannot result in a derivation defining a Prolog program. Like with metarules,

2P(A, B):- Q(A, C), R(C, B).
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additional proof steps are necessary. The following program defining halflst(A,B),
which computes the last half of a list3, illustrates why this may be problematic:

halflst(A,B):- reverse(A,C),
caselist(p[ ], p[H|T ], C,B).

p[ ](A):- empty(A).
p[H|T ](A,B,C):- empty(B), empty(C).
p[H|T ](A,B,C):- front(B,D)4,

caselist(p[ ], p[H|T ], D,E),
append(E,A,C).

The HO predicate caselist(p[ ], p[H|T ], A,B) calls p[ ] if A is empty and p[H|T ] otherwise.
Our definition of half lst(A,B) cannot be found using the standard search procedure as
every occurrence of caselist results in a call to the meta-interpreter’s proof procedure.
The underlined call to caselist results in PI for p[H|T ] ad infinitum. Similarly, the initial
goal cannot be substituted unless it’s explicitly specified.

As with half lst(A,B), The following program defining issubtree(A,B), which com-
putes whether B is a subtree of A, requires recursively calling issubtree through any.

issubtree(A,B):- A = B.

issubtree(A,B):- children(A,C), any(cond, C,B).
cond(A,B):- issubtree(A,B).

This can be resolved using metatypes (see Section 6.5), but this is non-standard, results
in a strong language bias, and does not always work. Hopper successfully learns these
predicates without any significant drawbacks.

Negation of invented predicates (HO arguments of BK in definitions), to the best
of our knowledge, is not fully supported by MetagolHO (See Section 4.2 of [CMM20]).
Hopper has similar issues which are discussed in Section 6.4.4.

Higher-order HEXMIL

HEXMIL is an ASP encoding of Meta-interpretive Learning [KEI18]. Given that ASP
can be quite restrictive, HEXMIL exploits the HEX formalism for encoding MiL. HEX
allows the ASP solver to interface with external resources [ERS16]. HEXMIL is restricted
to forward-chained metarules:

Definition 6.2. Forward-chained metarules are of the form: P (A,B) :-Q1(A,C1), Q2(C1, C2), · · · , Qn(Cn−1, B), R1(
D1), · · · , Rm(Dm) where Di ∈ {A,C1, · · · , Cn−1, B}.

Thus, only Dyadic learning task may be handled. Furthermore, many useful metarules
are not of this form, i.e. P (A,B):- Q(A,B), R(A,B). HEXMILHO, incorporates HO

3halflst([1, 2], [2]), halflst([1, 2, 3], [3]), halffst([1, 2, 3], [1, 2]).
4front(A, B) :- reverse(A, C), tail(C, D), reverse(D, B).
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definitions into the forward-chained structure of Definition 6.2. For details concerning the
encoding see Section 4.4 of [CMM20]. The authors of [CMM20] illustrated HEXMILHO’s
poor performance on list manipulation tasks and its limitations make application to tasks
of interest difficult. Thus, we focus on MetagolHO in Section 6.5.

6.3.3 Popper: Learning From Failures (LFF)

The LFF paradigm together with Popper provides a novel approach to inductive logic
programming, based on counterexample guided inductive synthesis (CEGIS) [SL08].
Both LFF and the system implementing it were introduced by A. Cropper and R.
Morel [CM21a]. As input, Popper takes a set of predicate declarations PD, sets of
positive E+ and negative E− examples, and background knowledge BK , the typical
setting for learning from entailment ILP [Rae08].

During the generate phase, candidate programs are chosen from the viable hypothesis
space, i.e. the space of programs that have yet to be ruled out by generated constraints.
The chosen program is then tested (test phase) against E+ and E−. If only some of E+

and/or some of E− is entailed by the candidate hypothesis, Popper builds constraints
(constrain phase) which further restrict the viable hypothesis space searched during
the generate phase. When a candidate program only entails E+, Popper terminates.

Popper searches through a finite hypothesis space, parameterized by features of the
language bias (i.e. number of body predicates, variables, etc.). Importantly, if an optimal
solution is present in this parameterized hypothesis space, Popper will find it (Theorem
1l [CM21a]). Optimal is defined as the solution containing the fewest literals [CM21a].

An essential aspect of this generate, test, constrain loop is the choice of constraints.
Depending on how a candidate program performs in the test phase, Popper introduces
constraints pruning specializations and/or generalizations of the candidate program. Spe-
cialization/generalization is defined via Θ-subsumption [Plo70, Rey70]. Popper may also
introduce elimination Constraints pruning separable5 sets of clauses. Details concerning
the benefits of this approach are presented in [CM21a]. Essentially, Popper refines the
hypothesis space, not the program [Sri01, Mug95, QCJ93].

In addition to constraints introduced during the search, like the majority of ILP
systems, Popper incorporates a form of language bias [NCWSC97], that is predefined
syntactic and/or semantic restrictions of the hypothesis space. Popper minimally requires
predicate declarations, i.e. whether a predicate can be used in the head or body of a clause,
and with what arities the predicate may appear. Popper accepts mode declaration-like
hypothesis constraints [Mug95] which declare, for each argument of a given predicate,
the type, and direction. Additional hypothesis constraints can be formulated as ASP
programs (mentioned in Section 6.3.1).

Popper implements the generate, test, constrain loop using a multi-shot solving frame-
work [GKKS19] and an encoding of both definite logic programs and constraints within
the ASP [Lif19] paradigm. The language bias together with the generated constraints is
encoded as an ASP program. The ASP solver is run on this program and the resulting

5No head literal of a clause in the set occurs as a body literal of a clause in the set.
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model (if one exists) is an encoding of a candidate program.

6.4 Theoretical Framework
We provide a brief overview of logic programming. Our exposition is far from compre-
hensive. We refer the interested reader to a more detailed source [Llo87].

6.4.1 Preliminaries
Let P be a countable set of predicate symbols (denoted by p, q, r, p1, q1, · · · ), Vf be
a countable set of first-order (FO) variables (denoted by A,B,C, · · · ) , and Vh be a
countable set of HO variables (denoted by P,Q,R, · · · ). Let T denote the set of FO terms
constructed from a finite set of function symbols and Vf (denoted by s, t, s1, t1, · · · ).

An atom is of the form p(T1, · · · , Tm, t1, · · · , tn). Let us denote this atom by a, then
sy(a) = p is the symbol of the atom, agh(a) = {T1, · · · , Tm} are its HO-arguments, and
agf (a) = {t1, · · · , tn} are its FO-arguments. When agh(a) = ∅ and sy(a) ∈ P we refer to
a as FO, when agh(a) ⊂ P and sy(a) ∈ P we refer to a as HO-ground, otherwise it is HO.
A literal is either an atom or its negation. A literal is HO if the atom it contains is HO. 6

A clause is a set of literals. A Horn clause contains at most one positive literal while a
definite clause must have exactly one positive literal. The atom of the positive literal
of a definite clause c is referred to as the head of c (denoted by hd(c)), while the set of
atoms of negated literals is referred to as the body (denoted by bd(c)). A function-free
definite (f.f.d) clause only contains variables as FO arguments. We refer to a finite set of
clauses as a theory. A theory is considered FO if all atoms are FO.

Replacing variables P1, · · · , Pn, A1, · · · , Am by predicate symbols p1, · · · , pn and terms
t1, · · · , tm is a substitution (denoted by θ, σ, · · · ) {P1 7→ p1, · · · , Pn 7→ pn, A1 7→ t1, · · · , Am 7→
tm}. A substitution θ unifies two atoms when aθ = bθ.

6.4.2 Interpretable Theories and Groundings
Our hypothesis space consists of a particular type of theory which we refer to as inter-
pretable. From these theories, one can derive so-called, principle programs, FO clausal
theories encoding the relationship between certain literals and clauses and a set of
higher-order definitions. Hopper generates and tests principal programs. This encoding
preserves the soundness of the pruning mechanism presented in [CM21a]. Intuitively,
the soundness follows from each principal program encoding a unique HO program. A
consequence of this approach is that each HO program may be encoded by multiple
principal programs, some of which may not be in a subsumption relation to each other,
i.e. not mutually prunable. This results in a larger, though more expressive hypothesis
space.
Definition 6.3. A clause c is proper7 if agh(hd(c)) are pairwise distinct, agh(hd(c)) ⊂ Vh,
and ∀a ∈ bd(c),

6sy(l), agh(l), and agf (l) apply to literals with similar affect.
7Similar to definitional HO of W. Wadge [Wad91].
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a) if sy(a) ∈ Vh, then sy(a) ∈ agh(hd(c)), and

b) if p ∈ agh(a) and p ∈ Vh, then p ∈ agh(hd(c)).

A finite set of proper clauses d with the same head (denoted hd(d)) is referred to as
a HO definition. A set of distinct HO definitions is a library. Let PP I ⊂ P be a set of
predicate symbols reserved for invented predicates.

Definition 6.4. A f.f.d theory T is interpretable if ∀c ∈ T, agh(hd(c)) = ∅ and ∀l ∈ bd(c),
l is higher-order ground,

a) if agh(l) ̸= ∅, then ∀c′ ∈ T, sy(hd(c′)) ̸= sy(l), and

b) ∀p ∈ agh(l), ∃c′ ∈ T, s.t. sy(hd(c′)) = p ∈ PP I .

Atoms s.t. agh(l) ̸= ∅ are external. The set of external atoms of an interpretable theory
T is denoted by ex(T).

Let SP I(T) = {pi | pi ∈ agh(a) ∧ a ∈ ex(T)}, the set of predicates which need to
be invented. During the generate phase we enforce invention of SP I(T) by pruning
programs which contain external literals, but do not contain clauses for their arguments.
We discuss this in more detail in Section 6.4.3.

Otherwise, interpretable theories do not require significant adaption of Popper ’s
generate, test, constrain loop [CM21a]. The HO arguments of external literals are ignored
by the ASP solver, which searches for so-called principal programs (an FO representation
of interpretable theories).

Example 6.5. Consider reverse, halflst, and issubtree of Section 6.3.1 & 6.3.2.
Each is an interpretable theory. The sets of external literals of these theories are
{fold(p, C,A,B)}, {caselist(p[ ], p[H|T ], C,B), caselist(p[ ], p[H|T ], D,E)},
and {any(cond, C,B)}, respectively.

Definition 6.6. Let L be a library, and T an interpretable theory. T is L-compatible
if ∀l ∈ ex(T),∃!d ∈ L. s.t. hd(d)σ = l for some substitution σ. Let df (L, l) = d and
θ(L, l) = σ.

Example 6.7. The program in Section 6.3.1 is L-compatible with the following library
L =

fold(P,A,B,C):- empty(B), C = A.

fold(P,A,B,C):- head(B,H), P(A,H,D),
tail(B, T ), fold(P,D, T,C).

Let l = fold(p, C,A,B): df (L, l) = fold(P,A,B,C) and θ(L, l) = {P 7→ p,A 7→ C,B 7→
A,C 7→ B}.

An L-compatible theory T can be L-grounded. This requires replacing external literals
of T by FO literals, i.e. removal of all HO arguments and replacing the predicate symbol
of the external literals with fresh predicate symbols, resulting in T∗, and adding clauses
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that associate the FO literals l with the appropriate d ∈ L and argument instantiations.
different occurrences of external literals with the same symbol and same HO arguments
result in FO literals with the same predicate symbol. The principal program contains all
clauses derived from T, i.e. T∗ (See Example 6.8).

Example 6.8. Using the library of Example 6.7 and a modified version of the program
from Section 6.3.1 (p is replaced by foldp_a for clarity purposes), we get the following
L-grounding:

reverse(A,B):- empty(C), folda(C,A,B).
foldp_a(A,B,C):- head(C,B), tail(C,A).

folda(A,B,C):- fold(foldp_a, A,B,C).
fold(P,A,B,C):- empty(B), A = C.

fold(P,A,B,C):- head(B,H), P (H,D),
tail(B, T ), fold(P,D, T,C).

folda(C,A,B) replaces fold(foldp_a, C,A,B). The first two clauses form the principal program.

If an L-compatible theory contains multiple external literals whose symbol is fold,
i.e. fold(foldp_a, C,A,B) and fold(foldp_a, D,E,R), both are renamed to folda.
However, if the higher-order arguments differ, i.e. foldp_a, and foldp_b, then they are re-
named to folda and foldb, and an additional clause foldb(A,B,C):- fold(foldp_b, A,B,C)
would be added to the L-grounding. When a definition takes more than one HO argument
and arguments of instances partially overlap, duplicating clauses may be required during
the construction of the L-grounding. Soundness of the pruning mechanism is preserved
because the FO literals uniquely depend on the arguments fed to HO definitions.

Note, the system requires the user to provide higher-order definitions, similar to
MetagolHO. Additionally, these HO definitions may be of the form ho(P,Q, x, y):- P (Q, x, y),
essentially a higher-order definition template. While allowed by the formalism, we have
not thoroughly investigated such constructions. This amounts to the invention of HO
definitions.

6.4.3 Interpretable Theories and Constraints
The constraints of Section 6.3.3 are based on Θ-subsumption:

Definition 6.9 (Θ-subsumption). An FO theory T1 subsumes an FO theory T2, denoted
by T1 ≤θ T2 iff, ∀c2 ∈ T2∃c1 ∈ T1 s.t. c1 ≤θ c2, where c1 ≤θ c2 iff, ∃θ s.t. c1θ ⊆ c2.

Importantly, the following property holds:

Proposition 6.10. if T1 ≤θ T2, then T1 |= T2

The pruning ability of Popper ’s Generalization and specialization constraints follows
from Proposition 6.10.

Definition 6.11. An FO theory T1 is a generalization (specialization) of an FO theory
T2 iff T1 ≤θ T2 (T2 ≤θ T1).
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Given a library L and a space of L-compatible theories, we can compare L-groundings
using Θ-subsumption and prune generalizations (specializations), based on the Test
phase.

Groundings and Elimination Constraints

During the generate phase, elimination constraints prune separable programs (See
Footnote 5). While L-groundings are non-separable, and thus avoid pruning in the
presence of elimination constraints, it is inefficient to query the ASP solver for L-
groundings. The ASP solver would have to know the library and how to include
definitions. Furthermore, the library must be written in an ASP-friendly form [CM21a].
Instead, we query the ASP solver for the principal program. The definitions from the
library L are treated as BK . Consider Example 6.8, during the generate phase the
ASP solver may return an encoding of the following clauses:

reverse(A,B):- empty(C), fold(C,A,B).
p(A,B,C):- head(C,B), tail(C,A).

During the test phase the rest of the L-grounding is re-introduced. While this eliminates
inefficiencies, the above program is now separable and may be pruned. To efficiently
implement HO synthesis we relaxed the elimination constraint in the presence of a library.
Instead, we introduce so-called call graph constraints defining the relationship between
HO literals and auxiliary clauses. This is similar to the dependency graph introduced
in [CM21b].

6.4.4 Negation, Generalization, and Specialization

Negation (under classical semantics) of HO literals can interfere with Popper constraints.
Consider the ILP task and candidate programs:

E+ : f(b). f(c). E− : f(a).

BK :
{
p(a). p(b).
q(a). q(c).

}
HO : N(P,A):- ¬ P (A).

progs

f(A):- N(p1, A).
p1(A):- p(A), q(A).

progf

f(A):- N(p1, A).
p1(A):- p(A).

The optimal solution is progs, progf is an incorrect hypothesis which Hopper can
generate prior to progs, and progf ≤θ progs. Note, progf |= ¬f(b) ∧ ¬f(a) ∧ f(c), it does
not entail all of E+. We should generalize progf to find a solution, i.e. add literals to p1.
The introduced constraints [CM21a] prune programs extending p1, i.e. progs. Similar
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holds for specializations. Consider the ILP task and candidate programs:

E+ : f(a). f(b). E− : f(c). f(d).

BK :
{
p(d). q(c).

}
HO : N(P,X):- ¬ P (X).

progs

f(A):- N(p1, A).
p1(A):- p(A).
p1(A):- q(A).

progf

f(A):- N(p1, A).
p1(A):- p(A).

The optimal solution is progs, progf is an incorrect hypothesis which Hopper can
generate prior to progs, and progs ≤θ progf . Note, progf |= f(a) ∧ f(b) ∧ f(c), it entails
some of E−. We should specialize p1 to find a solution, i.e. add clauses to progf . The
introduced constraints [CM21a] prune programs that add clauses, i.e. progs.

Handling negation of invented predicates is feasible but non-trivial as it would require
significant changes to the constraint construction procedure. We leave it to future work.

6.5 Experiments

A possible, albeit very weak, program synthesizer is an enumeration procedure that orders
all possible programs constructible from the BK by size, testing each until a solution
is found. In [CM21a], this procedure was referred to as Enumerate. Popper extends
Enumerate by pruning the hypothesis space based on previously tested programs.

The pruning mechanism will never prune the shortest solution. Thus, the important
question when evaluating Popper, and Hopper, is not if Popper will find a solution,
nor is it a high-quality solution, but rather how long it takes Popper to find the so-
lution. An extensive suite of experiments was presented in [CM21a], illustrating that
Popper outperforms Enumerate and existing ILP systems.

One way to improve the performance of LFF -based ILP systems, like Popper, is to
introduce techniques that shorten or simplify the solution. The authors of [CMM20], in
addition to introducing MetagolHO and HEXMILHO, provided a comprehensive suite
of experiments illustrating that the addition of HO predicates can improve accuracy
and, most importantly, reduce learning time. Reduction in learning times results from a
reduction in the complexity/size of the solutions.

The experiments in [CM21a] thoroughly cover scalability issues and learning perfor-
mance on simple list transformation tasks, but do not cover performance on complex
tasks with large solutions. The experiments presented in [CMM20] illustrate performance
gains when a HO library is used to solve many simple tasks and how the addition of HO
predicates allows the synthesis of relatively complex predicates such as dropLast. When
the solution is large Popper ’s performance degrades significantly. When the solution
requires complex interaction between predicates and clauses it becomes exceedingly
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difficult to find a set of metarules for MetagolHOwithout being overly descriptive or
suffering from long learning times.

Our experiments illustrate that the combination of Popper and HO predicates [CMM20]
significantly improves Popper ’s performance at learning complex programs. Similar
to [CM21a], we use predicate declarations, i.e. body_pred(head,2), type declarations, i.e.
type(head,(list,element)), direction declarations, i.e. direction(head,(in,out)),
and the parameters required by Popper ’s search mechanism, max_var, max_body, and
max_clauses.

We reevaluated 7 of the tasks presented in [CM21a] and 2 presented in [CMM20]. Ad-
ditionally, we added 8 list manipulation tasks, 3 tree manipulation tasks, and 2 arithmetic
tasks (separated by type in Table 6.1). Our additional tasks are significantly harder than
the tasks evaluated in previous work.

For each task, we guarantee that the optimal solution is present in the hypothesis space
and record how long Popper and Hopper take to find it. We ran Popper using optimal
settings and minimal BK . In some cases, the tasks cannot be solved by Popper without
Predicate Invention (See Column PI? of Table 6.1), i.e. a explanatory hypothesis which
is both accurate and precise requires auxiliary concepts.

We ran Hopper in two modes, Column Hopper concerns running Hopper with the
same settings and a superset of the BK used by Popper (minus constructions used to force
invention), while Column Hopper (Opt) concerns running Hopper with optimal settings
and minimal BK . For Popper and Hopper, settings such as max_var significantly impact
performance. Both systems search for the shortest program (by literal count) respecting
the current constraints. Note, that hypothesizing a program with an additional clause
w.r.t the previously generated programs requires increasing the literal count by at least
two. Thus, the current search procedure avoids such hypotheses until all shorter programs
have been pruned or tested. The parameters max_var and max_body have a significant
impact on the size of the single clause hypothesis space. Given that the use of HO
definitions always requires auxiliary clauses, using large values, for the above-mentioned
parameter, will hinder their use. This is why Hopper performs significantly better
post-optimization. Using a comparably large BK incurs an insignificant performance
impact compared to using unintuitively large parameter settings (see Proposition 1, page
14 [CM21a]).

The predicates used for a particular task are listed in Column HO-Predicate of Table 6.1.
Popper and Hopper timed out (300 seconds elapsed) when large clauses or many variables
are required. Timing out means the optimal solution was not found in 300 seconds.
Given that we know the solution to each task, Column #Literals provides the size of
the known solution, not the size of the non-optimal solution found by the system in case
of timeout.

Concerning the Optimizations, these runs of Hopper closely emulate how such a system
would be used as it is pragmatic to search assuming smaller clauses and fewer variables
are sufficient and expand the space as needed. Popper ’s and Hopper ’s performance
degrades by just assuming the solution may be complex. For findDup, Hopper found the
FO solution.

Overall, this optimization issue raises a question concerning the search mechanism
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currently used by both Popper and Hopper. While HO solutions are typically shorter
than the corresponding FO solution, this brevity comes at the cost of a complex program
structure. This trade-off is not considered by the current implementations of the LFF
paradigm. Investigating alternative search mechanisms and optimality conditions (other
than literal count) is planned future work.

We attempted to solve each task using MetagolHO. Successful learning using MetagolHO is
highly dependent on the choice of the metarules. To simplify matters, we chose
metarules that mimic the clauses found in the solution. In some cases, this requires
explicitly limiting how certain variables are instantiated by adding declarations, i.e.
metagol:type(Q,2,head_pred), to the body of a metarule (denoted by metatype in
Table 6.1). This amounts to significant human guidance, and thus, both simplifies
learning and what we can say comparatively about the system. Hence we limit ourselves
to indicating success or failure only.

Under these experimental settings, every successful task was solved faster by MetagolHOthan
Hopper with optimal settings. Relaxing restrictions on the metarule set introduces a new
variable into the experiments. Choosing a set of metarules that is general and covers
every task will likely result in the failure of the majority of tasks. Some tasks require
splitting rules such as P (A,B):- Q(A,B), R(A,B) which significantly increase the size of
the hypothesis space. Choosing metarules per task, but without optimizing for success,
leaves the question, which metarules are appropriate/acceptable for the given task? While
this is an interesting question [CT20], the existence problem of a set of general metarules
over which MetagolHO’s performance is comparable to, or even better than, Hopper ’s
only strengthens our argument concerning the chosen experimental setting as one will
have to deduce/design this set.

6.6 Implementation
We implement our method by building on top of code provided by [CM21a]. The changes
we applied include:

Processing HO predicates We allow user to declare some background knowledge
predicates to be HO. Based on these declarations we generate ASP constraints discussed
in subsection 6.4.2 and Prolog code that allows execution of programs generated with
those constraints.

Generating context-passing versions of HO predicates Sometimes the HO argument
predicates (referred to as SP I(T) in subsection 6.4.2) require context that exists in the
predicate that calls them, however is inaccessible to them in our framework. To make it
accessible we support automating generation of more contextual versions of HO predicates.
These predicates have higher arity and take more FO arguments. These arguments are
only used in HO calls, and are simply passed as arguments to HO predicate calls. In
[CMM20] this process is referred to as „currying“ (though it is somewhat different to
what currying is usually considered to be).
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Example 6.12. From a HO map predicate

map(P, [ ], [ ]).
map(P, [H1|T1], [H2|T2]):- P (H1, H2), map(P, T1, T2).

we automatically generate a more contextual version

map(P, [ ], [ ], V ).
map(P, [H1|T1], [H2|T2], V ):- P (H1, H2, V ),

map(P, T1, T2, V ).

which allows for construction of a program that adds a number to every element of a list
using map

f(A,B,C):- map(p1, B,C,A).
p1(A,B,C):- add(A,C,B).

Forcing all generated code to be used Since ASP can now generate many different
predicates, some of them might not even be called in the main predicate. To avoid such
useless code we make ASP keep track of a call graph – which predicates call which other
predicates, and add a constraint that forces every defined predicate to be called (possibly
indirectly) by the main predicate. This not only removes many variations of effectively
the same program but also significantly prunes the hypothesis space, pruning programs
ignored by other constraints (explained in sec. 6.4.3).

Changes to separability and recursion We add a few small changes to solve the problems
that appear when generating multiple predicates. We make sure that clauses that call HO
predicates (and thus different predicates from the program) are not considered separable.
We also change how recursion is handled – otherwise, recursion would allow all invented
arguments to be called everywhere in the program, needlessly increasing search space.

6.7 Conclusion and Future Work
We extended the LFF-based ILP system Popper to effectively use user-provided HO
definitions during learning. Our experiments show Hopper (when optimized) is capable
of outperforming Popper on most tasks, especially the harder tasks we introduced in this
work (Section 6.5). Hopper requires minimal guidance compared to the top-performing
MiL-based ILP system MetagolHO. Our experiments test the theoretical possibility of
MetagolHO finding a solution under significant guidance. However, given the sensitivity
to metarule choice and the fact that many tasks have ternary and even 4-ary predicates,
it is hard to properly compare these approaches.

We provide a theoretical framework encapsulating the accepted HO definitions, a
fragment of the definitions monotone over subsumption and entailment, and discuss
the limitations of this framework. A detailed account is provided in Section 6.4. The
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main limitation of this framework concerns HO-negation which we leave to future work.
Our framework also allows for the invention of HO predicates during learning through
constructions of the form ho(P,Q, x, y):- P (Q, x, y). We can verify that Hopper can, in
principle, find the solution, but we have not successfully invented an HO predicate during
learning. We plan for further investigation of this problem.

As briefly mentioned, Hopper was tested twice during experimentation due to the
significant impact system parameters have on its performance. This can be seen as
an artifact of the current implementation of LFF which is bias towards programs with
fewer, but longer, clauses rather than programs with many short clauses. An alternative
implementation of LFF taking this bias into account, together with other bias, is left to
future investigation.
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Table 6.1: We ran Popper, Hopper, optimized Hopper , and MetagolHO on a single core
with a timeout of 300 second. Times denote the average of 5 runs. Evaluation
time for Popper and Hopper was set to a thousandth of a second, sufficient
time for all task involved.
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Chapter 7

Conclusion

7.1 Summary
This thesis explored multiple approaches toward building an Artificial Intelligence system
capable of abstract reasoning.

I have worked on Deep Neural Network architecture capable of working well with
graphs, which allows representing well (almost) any abstract object. My proposed
architecture solves the problem of differentiating between graphs that the Weisfeiler-
Lehman isomorphism test [WL68] fails to distinguish, as well as allows taking into account
far-away interactions. I have however not observed improvement in real-world graph
classification benchmarks.

I have experimented with using Autoencoding to learn representations of mathematical
formulae. I have tested two ways of computing loss for this setup and found the recursive
way to generate much better results.

I have proposed a way to learn mathematical reasoning from scratch, being given
only a set of mathematical axioms. This approach is based on the AlphaZero [SHS+18]
algorithm, which can learn to play an arbitrary two-player board game (like Chess or Go).
We define a two-player theorem construction game, where one player (the adversary)
constructs a provable theorem and the other (the prover) attempts to prove it. We
have shown this approach to be better than learning from uniformly randomly generated
theorems, but achieved worse results than initially hoped for.

I have also worked on Inductive Logic Programming (a machine learning method
that explicitly uses abstract reasoning). Together with co-authors, we have improved a
recently introduced Popper [CM21a] system by allowing it to use higher-order predicates.

I worked on improving an older ILP system, δILP [EG18], that works by gradient
descent – a method used in Deep Learning. This potentially allows it to be used in
tandem with Deep Learning methods. My improvement consisted of allowing the system
to use way more invented predicates, therefore performing gradient descent in much
higher-dimensional space.

7.2 Future work
Since I have implemented my AlphaZero-based experiments (see chapter 5), many
replications and investigations [Wu19, GAT+20] of the original work have been published,
providing hints about how to achieve good results even without the computational
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7 Conclusion

resources required originally. These include things like randomly varying the number of
playouts in MCTS search and changing the way the playouts are distributed. Applying
these to my work is a promising new direction of research.

There are also several decisions I would have made differently with my current knowl-
edge: for example, the players would construct proofs of rules rather than terms. This
would also allow for easy reuse of already proven theorems in new proofs, another new
potential feature.

There is also the problem of minimum required unification: a fact, that any constructed
theorem would only be unified as little as necessary, leaking valuable hints about the
proof. Giving the adversary a way around this problem is something to investigate.

Another way of using this work would be to augment algorithms learning from a
dataset of human generated theorems (for example [KUMO18]). Such systems can get
stuck on „gaps” in curriculum. The adversarial generation of additional curriculum could
be useful in overcoming this problem.

My work on higher-order ILP (chapter 6) can also be taken further in multiple ways.
One such way is to allow Popper to not only use but also synthesize higher-order predicates
– something we have not done thus far. Since the synthesis of higher-order predicates
is only useful when the synthesized predicate is used multiple times in a program, this
would probably require solving multiple problems simultaneously. That would ensure
that the shortest solution (to all problems at once) would be making use of synthetic HO
predicates. I would unfortunately also make finding the solution harder.

A different approach to synthesizing higher-order predicates is compressing a set of
programs by introducing a new predicate – a higher-order one. It being HO would make
it more likely that some common part can be found, but would make the search less
straightforward.

Likewise, there are many ways to continue my work on differentiable ILP. The first,
most obvious is to try again training a hybrid DNN-ILP system end-to-end. Such a
system was described in the original work [EG18], but its parts were trained separately
– presumably because training them together did not work. As our approach produces
better results in most cases, it might make such a system plausible. Hopefully, this system
would benefit from both DNN’s ability to learn complex patterns and ILP’s ability to
generalize well to unseen data.

There is also a possibility of using auxiliary losses when learning programs. Such loss
could achieve things like minimizing the size of the program or avoiding fuzzy solutions.

The gradient computation itself might also be optimized, using some kind of stochastic
estimation similar to the one used in the REINFORCE algorithm [Wil92].

Finally, the general principle of dividing a program into small parts (each one possibly
referencing other parts) and learning it by gradient descent can be used outside of Logic
Programming – for example synthesizing a functional or imperative program.

The functional approach is of particular interest since neural network architectures can
be easily expressed as functional code. The functional program we learn could therefore
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7.2 Future work

be the architecture of the neural network we would be training at the same time. Thus,
we would be training and designing the structure of a neural network at the same time.
Even more interestingly, one could create a dynamically routed neural network, able to
reuse its parts during inference. Additionally, if we allowed for recursion, this system
could allow for truly Turing-complete neural networks, capable of performing an arbitrary
amount of computation before generating an answer.
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