
Learning-Assisted Reasoning within
Proof Assistants via Symbolic, Statistical,

and Neural Guidance

cumulative dissertation

by

Liao Zhang

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

advisors: Prof. Dr. Cezary Kaliszyk

Innsbruck, 10 February 2025

cumulative dissertation

Learning-Assisted Reasoning within Proof
Assistants via Symbolic, Statistical, and

Neural Guidance

Liao Zhang (1415002)

10 February 2025

advisors: Prof. Dr. Cezary Kaliszyk

Abstract
Proof assistants, developed within the field of Interactive Theorem Proving (ITP), provide
mathematicians with tools to construct proofs that can be rigorously verified by computers.
This capability is particularly valuable given the extreme complexity of contemporary
mathematics. However, the manual development of proofs in ITP systems is significantly
more time-intensive compared to traditional handwritten proofs.

One promising approach to mitigating these difficulties involves the application of
machine learning techniques to automate proof construction in ITP systems. Despite
recent breakthroughs in machine learning across various fields, the domain of mathematical
reasoning still presents formidable challenges.

This dissertation aims to leverage a range of machine learning methods to enhance
proof automation within ITP environments.

To address this goal, my research centers on devising innovative feature representations
and implementing diverse learning models specifically designed to enhance the prediction
accuracy of proof steps within ITP. Furthermore, I investigate a new task, referred to
as proof transformation learning, which is highly relevant to proof automation. Instead
of predicting the next proof step solely relying on the proof state before its application,
proof transformation learning utilizes both the proof states before and after the proof step
to make predictions. I also explore the first application of inductive logic programming in
deriving rules that predict when specific proof steps are appropriate within the context
of ITP.

v

Acknowledgements

First, I want to express my gratitude to my supervisors. Cezary Kaliszyk supervised my
PhD study at the University of Innsbruck, while Josef Urban co-supervised my research
and employed me for one year and three months at the Czech Technical University. I
learned effective time management from Cezary, and Josef’s deep research insights guided
me to discover my true research interests.

I have aspired to work with both of my supervisors since my master’s study. At Kyoto
University, my master’s supervisor, Atsushi Igarashi, advised me to explore conference
papers to uncover my genuine research interests. Through extensive reading, I realized
that my passion for research did not lie in formalizing mathematics but in building proof
automation systems. The first paper that attracted me was about Coq Hammer, which
was developed by Cezary. I was fortunate to become Cezary’s PhD student and was
partly supported by his funding for the development of Coq Hammer. To demonstrate
my passion, I explained CoqHammer to researchers at Kyoto University and gave a
presentation on machine learning for theorem proving in the group seminar. I also studied
Cezary’s lecture slides on Artificial Intelligence for Theorem Proving, the only course I
found related to machine learning for this field at the time.

I faced significant challenges during my master’s research, but fortunately, I obtained
support from Lasse Blaauwbroek, a PhD student of Josef Urban. I chose to develop a
novel proof automation approach for Coq as my master’s thesis. However, Coq’s source
code is intensively complicated. I made little progress for three months. Some researchers
from the Coq development team advised me to contact Lasse, who had implemented a
hook for data extraction in Coq. Thankfully, Lasse allowed me to use his code, which
enabled me to successfully complete my master’s thesis.

After completing my master’s degree, I determined to pursue a PhD in Europe, as
very few researchers worked on machine learning for theorem proving in Japan. Staying
in Japan would limit my opportunities for mentorship. Moreover, Prague and Innsbruck
are global centers for research in this area.

After expressing my thanks to my supervisors, I extend my thanks to my collaborators.
Lasse Blaauwbroek guided me through Coq’s source code and the usage of Coq Tactician.
David M. Cerna aided my understanding of inductive logic programming. I learned
advanced knowledge of term rewriting from Fabian Mitterwallner. Bartosz Piotrowski
instructed me in the usage of various decision tree algorithms. Jan Jakubuv helped
me understand Grackle. Xiyu Zhai introduced me to the theoretical machine learning
community.

I would also like to thank those with whom I engaged in insightful discussions during
my PhD, which broadened my research perspective and shaped my academic taste. These
individuals include Thibault Gauthier, Miroslav Olšák, Chad E Brown, Adam Pease, Jan

vii

Hůla, Jelle Piepenbrock, Martin Suda, Zarathustra Goertzel, Kasper Hagens, Stanisław
Purgał, Filip Bártek, René Thiemann, and Aart Middeldorp.

Finally, I am deeply grateful to my parents and friends for their unwavering support
over the past four years.

viii

Contents

1 Introduction 1
1.1 Interactive Theorem Proving . 2
1.2 Automated Theorem Proving . 4
1.3 Learning Models for Proof Automation . 5
1.4 Learning Tasks for Theorem Proving . 9

1.4.1 Tactic-based ITP Guidance . 9
1.4.2 Premise Selection . 12
1.4.3 Autoformalization . 13

1.5 Characterization of Mathematical Representation 13
1.5.1 Feature Characterization . 13
1.5.2 Neural Network Embeddings . 15

1.6 Inductive Logic Programming . 15
1.7 Term Rewriting . 19

1.7.1 Termination Analysis . 20
1.7.2 Confluence Analysis . 21
1.7.3 Certification . 21

1.8 Content . 22

2 Contributions 23
2.1 Online Machine Learning Techniques for Coq: a Comparison 23
2.2 Learning Proof Transformations and its Applications in Interactive Theo-

rem Proving . 24
2.3 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction 24
2.4 Automated Strategy Invention for Confluence of Term Rewrite Systems

(contribution beyond the PhD) . 25
2.5 Transformers are Efficient Compilers, Provably (contribution beyond the

PhD) . 26

3 Online Machine Learning Techniques for Coq: a Comparison 27
3.1 Abstract . 27
3.2 Introduction . 27

3.2.1 Contributions . 28
3.3 Tactic and Proof State Representation . 29
3.4 Prediction Models . 30

3.4.1 Locality Sensitive Hashing Forests for Online kNN 30
3.4.2 Online Random Forest . 31
3.4.3 Boosted Trees . 35

ix

Contents

3.5 Experimental Evaluation . 37
3.5.1 Split Evaluation . 37
3.5.2 Chronological Evaluation . 38
3.5.3 Evaluation in Tactician . 38
3.5.4 Feature Evaluation . 39

3.6 Related Work . 40
3.7 Conclusion . 40

4 Learning Proof Transformations and its Applications in Interactive Theorem
Proving 43
4.1 abstract . 43
4.2 Introduction . 43

4.2.1 Motivation . 45
4.2.2 Contributions . 45

4.3 Proof State Characterizations . 46
4.3.1 Feature Difference . 46
4.3.2 Anti-unification . 46
4.3.3 Tree Difference . 49
4.3.4 Input Formats . 51

4.4 Learning Models . 51
4.5 Experiments . 52
4.6 Applications . 54

4.6.1 Tactic Suggestion . 54
4.6.2 Shortening Proofs . 55

4.7 Related Work . 57
4.8 Conclusion . 58

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction 59
5.1 abstract . 59
5.2 Introduction . 59
5.3 Background . 61

5.3.1 Theorem Proving in Coq . 61
5.3.2 k-NN adaptations to theorem proving 62

5.4 Background Knowledge . 63
5.4.1 Representation Predicates . 63
5.4.2 Feature Predicates . 63
5.4.3 Anonymous Predicates . 64

5.5 Method . 64
5.5.1 Orthogonalization . 65
5.5.2 Example Selection . 65
5.5.3 Training and Prediction . 65
5.5.4 Rule Optimization . 66

5.6 Experiments . 67
5.6.1 Parameter Optimization . 68

x

Contents

5.6.2 Testing . 70
5.7 Case Studies and Limitations . 70
5.8 Related Work . 71
5.9 Conclusion and Future Work . 72

6 Conclusion 73
6.1 Summary . 73
6.2 Future Work . 73

6.2.1 Stronger Online Learning . 73
6.2.2 Neuro-Symbolic Learning for Proof Automation 74
6.2.3 Large Language Models for Proof Automation 75
6.2.4 Learning for Rewriting . 75

xi

Chapter 1

Introduction

This dissertation investigates the application of various machine learning techniques to
facilitate the construction of computer-verifiable proofs.

Interactive Theorem Proving (ITP) refers to the creation of computer-verifiable proofs
with guidance from mathematicians. Interactive theorem provers, also known as proof
assistants, play a crucial role in constructing ITP proofs, particularly as modern mathemat-
ics becomes increasingly complex, making manual verification an exceedingly challenging
task.

A notable example is the ABC conjecture, for which mathematician Shinichi Mochizuki
proposed a proof in 2012 [Moc12a, Moc12b, Moc12c, Moc12d]. Due to its significant
complexity, the proof remains unverified by the broader mathematical community. If this
proof had been constructed using ITP, computers could have automatically verified it,
reducing the necessity for extended scrutiny by human experts.

Despite these advantages, constructing ITP proofs is substantially more labor-intensive
than traditional, manual methods. This challenge has led researchers to investigate how
machine learning can streamline the proof construction process and reduce the overall
effort required.

Despite extensive research efforts focused on enhancing proof automation, it remains a
persistent challenge for contemporary machine learning methodologies due to two key
factors:

1. The intrinsic complexity of mathematics, one of the most rigorously studied disci-
plines over millennia, poses significant obstacles to computational techniques.

2. Current machine learning models exhibit limitations in reasoning tasks [MIB+24],
while mathematical theorem proving necessitates sophisticated reasoning abilities.

This dissertation seeks to advance the field of proof automation, driven by the dual
motivations of the mathematical community and the growing interest within the machine
learning domain. Mathematicians are in need of more robust proof automation tools to
expedite the process of formal proof construction, whereas machine learning researchers
are increasingly drawn to the challenges presented by proof automation, which may
catalyze the development of more advanced machine learning algorithms.

I selected the Coq proof assistant [The19] as the platform to explore advancements
in proof automation. To this end, I have crafted novel features to better capture
mathematical representations and examined suitable learning models for improving

1

1 Introduction

proof automation [ZBP+21]. Additionally, I have introduced a new task closely aligned
with proof automation and explored its potential applications [ZBKU23]. While most
current AI research leverages statistical learning models and neural networks for proof
automation, seldom applying symbolic approaches, I complete the first work of applying
inductive logic programming [CD22] to derive rules that explain when specific proof steps
should be executed [ZCK24]. Furthermore, I contribute to the domain known as term
rewriting [BN98], which is tightly connected to ITP. Specifically, my work focuses on
confluence analysis, an essential question in term rewriting. Here, I have automatically
invented novel strategies for the state-of-the-art confluence prover CSI [ZFM11]. To
support the application of modern machine learning methods, I also construct an extensive
dataset for confluence analysis, as the existing dataset, COPS [cop], is too limited in size.
When CSI is equipped with these newly developed strategies, it achieves higher success
rates in (dis)proving confluence in both the COPS dataset and the expanded dataset,
surpassing results obtained with CSI’s default strategy.

1.1 Interactive Theorem Proving

Numerous proof assistants exist for constructing computer-verifiable proofs, including
Lean [dMKA+15], Coq [The19], Isabelle/HOL [NWP02], Mizar [BBG+15], HOL4 [SN08a],
and HOL Light [Har09].

ITP has seen extensive application in the formalization of mathematical proofs and
the development of dependable software systems. Notably, Gonthier employed Coq to
formalize the proof of the four-color theorem [G+08], while a combination of HOL Light
and Isabelle was utilized in the formal verification of the Kepler conjecture [HAB+17].
Additionally, Isabelle/HOL was instrumental in the design of a verified kernel for an
operating system [KEH+09], and Leroy used Coq to achieve formal verification of a
realistic compiler [Ler09].

The correctness of proofs generated by ITP tools is ensured by the logical foundations
they are built upon. Different proof assistants employ distinct logical frameworks:
Isabelle/HOL, HOL4, and HOL Light are based on higher-order logic, while Coq and
Lean rely on the calculus of inductive constructions (CIC) [PM15]. Mizar, on the other
hand, is founded on set theory. Each logical foundation presents unique strengths
and limitations, leading to uncertainty about the most suitable foundation for ITP
applications [HUW14].

The proof languages used in ITP systems can be classified as either declarative or pro-
cedural. Declarative languages, such as Isar [Wen99] and Mizar [UB07], characterized by
their use of English-like syntax, aim to enhance human readability by making proofs more
intuitive. Conversely, procedural languages require the user to construct proofs through
programmatic commands known as tactics. A tactic may represent a combination of
basic logical operations, a specific decision procedure, or the synthesis of more elementary
tactics. Declarative languages are easier for mathematicians to understand because they
use English-like syntax. However, they tend to be more verbose and give you less control
over the proof process than procedural languages. Both styles are prevalent in current

2

1.1 Interactive Theorem Proving

proof assistants: Mizar and Isabelle/HOL favor the declarative style, while Coq and Lean
adhere to the procedural approach.

Introduction to Coq This dissertation centers on Coq as the platform for advancing
proof automation, motivated by two primary considerations. First, the machine learning
research community focused on Coq is quite active. Second, Coq remains widely used,
particularly in software verification, meaning that improvements in proof automation for
Coq have the potential to benefit a significant number of users.

Coq’s logical foundation, CIC, is a variant of type theory [Pie02]. In type theory,
terms are often formulated using lambda calculus, and each term is accompanied with a
type [Pie02]. Simply typed lambda calculus represents the most fundamental form of
type theory [Pie02]. Depending on how typing rules are extended, various other type
theories emerge, including dependent type theory [SU06], gradual type theory [NLA19],
and homotopy type theory [Pro13].

In functional programming languages, lambda calculus models computation, akin to
code execution, while typing rules enforce the procedure of type checking before the
execution. Type theory is intrinsically linked to logic satisfiability through the Curry-
Howard correspondence [SU06]. This establishes that, within a given type system and
logical foundation, the type T of a term is inhabited if and only if the proposition T is
logically valid.

In the context of Coq, the Curry-Howard correspondence indicates that a proof is
represented as a proof object, which constitutes a term within the logical framework.
Consequently, the verification of a proof’s correctness is equivalent to assessing the type
correctness of its associated proof object.

Figure 1.1 illustrates a concrete Coq proof demonstrating the associative property of
addition. Natural numbers are defined as an inductive definition, where the constructor
O represents the number 0. The second constructor, S, takes a natural number n as its
argument, and S n denotes n + 1. Coq’s underlying logical system, CIC, extends the
traditional type theory by incorporating inductive definitions, enabling the specification
of natural numbers in this manner. The fixed-point function plus defines the addition
operation of two numbers n and m. When n = 0, plus directly returns m. For n > 0,
where n can be expressed as n′ + 1, the function plus computes plus n’ m recursively
and increments the result by one. The operator + is introduced as a shorthand notation
for plus.

The initial proof state corresponds directly to the theorem’s statement. A proof state
consists of a goal, displayed below the line, and a set of hypotheses, listed above the line.
As explained early in this section, Coq employs tactics to construct proofs. First, we
apply mathematical induction on the natural number n using the induction n tactic,
which generates two subgoals. Applying the induction n tactic actually constructs a new
proof object with two holes to fill. According to the Curry-Howard correspondence, filling
a hole with a proof term is equal to proving a subgoal using tactics. The first subgoal
involves proving the equation for the base case where n = 0. To resolve it, we first apply
the tactic intros to instantiate the universal variables m and p. Afterwards, we prove

3

1 Introduction

induction n

reflexivity

intros

rewrite IHn

reflexivity

simpl

intros

simpl

Figure 1.1: An example of a Coq proof of the associative property of addition.

the subgoal by applying the simpl tactic for simplification followed by the reflexivity
tactic to prove the satisfiability of the equation. For the second subgoal, we also first
perform instantiation and simplification. Next, we rewrite the goal using the induction
hypothesis, denoted IHn, and subsequently conclude the proof with reflexivity. Once
all subgoals are addressed, the proof is complete.

1.2 Automated Theorem Proving
Automated Theorem Proving (ATP) is a field closely associated with ITP. While ITP
combines human guidance with automated techniques to construct proofs, ATP seeks to
autonomously find proofs for given goals without human involvement.

ATP faces several significant challenges. First, the satisfiability of first- or higher-order

4

1.3 Learning Models for Proof Automation

logical formulas is undecidable [Fit12]. Second, logically valid statements may lack a
formal proof [Göd92]. Although it is theoretically feasible to implement a program that
systematically explores all possible proofs by incrementally increasing their size, the
computational time required for such an exhaustive search is prohibitive. In practice,
state-of-the-art ATP systems address these limitations by leveraging heuristic algorithms
to efficiently navigate the search space for proofs.

Tableaux provers and saturation provers stand for two representative categories of ATP
provers, distinguished by their underlying proof systems to search for proofs. Prominent
examples of saturation provers include E Prover [Sch13] and Vampire [RV99], while
notable tableaux provers include Lash [BK22], linTAP [MO99], and Satallax [Bro12].

The hammer approach leverages ATP to automate the proof generation within ITP
systems [BKPU16a]. Hammers first performs premise selection, which selects a set of
premises that seem relevant to prove the given theorem. Premise selection reduces the
size of the premise search space for ATP. Next, hammers convert the current proof state
in ITP into a format that ATP systems can interpret. The conversion is necessary as
most ITPs are based on higher-order logic or more expressive foundations. However,
most ATPs aim to solve problems in first-order logic. Subsequently, ATPs are employed
to search for a solution. If a valid proof is identified by the ATP, the hammer mechanism
reconstructs it into a form acceptable within the ITP environment. Researchers have
developed hammers for a variety of ITP systems, including Sledgehammer [BBP13] for
Isabelle/HOL and CoqHammer [CK18a].

1.3 Learning Models for Proof Automation

Various machine learning techniques have been investigated for proof automation tasks.

k-Nearest Neighbors The k-nearest neighbors (k-NN) algorithm serves as a fundamental
technique in statistical learning [Pet09]. Assume a database {(xi, yi)}, where xi is an
example, and yi is xi’s label. To query the label of a given example x, k-NN first employs
a distance function to find x’s k-closest examples ⟨(x′

i, y′
i)⟩ from the database where

j = 1, . . . , k. Next, the label for x is determined by the most frequent label that occurs
in y′

i.
In the context of proof automation, it is common to only calculate the k-closest

examples, thereby yielding a simplified variant of the k-NN algorithm without computing
the most frequent label in the closest examples. The process for tactic prediction using
k-NN typically involves the following steps:

1. The distance di is computed between the current proof state ps and each proof
state psi stored within the database {(psi, taci)}. This distance di is derived by
first transforming the proof states into feature representations, followed by the
application of a distance metric to assess the similarity. Commonly utilized distance
functions include Jaccard distance [Jac01] and Euclidean distance.

5

1 Introduction

medium

safety

maintenance cost number of seatsunacceptable

low high

unacceptable

buying price

unacceptable acceptable acceptable

very high

medium

acceptable

acceptableunacceptable

<2

>=2low

very high high medium

Figure 1.2: An example of a learned decision tree for determining whether buying a car
is acceptable.

2. The proof states, along with their corresponding tactics in the database {(psi, taci)},
are then ranked based on the computed distances di.

3. The tactics taci associated with the nearest proof states are subsequently returned.

Decision Trees Decision tree algorithms generate predictive rules and represent these
rules as hierarchical tree structures. Figure 1.2 illustrates a decision tree that has been
derived from data to determine the acceptability of purchasing a car. In this context, a
leaf node signifies a classification label, while the path leading to a leaf node embodies the
conjunction of features that yield that label. For example, the leftmost path in Figure 1.2
indicates that a car is deemed unacceptable if it possesses medium safety ratings and a
very high maintenance cost.

The original decision tree algorithm is susceptible to overfitting and typically exhibits
inferior performance compared to two of its derivative algorithms: random forests and
gradient boosted trees (GBT). A comparative analysis of these three algorithms is
depicted in Figure 1.3. The original algorithm is trained on the entire training dataset
and constructs a single tree for prediction purposes. In contrast, the random forest
algorithm generates multiple trees, each trained on distinct subsets of the training data.
The collective prediction of the forest is determined through a voting mechanism, wherein
the class selected by the majority of trees is adopted. Each tree within the random forest
captures a subset of the dataset, reducing the likelihood of overfitting to the training
data. The ensemble of multiple trees generates a more generalized model that effectively
represents the overall dataset.

In the GBT algorithm, each layer comprises a decision tree. During training, a newly
added tree is specifically designed to mitigate the errors incurred by the preceding layers,
subsequently augmenting the existing ensemble of trees. Let us denote an imperfect model
Fm that comprises m trees from the earlier layers, where x represents the input examples

6

1.3 Learning Models for Proof Automation

example

prediction

example

vote

prediction

example

decision tree random forest gradient boosted tree

trained
one
by

one

prediction1

prediction2

final prediction

Figure 1.3: Comparison of different decision tree algorithms.

and y denotes the corresponding labels in the dataset. To enhance the model’s accuracy,
GBT seeks to sequentially learn a new tree h(m) such that Fm+1(x) = Fm(x) + hm(x),
aiming to minimize the error represented by y − Fm(x). The output of the final layer is
returned as the prediction; hence, all previously trained trees are sequentially utilized
in the prediction. GBT is less prone to overfitting compared to a single decision tree.
By iteratively minimizing the errors of previous trees, each new tree focuses on fitting
a subset of the data. Subsequently, all trees contribute jointly to the final predictions,
thereby minimizing the risk of dependence on any single tree that may only be fitted to
examples with a similar underlying pattern.

Among the three decision tree algorithms, GBT demonstrates superior practical per-
formance [BCMM21]. However, training a GBT model is slow due to the inherently
sequential nature of the tree-building process. To handle the problem, several effi-
cient GBT libraries are implemented, such as XGBoost [CG16], CatBoost [HK20], and
LightGBM [KMF+17].

Neural Networks Neural networks have become the leading methodology in machine
learning, following the success of AlexNet [KSH12], which achieved top performance on
the ImageNet dataset [DDS+09] in 2012. An example of a neural network architecture
is shown in Figure 1.4. A neural network consists of artificial neurons, which are
mathematical constructs inspired by biological neurons. Each neuron receives inputs
from preceding neurons via connections. These inputs, represented as real numbers, are
processed by a nonlinear function at each neuron to produce an output. The influence of

7

1 Introduction

Input Layer
Hidden Layer

Output Layer

Figure 1.4: An example of an artificial neural network. Each neuron is represented as a
node. The arrows between neurons denote the directed connections.

each connection is modulated by weights, which are optimized during the training phase.
Artificial neurons are grouped into layers, and a neural network model typically contains
multiple such layers. Input data is progressively transformed as it passes through each
layer, resulting in a final output at the model’s conclusion. The layers between the input
layer and the output layer are called hidden layers.

The universal approximation theorem for neural networks has been rigorously estab-
lished [HSW89]. This theorem demonstrates that for any function f and any specified
tolerance level ϵ > 0, there exists a neural network capable of approximating f within an
ϵ-level of accuracy. While the theorem indeed affirms the theoretical expressiveness of
neural networks, realizing such an approximation may necessitate an impractically large
number of neurons.

A significant advantage of neural networks is their capacity to automatically learn
implicit features from data. In contrast, traditional statistical learning methods, such
as k-NN and decision trees, rely on manually engineered features. This reliance on
handcrafted features often leads to challenges in adequately addressing diverse practical
scenarios [KSH12]. Furthermore, features that are meticulously designed tend to be
closely associated with specific domains, which hampers their generalizability across
broader training datasets.

Neural networks necessitate substantial amounts of data and computational resources
to effectively learn implicit patterns for prediction tasks. Their success is also attributable
to advancements in computational hardware, particularly GPUs, which enhance the
efficiency and practicality of the learning process.

Large Language Models Large language models (LLMs), such as ChatGPT [AAA+23],
Qwen [BBC+23], and Gemini [TAB+23], have achieved remarkable progress in recent
years. These models exhibit fluency in conversational interactions and provide recommen-
dations in various domains, including software implementation, proofreading, language
translation, and responses to general inquiries.

Language models are fundamentally probabilistic models of natural language [Jur00].

8

1.4 Learning Tasks for Theorem Proving

A primary training task involves predicting the probability distribution of the subse-
quent word based on a preceding sequence. Language models are extensively employed
in research areas such as speech recognition, machine translation, and information
retrieval [JM24].

LLMs are typically pre-trained on extensive general corpora and subsequently fine-
tuned for specific applications. This pre-training process is inspired by the human
capacity for transfer learning, wherein knowledge from analogous tasks can facilitate
the rapid acquisition of new skills. To support this, major companies have amassed
large datasets from diverse sources, including the Internet, books, code repositories, and
academic publications. For instance, GPT-2 is pre-trained on 40 GB of text [RWC+19],
whereas the larger GPT-3 model utilizes 45 TB of text [BMR+20].

LLMs are characterized by a vast number of parameters and are pre-trained on large
datasets. For example, the GPT-4 model contains approximately 1.8 trillion parameters,
whereas ResNet-50 v1.5 [HZRS16], a widely used neural network for image classification,
has only 25.6 million parameters. Although the extensive parameterization contributes
to superior performance across various domains, it also results in slower inference times,
which poses challenges for proof search in formal mathematics.

LLMs are often built upon the transformer architecture [VSP+17]. Transformers
incorporate a self-attention mechanism that facilitates global computation across all
input tokens. The efficacy of transformer-based models is contingent upon the size of the
training dataset and the computational resources utilized, a relationship described by
the scaling law [KMH+20]. According to this principle, the training of a robust LLM
requires a considerable volume of data; however, the availability of high-quality datasets
for formal mathematics is significantly lower than that for natural language.

1.4 Learning Tasks for Theorem Proving
There are several research directions in machine learning for theorem proving. The primary
directions are tactic-based ITP guidance, premise selection, and autoformalization.

1.4.1 Tactic-based ITP Guidance
Tactic-based ITP guidance aims to automatically construct a proof via the applications of
tactics. Current tactic-based ITP guidance approaches generally comprise the following
components. First, an AI model predicts a sequence of tactics tailored to the initial
proof state, which is the root of the proof tree. Subsequently, these predicted tactics are
applied to the current proof state, closing it or generating a new proof tree. In each new
proof tree, the tactic application derives new open proof states as the children of the
original proof state. The AI model again generates tactic predictions for the open proof
state in the unfinished proof tree, and the corresponding tactics are applied. This proof
search continues until constructing a proof tree such that all its proof states are closed.

Empirical analyses indicate that tactic-based ITP guidance demonstrates superior
performance compared to traditional hammers [GKU+21a, YD19]. One potential expla-
nation for this advantage is its capacity of utilizing a diverse array of beneficial tactics.

9

1 Introduction

Some tactics encode useful combinations of logical operations that are challenging for
ATP solvers to identify. For example, mathematical induction is notably difficult to
implement in ATP [BM14], yet can be easily invoked through induction tactics. Addition-
ally, tactic-based ITP guidance can leverage user-defined, domain-specific tactics, such
as those within the Coq Iris project, which encompasses a range of tactics specifically
designed for addressing problems in separation logic [JKJ+18]. As hammers are also
defined as tactics, this approach can also determine when to appropriately execute them.
The observed improvement over hammers may also be attributed to the direct and
efficient tactic-level proof search. Hammers need to convert ITP proof states to ATP
proof states and to reconstruct ITP proofs from ATP proofs. In contrast, tactic-based
ITP guidance directly executes tactics within the ITP environment, thereby eliminating
the time required for proof state transformation and reconstruction.

There are two categories of tactic-based ITP guidance systems. The first category aims
at developing a user-friendly guidance interface, often employing quick but practically
strong learning algorithms. The representative systems are TacticToe [GKU+21a] for
HOL4 and Tactician [BUG20b] for Coq. The second category seeks to examine the
abilities of state-of-the-art learning techniques in theorem proving. Such systems employ
heavy computation, caring less about convenient usages for mathematicians. Some
representations are GPT-f [H+21] and Lean Dojo [Y+23].

Challenges in the Development The development of an effective tactic-based ITP
guidance presents several challenges.

• The tactic space is extensive, mainly caused by the following two reasons. First,
tactics in ITP can accommodate various categories of arguments, resulting in a po-
tentially infinite array of combinations. For instance, tactics in Coq accept different
types of arguments, including names of local hypotheses, previous definitions, and
established theorems. Second, some ITP systems permit users to create custom
tactics using their respective proof languages. In Coq, user-defined tactics are
formulated through its versatile tactic languages, Ltac [Del00] and Ltac2 [Ped19].
Users of Coq can devise heuristics to amalgamate multiple tactics into a more robust
automated tactic, exemplified by the tactic crush [Chl13]. Furthermore, Coq users
can establish domain-specific tactics aimed at addressing particular problem types.
A notable example of this is the Coq’s standard library. It encompasses various
tactics developed by Coq experts that are particularly effective for proving theorems
grounded in different domains, including real number arithmetic, integer arithmetic,
and list operations.

• Multiple tactics may be suitable for the same proof state. In Figure 1.1, the
tactic induction n can be replaced with induction n as [|H1], with only minor
adjustments to the subsequent tactics. In this context, induction n as [|H1]
not only facilitates mathematical induction but also designates the names of the
newly generated hypotheses. Within ITP libraries, numerous instances arise where
optimal tactics conflict for specific categories of proof states. The determination of

10

1.4 Learning Tasks for Theorem Proving

the most appropriate tactic necessitates an AI’s comprehension of the underlying
intent behind the application of the tactic.

• There exists a significantly imbalanced distribution of tactics within ITP libraries.
Certain tactics, such as the automation tactic auto in Coq, are prevalent in the
dataset and conduct basic automation in proof construction. Conversely, domain-
specific tactics, while infrequently encountered, hold considerable significance for
their respective areas. It is exemplified by the ring tactic, which is only essential
to theorems related to group theory. The infrequent occurrence of some tactics may
also be attributed to their requirement for specific arguments, such as the names
of lemmas. For instance, the tactic apply Lemma1 applies Lemma1 to the current
proof state. A particular lemma may be critical for establishing a certain group of
theorems but may hold no utility for others.

• The implementation of ITP systems presents considerable complexities, which
hinder the development of anticipated modifications. Several factors contribute to
these challenges. First, the theoretical underpinnings of ITP systems are inherently
complex, often based on advanced logical frameworks such as higher-order logic and
dependent type theory [Chl13]. Second, the lack of systematic documentation within
ITP systems further complicates the understanding of the source code. This absence
of documentation may be due to the fact that ITP systems are typically developed
by small research groups in the academic community, in contrast to industrial-grade
software, which is generally produced through the collaborative efforts of larger
teams with strict guidelines for creating comprehensible documentation.
The implementation of Coq especially presents several complexities for the following
reasons. First, Coq is founded upon a robust and intricate logical framework known
as CIC, whose implementation is inherently more complicated than higher-order
logic employed by systems such as HOL4 and Isabelle/HOL. Second, Coq has
been under continuous development for over 30 years since its initial release in
1989 [Ber08]. Throughout this period, the Coq development team has introduced
a significant array of features and modified the codebase with contributions from
various individuals, resulting in challenges related to deciphering the original
intentions behind certain code segments. Third, the source code of Coq is highly
optimized, necessitating advanced skills in functional programming to comprehend
the implementation techniques employed. For instance, the data structure of the
fundamental terms in Coq is constructed using the methodologies detailed in the
paper [Swi08].

Datasets of ITP Systems There exist several ITP datasets for the different ITP systems
that can be used for training machine learning models.

The most commonly used datasets are standard libraries of ITP systems. A standard
library comprises the frequently reused definitions and theorems for proving new theorems
using the underlying ITP system. Two typical examples are Coq’s standard library, used
for the evaluation of Tactician and CoqHammer, and HOL4’s standard library for testing

11

1 Introduction

TacticToe. Although the standard libraries contain dedicatedly designed proofs, their
sizes are usually limited for machine learning. Meanwhile, its scope is quite limited as it
often merely contains the most reusable proofs.

Some proof assistants’ development teams maintain large datasets for their proof
assistants. Isabelle perhaps has the largest formal library among all ITP systems, which
is called the Archive of Formal Proofs (AFP, https://www.isa-afp.org/). It has been
developed for more than 20 years and includes a collection of proofs in scientific papers,
proof libraries, and examples. Now, it is approximately composed of 4,565,700 lines
of code and 279,600 lemmas, contributed by 513 distinct authors. Similar to Isabelle,
Lean’s development team also organizes the construction of a large dataset called mathlib.
It consists of a significant number of libraries for a variety of mathematical domains.
Although Coq is one of the most popular proof assistants, Coq does not officially provide
any large dataset. Some Coq researchers collect Coq libraries and publish their own
datasets exemplified by CoqGym [YD19] and Graph2Tac’s dataset [Bla23]. However,
such datasets tend to be less maintained and can only be executed on specific Coq
versions.

1.4.2 Premise Selection

The task of premise selection is formally defined as

Definition 1.1 (Premise selection problem). Given a substantial collection of premises P ,
an ATP system A operating within specified resource constraints, and a new conjecture
C, the objective is to identify the subset of premises from P that are most likely to be
utilized by A in automatically constructing a proof for C.

Premise selection is particularly helpful in enhancing ATP solvers’ performance since
they have an intensive number of premises to choose from in the proof search. As
explained in Section 1.2, premise selection is also a standard procedure in hammers and
can significantly enhance their efficiency [BKPU16b, CK18b, GK15a].

Premise selection represents one of the most extensively investigated tasks in the realm
of proof automation. Initial research applies k-NN to discover the lemmas that are
similar to the current theorem according to the distances between feature characteriza-
tions [KU13]. Several kinds of decision tree methods have also been tried for this task.
Färber [FK15a] first tries to apply random forests to selecting relevant premises for Mizar.
Later, the random forest premise selection approach is extended to Lean [PMA23]. Most
recent works determine to build gradient boosted tree models due to the outstanding
efficiency of their modern implementations. Both XGBoost [PU18, JU17, J+20] and
LightGBM [GJK+22, GCJ+21] have been investigated for this task. The first application
of neural networks to premise selection is conducted by DeepMath [ISA+16]. Despite it
requiring significantly more data than simpler methods, the performance merely achieves
limited improvements. After DeepMath, different categories of neural networks have also
been explored, such as graph neural networks [OKU20], recurrent neural networks [PU20],
and transformers [MAT+23].

12

1.5 Characterization of Mathematical Representation

=

+

n m

+

m n

Figure 1.5: The AST of the logical formula n + m = m + n.

1.4.3 Autoformalization
Autoformalization focuses on the conversion between formal proofs and natural language.
This area has garnered increasing interest due to the scarcity of high-quality formal
proofs. State-of-the-art machine learning techniques necessitate a substantial volume
of data; however, the quantity of available formal proofs is considerably limited in
comparison to the breadth of modern mathematical knowledge. Additionally, the manual
development of formal proofs for contemporary mathematics poses significant challenges
and is labor-intensive. Despite its potential, autoformalization is particularly difficult
due to the necessity for a profound comprehension of both rigorous formal language and
the inherent ambiguities of natural language.

Several research works have been conducted for autoformalization. Kaliszyk [KUV17a]
first investigates autoformalization by building parsing trees that parse natural language
theorems to formal theorems. Wang [WKU18, WBKU20a] first applies neural networks
to autoformalization on synthetic data. Recently, LLMs have also been applied to this
task [WJL+22].

1.5 Characterization of Mathematical Representation
Machine learning algorithms rely on precise characterization to obtain reasonable perfor-
mance. Statistical learning requires feature characterization, while neural networks use
various embeddings.

1.5.1 Feature Characterization
Syntactic Features capture essential information from the syntactic structures of math-
ematical representations. A common method for feature extraction involves traversing the
abstract syntax tree (AST) of the proof state. For example, the AST of the logical formula
n + m = m + n is depicted in Figure 1.5. A typical feature characterization that includes
tree walks up to length two would yield features such as {n, m, =, = −+, + − n, + − m}.
Here, n, m, and = represent length-1 walks in the AST, while = −+, + − n, + − m
represent length-2 walks.

Numerous sophisticated syntactic features have been developed, such as those employed
in the learning-guided ATP prover Enigma [JU17]. Enigma uses anonymous features that
abstract the nodes in the AST by replacing them with their abstract identifiers [J+20],
allowing for better generalization. This is critical due to the vast number of unique

13

1 Introduction

theorems, constants, and definitions in a theorem-proving library. Another method
incorporates feature occurrence frequencies [CJSU19a], and the term frequency-inverse
document frequency algorithm has been applied to weigh features based on their frequency
of occurrence [BUG20a].

Semantic Features aim to capture deeper insights beyond basic syntactic structures.
Syntactic features can sometimes fail to distinguish between semantically different ex-
pressions. For example, ϕ and ¬ϕ are syntactically similar but differ significantly in
meaning.

To address this, one approach is to include generalizations of terms as additional
features [KUV15b]. This is motivated by the observation that logical formulas proven
with the same technique are often instances of the same generalization, as demonstrated
by instances of the same theorem.

In this dissertation, we explore two algorithms—anti-unification and structural tree
difference—to extract more semantic information. Anti-unification identifies the least
general generalization (lgg) of two terms [CK23]. We specifically use first-order syntactic
anti-unification [CK23], which identifies the least general generalization (lgg) of two
first-order terms and the relevant substitutions. First-order terms use a signature F ,
representing a set of function symbols, where each function symbol f ∈ F has a defined
arity n ∈ N, with N denoting the set of natural numbers. Function symbols with zero
arity are constants. Additionally, a set V contains variable symbols, which are disjoint
from the symbols in F .

Definition 1.2. The set of terms T (F , V) over a signature F and a set of variables V is
inductively defined by the following two rules:

• if x ∈ V, then x ∈ T (F , V).

• if f ∈ F with arity n and ti ∈ T (F , V) for 1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ T (F , V).

Definition 1.3. A substitution is a mapping σ from V to T (F , V). The application of
the substitution σ to the term t is defined as:

tσ =
(

σ(t) if t ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

Definition 1.4. A term u is called a generalization of s and t if there exist substitutions
σ1 and σ2 such that uσ1 = s ∧ uσ2 = t.

Definition 1.5. A generalization u′ of s and t is called the lgg if, for any generalization
u of s and t, there is a substitution σ, such that u′σ = u.

For instance, for the terms s = f(a, g(b), a) and t = f(b, a, b), first-order syntactic
anti-unification computes the lgg as f(x, y, x). Furthermore, it derives the substitutions
{x → a, y → g(b)} and {x → b, y → a} from ϕ(s, t), allowing the reconstruction of s and
t from the lgg.

14

1.6 Inductive Logic Programming

Anti-unification can be extended to include various equational theories, leading to
different algorithms such as AC anti-unification, which integrates anti-unification with
associative and commutative theories [AEEM14]. However, incorporating expressive
theories increases computational complexity, making some applications more challeng-
ing [YD21].

Structural tree difference [MS19], on the other hand, is concerned with identifying
the differences between two tree-structured data. This method is often used to compare
different versions of code libraries, but in this dissertation, it is applied to analyze the
differences between the ASTs of proof states.

1.5.2 Neural Network Embeddings

Neural networks are capable of encoding and processing mathematical knowledge. To
leverage language models, natural language text is segmented into tokens, which are
subsequently input into these models. Furthermore, mathematical knowledge can be
represented as tree structures or graph structures, serving as inputs for tree neural
networks and graph neural networks, respectively.

1.6 Inductive Logic Programming

Inductive Logic Programming (ILP) is categorized within symbolic machine learning
approaches. A longstanding discourse exists between symbolic AI and connectionist AI.
Symbolic AI aims to derive explicit rules that elucidate the rationale behind specific
predictions. In contrast, connectionist AI, exemplified by neural networks, is inspired by
biological neurons, where knowledge is represented as implicit weights within the model,
rendering it less interpretable. Initially, symbolic AI was the predominant focus of AI
research. However, the rise of connectionist AI and statistical learning later emerged as
compelling alternatives, primarily due to the inherent challenges in formulating explicit
rules to model diverse conditions. A case in point illustrating the limitations of symbolic
AI can be found in the domain of machine translation, where representing grammar
through rules proves impractical owing to the inherent ambiguities of natural language.
Beyond explainability, symbolic AI excels in modeling knowledge within first- or higher-
order logic, whereas statistical learning and connectionist AI predominantly represent
knowledge in propositional formats, which lack the expressiveness necessary for capturing
complex relationships.

ILP tasks are typically expressed using logic programs, often written in programming
languages such as Prolog. An example illustrating the learning of grandparent relation-
ships using ILP is depicted in Figure 1.6. In this context, the code mom(a,b) signifies
the ground fact that a is the mother of b. The rule gp(X,Y) :- mom(X,Z), mom(Z,Y)
is interpreted as follows: X is a grandparent of Y if X is the mother of Z, and Z is the
mother of Y.

The syntax of a logic program is delineated as follows:

15

1 Introduction

BK

mom(a, b). mom(a, c).
mom(b, d). dad(e, b).
dad(c, f). dad(e, c).

E+

gp(a,d). gp(e,d).
gp(a,f). gp(e,f).

E−

gp(a,b). gp(b,c).
gp(c,f). gp(d,f).

Rules to learn

gp(X,Y) :- mom(X,Z), mom(Z,Y). gp(X,Y) :- mom(X,Z), dad(Z,Y).
gp(X,Y) :- dad(X,Z), dad(Z,Y). gp(X,Y) :- dad(X,Z), mom(Z,Y).

Figure 1.6: Example ILP problem: grandparent.

• A variable is denoted by a string beginning with capital letters, such as X, Y, and Z
in Figure 1.6.

• A predicate symbol is represented by a string commencing with lowercase letters,
such as mom, dad, and gp. The arity of a predicate symbol denotes the number of
arguments it accepts. For instance, the predicates mom, dad, and gp all exhibit an
arity of two.

• A constant is a predicate symbol characterized by an arity of zero, exemplified by
a, b, c, d, e, and f in the figure.

• A term may be a variable, a constant, or an arity n predicate symbol with n terms
as its arguments, such as a, X, gp(a,d), and mom(X,Z).

• A term is considered ground if it contains no variables, as seen in mom(a, b) and
dad(e, b).

• An atom is defined as a formula p(t1, . . . , tn), where p is a predicate symbol and
t1, . . . , tn are terms.

• A definite clause or a rule takes the form h := b1, . . . , bn, where h and b1, . . . , bn are
atoms, as in gp(X,Y) :- mom(X,Z), mom(Z,Y). The atom h is referred to as the
head of the clause, while atoms bi represent the body of the clause. The symbol
comma denotes a conjunction. A definite clause can be informally interpreted as
indicating that the head is valid if all bodies are valid.

Researchers have developed numerous ILP systems designed to learn logical rules.
Aleph is arguably the most prominent ILP system [Sri01], demonstrating strong empirical
performance and implementing a diverse array of ILP techniques that facilitate learning
across various tasks. Aleph is also employed in one of the works presented in this
dissertation. Popper adopts a learning-from-failures approach to minimize the search
space and is recognized as one of the most robust ILP systems currently available [CM21].
Additionally, there exist ILP systems that integrate the strengths of statistical learning
or neural networks, thereby achieving commendable performance in learning from noisy

16

1.6 Inductive Logic Programming

modeh(1, gp(+person,-person)). modeb(2, mom(+person,-person)).
modeb(2, dad(+person,-person)).

Figure 1.7: Example of the mode declaration for the ILP task in Figure 1.6.

data. Two notable systems are δ-ILP [EG18] and Problog [DRKT07]. My work in this
dissertation is based on Aleph.

The learning process in Aleph is defined by the background knowledge BK, a set of
positive examples E+, and a set of negative examples E−. The objective is to induce a
hypothesis H such that ∀e ∈ E+, H ∪ B ⊨ e and ∀e ∈ E−, H ∪ B ⊭ e, where ⊨ denotes
the logical entailment. A hypothesis may comprise a single clause or multiple clauses.
For instance, the four rules for gp in Figure 1.6 constitute a hypothesis.

Given the extensive search space for potential predicates and variables, ILP employs
various techniques to narrow this space. Typical techniques include mode declara-
tions [Mug95, Ray09] and bottom clauses [CD22], both of which are implemented in
Aleph.

Mode declarations specify the potential predicates to be included in a rule and their cor-
responding argument types, reducing the related rule’s search space. A mode declaration
in Aleph is typically formulated as:

mode(recall, pred(m1, m2, . . . , mn))

Figure 1.7 presents the mode declaration utilized for the ILP task illustrated in Figure 1.6.
Rather than employing mode directly to define the constraints for the predicate pred,
one can also use modeh and modeb to specify the predicates that occur in the head and
bodies, respectively. The argument recall indicates the maximum number of occurrences
of the predicate pred within a clause. The arguments mi represent the type of the ith
argument of pred. The symbol + preceding mi indicates that mi is an input variable,
while − signifies that mi is an output variable. Assuming the learning of a clause of the
form h := b1, b2, . . . , bn, any input variable in the body atom bi of type T must appear
either as an output variable of the same type in a preceding body atom bj or as an input
variable of type T in the head atom. For instance, modeb(2, mom(+person,-person))
signifies that the predicate mom respectively receives an input variable and an output
variable, both of which have the type person, as its first and second argument. It also
exhibits that mom at most occurs two times in a clause.

The utilization of the bottom clause constraint [DR08] is a key feature of Aleph.
Aleph’s proof search procedure shares significant similarities with the early ILP system
FOIL [Qui90], though the primary distinction lies in Aleph’s incorporation of the bottom
clause constraint. The bottom clause represents the most specific clause that generalizes
the given example, bounded by the mode declarations. By disregarding clauses that are
not generalizations of the bottom clause, Aleph efficiently reduces the search space.

The integration of mode declarations with the bottom clause constraint substantially
optimizes the search space of the ILP system presented in Chapter 5.

17

1 Introduction

Algorithm 1 A simplified algorithm illustrating Aleph’s procedure for searching a clause.
Input: a set of positive examples E+, a set of negative examples E−, and background
knowledge B.
Output: a clause new_c such that ∀e ∈ E−, new_c ∪ B ⊭ e.
select e+ ∈ E+

generate the bottom clause based on e+ and the mode declarations
generate an initial clause init containing only a head atom
active_clause ← [init]
new_active_clause ← []
for c ∈ active_clause do

for p ∈ next_predicate(c) do
c′ ← append p to the body of c
new_active_clause ← new_active_clause + c′

sort new_active_clause in descending order based on the costs calculated by the
cost function

for new_c ∈ new_active_clause do
if new_c rejects all E− then

return new_c

active_clause ← new_active_clause
new_active_clause ← []

Aleph’s default search procedure for identifying a clause basically consists of the
following steps:

1. Select an example from the positive examples to generalize.

2. Construct the bottom clause based on the mode declarations and the selected
example.

3. Search for a clause to add to the hypothesis. The newly generated clause must
reject all negative examples.

4. If the hypothesis covers all positive examples, the search terminates. Otherwise,
Aleph selects another example, removes the last example from the set of positive
examples, and generates a new clause.

Algorithm 1 presents a simplified algorithm depicting how Aleph searches for an
individual clause, utilizing a beam search approach. To generate longer clauses, Aleph
appends every possible predicate to each of the active clauses. The potential next
predicates are all constrained by the mode declarations and the bottom clause. The
resulting clauses are ranked according to a cost function. For each clause, the default
cost function calculates the difference between the number of covered positive examples
and the number of covered negative examples. The search terminates once a clause that
rejects all negative examples is generated. If no such clause is found, Aleph continues to
generate longer clauses until the desired clause is identified.

18

1.7 Term Rewriting

a b

c d

Figure 1.8: An example ARS system.

1.7 Term Rewriting
Rewriting models transformations between objects, representing diverse operations across
domains such as symbolic expression simplification in mathematics and program execu-
tion in computer science. Term rewriting, which operates under the assumption that
objects to be transformed are terms, provides a robust formalism applicable to tasks like
simplifying goal states in automated theorem proving [BG94] and optimizing compiler
processes [VdBHKO02].

Various types of rewrite systems exist based on the formalization of objects, with the
simplest being the abstract rewrite system (ARS).

Definition 1.6. An ARS is a pair A = (A, →) of a set A and a binary relation → on A.

A (possibly infinite) rewrite sequence is a sequence a0 → a1 → · · · such that ai ∈ A.
We write a →∗ b if there is a rewrite sequence a → · · · → b.

Definition 1.7. An ARS (A, →) is terminating if ∀a ∈ A, there are no infinite rewrite
sequences starting from a.

The notation a ↓ b denotes that a and b are joinable, meaning that there exists an
element c ∈ A such that a →∗ c and b →∗ c.

Definition 1.8. An ARS (A, →) is confluent if ∀a, b, c ∈ A with b ←∗ a →∗ c, we have
b ↓ c.

Consider an abstract reduction system (ARS) E = (E, →), where E = {a, b, c, d} and →
= {(a, b), (b, d), (c, b), (d, c)}. This system produces the ARS illustrated in Figure 1.8. The
ARS E is non-terminating as it admits an infinite rewrite sequence: c → b → d → c → · · · .

A key limitation of ARSs is their reliance on concrete instances alone, which restricts
their applicability to computations that involve contexts and variables, such as logical
inference rules in ATP. In contrast, term rewrite systems (TRSs) extend this capability by
incorporating first-order variables and employing first-order terms defined in Definition 1.2.

We then define the notions of rewriting terms using contexts and holes.

Definition 1.9. A hole is defined as a special symbol 2 /∈ F , and a context C is a term
that contains exactly one hole. The notion C[t] denotes the application of the term t to
the context C, which is defined as follows:

C[t] =
(

t if C = 2

f(t1, . . . , C ′[t], . . . , tn) if C = f(t1, . . . , C ′, . . . , tn)

19

1 Introduction

Definition 1.10. The set of variables in a term t is defined as

Var(t) =

{t} if t is a variable
∅ if t is a constant
nS

i=1
Var(ti) if t = f(t1, . . . , tn)

Definition 1.11. A rewrite rule for terms l and r is written as l → r where l /∈ V and
Var(r) ⊆ Var(l). A term rewrite system R consists of a set of rewrite rules. Consider the
TRS R, we write the rewrite relation t →R u for terms t, u if there exists a rewrite rule
l → r ∈ R, a context C, and a substitution σ such that t = C[lσ] and u = C[rσ].

We write →∗
R to denote the transitive-reflexive closure of →R. Similar to ARSs, we

obtain the definitions of rewrite sequences and ↓R for TRSs. We drop the subscript R
for the relations on terms in the subsequent introduction if it is contextually inferable.

Research in term rewriting centers on examining various properties of TRSs, each
of which requires distinct analytical techniques [BN98]. Notably, a TRS satisfying
one property does not imply it satisfies others. Termination and confluence are two
critical properties in rewrite systems. They are undecidable for TRSs [BN98]. Given
this undecidability, researchers have developed diverse techniques to establish either
termination or confluence, with each method suited to a specific subset of related
challenges.

1.7.1 Termination Analysis
Termination is an important property of TRSs.

Definition 1.12. A TRS R is terminating if ∀t ∈ T (F , V), there is not any infinite
rewrite sequence t → t1 → · · · starting from t.

The TRS {f(x) → g(f(x)), g(y) → f(g(y))} is not terminating, as it allows the infinite
rewrite sequence f(x) → g(f(x)) → f(g(f(x))) → · · · . This sequence is infinite because
the term f(x) within g(f(x)) can be rewritten back to g(f(x)), resulting in an infinite
loop.

Given the undecidability, a diverse range of techniques has been developed to either
prove or disprove termination for specific categories of TRSs. Some of these techniques
involve substantial computational effort to achieve a termination proof. As a result,
manually applying many computationally intensive analytical techniques is highly im-
practical.

Automatic termination provers are therefore designed to execute various analytical
techniques autonomously, determining the termination status of TRSs. Among the most
notable tools in this domain are AProVE [GSKT06] and TTT2 [KSZM09]. Both systems
implement extensive collections of analytical methods, complicating the task of combining
these techniques effectively. To maximize efficiency, these tools employ sophisticated
scheduling algorithms for the analysis methods.

20

1.7 Term Rewriting

The Termination Competition (termCOMP) [GMR+15], an annual event, evaluates the
effectiveness of termination tools. Originally focused on TRSs, termCOMP has expanded
to include the analysis of programs written in various languages such as Haskell, C, and
Java. For these programming languages, programs are first translated into corresponding
foundations such as rewrite systems, which are then analyzed by termination tools to
determine whether they terminate.

1.7.2 Confluence Analysis
Another very important property is confluence.

Definition 1.13. A TRS R is confluent if and only if ∀s, t, u ∈ T (F , V), s →∗
R t ∧ s →∗

R
u ⇒ t ↓R u.

The TRS B = {f(x, x) → a, f(x, g(x)) → b, c → g(c)} is not confluent, as it permits the
following rewrite sequences: a ← f(c, c) → f(c, g(c)) → b. Since no rules can be applied to
a and b, convergence between them is not achievable. Confluence analysis plays a critical
role in verifying if a system behaves deterministically for a given input [FGMP97] and in
ensuring that the system’s behavior remains consistent after transformations [HKT02].
Furthermore, when combined with termination analysis, it helps determine if a TRS is
complete, an essential aspect for reducing the proof search space in automated theorem
proving (ATP) [BG94] and for assessing the satisfiability of logical formulas in equational
reasoning [BN98].

In parallel to termination analysis, the confluence research community develops various
confluence tools and holds an annual confluence competition (CoCo). Key tools in this
field include CSI [ZFM11], ACP [AYT09], and FORT-h [MLM23]. Many of these tools
also integrate diverse confluence analysis techniques, such as those termination tools.

Confluence tools also incorporate various termination analysis methods, as many
confluence techniques depend on proving the termination of the given TRSs. For example,
CSI is built on TTT2 to leverage its termination analysis capabilities. A notable confluence
analysis technique based on termination relies on Newman’s lemma [BN98].

Definition 1.14. A TRS is locally confluent if and only if ∀s, t, u ∈ T (F , V), s → t∧s →
u ⇒ t ↓∗ u.

Theorem 1.15 (Newman’s lemma). Every terminating and locally confluent TRS is
confluent.

Since confluence analysis for terminating TRSs is decidable [Fel15], the major rewriting
research focuses on confluence analysis on non-terminating TRSs.

1.7.3 Certification
Automatic rewriting tools face the significant challenge of potentially generating unsound
results. This issue may arise from various sources, such as bugs within the implementation
of the tools themselves, errors in the ATP solvers on which these tools depend, incorrect

21

1 Introduction

configurations of the rewriting strategies, or inaccuracies in complex rewriting analyses
proposed in some studies.

To address these concerns, researchers in the field of rewriting have developed several
certification tools, including Certified Termination Analysis (CeTA) [TS09], CiME/Coc-
cinelle [CCF+07, CFU08], and Rainbow/CoLoR [BCGD+06]. These tools are used to
verify the correctness of proofs generated by rewriting tools. CeTA is implemented in
Isabelle/HOL, while CiME/Coccinelle and Rainbow/CoLoR are based in Coq. CeTA
initially can only certify termination analysis proofs, but its ability extends to certifying
confluence analysis proofs. Notably, CeTA certifies proofs produced in termCOMP and
CoCo.

The implementation of CeTA is based on the Isabelle Formalization of Rewriting library
(IsaFoR) [TS09]. Researchers first formalize theories and proofs of TRSs in IsaFoR using
Isabelle/HOL, then convert these formalizations into a certified Haskell program via
Isabelle’s code generator [HB13]. The generated Haskell program is ultimately compiled
to create the executable certifier CeTA.

For CeTA’s certification, rewriting tools must generate certificates in the certification
problem format [ST14] alongside the proof. CeTA certifies the soundness of the proof if
it confirms the validity of the related certificate.

However, CeTA cannot certify all valid proofs generated by rewriting tools. This
limitation arises because rewriting tools often implement more extensive rewriting analysis
techniques than those available in CeTA. The discrepancy is due to the significantly greater
time investment required for formalization in Isabelle/HOL compared to developing
rewriting tools in general-purpose programming languages.

1.8 Content
In this dissertation, I present my research on feature characterization and the implemen-
tation of various learning models for tactic-based ITP guidance in Chapter 3.

Chapter 4 introduces my work on the novel ITP learning task of learning proof
transformations and its potential applications.

In Chapter 5, I describe my research utilizing ILP to learn rules that delineate when
to apply specific tactics.

22

Chapter 2

Contributions

The subsequent chapter provides an overview of the publications included in this
dissertation. Details regarding the publication venues and my specific contributions to
each work are outlined in the following sections.

2.1 Online Machine Learning Techniques for Coq: a Comparison

Publication Details

Liao Zhang, Lasse Blaauwbroek, Bartosz Piotrowski, Prokop Černý, Cezary
Kaliszyk, and Josef Urban. Online machine learning techniques for Coq: A
comparison. In International Conference on Intelligent Computer Mathe-
matics, pages 67–83. Springer, 2021.

We introduce novel feature representations and implement three machine learning
techniques for automating proofs in Coq. The original features were limited to a top-down
traversal of the proof state up to length two. Our enhanced feature characterization
incorporates additional aspects, including goal-hypothesis separation, top-level structures,
abstract vertical traversals, and feature occurrence counts.

We developed three distinct machine learning approaches. The first is a locality-
sensitive hashing forest, an efficient approximation of k-NN. The second is an online
random forest model, which allows dynamic updates as new proof states become available.
The third method employs gradient boosted trees.

We evaluated the new feature representations and the developed models on two tasks:
tactic prediction and automated proof synthesis. Our empirical results demonstrate the
effectiveness of both the novel features and the new machine learning models.

My Contributions

I designed novel features to characterize proof states for making tactic predictions. I
implemented gradient boosted tree models and carried out performance evaluations on
both k-NN and gradient-boosted trees. Additionally, I, together with Blaauwbroek,
conducted experiments for evaluating online random forests on the dataset extracted
from Coq. I also contributed by writing the relevant sections of the paper.

23

2 Contributions

2.2 Learning Proof Transformations and its Applications in
Interactive Theorem Proving

Publication Details

Liao Zhang, Lasse Blaauwbroek, Cezary Kaliszyk, and Josef Urban. Learning
proof transformations and its applications in interactive theorem proving. In
International Symposium on Frontiers of Combining Systems, pages 236-254.
Springer Nature Switzerland Cham, 2023.

We propose a new task called learning proof transformation. A proof transformation
refers to the transition from a proof state prior to the application of a tactic to the resulting
proof states following the tactic application. Learning proof transformation involves
leveraging this transformation to predict the tactic responsible for the transformation.
In comparison, previous works merely utilize the proof state before the tactic application
to make predictions.

We develop three characterizations for proof transformations: feature difference, anti-
unification, and tree difference.

We also discover two applications of this task: making tactic suggestion and optimizing
proof length.

We build random forests and GPT-2 for learning proof transformations. Our empirical
experiments confirm the effectiveness of our characterizations in both learning proof
transformations and the relevant applications.

My Contributions

I implemented the characterizations, developed the learning models, performed the
experiments, and wrote the paper. I also identified making tactic suggestions as one of
the two primary applications.

2.3 Learning Rules Explaining Interactive Theorem Proving
Tactic Prediction

Publication Details

Liao Zhang, David M. Cerna, and Cezary Kaliszyk. Learning Rules Explain-
ing Interactive Theorem Proving Tactic Prediction. In International Joint
Conference on Learning and Reasoning. 2024.

We present the first study focusing on learning rules to improve tactic suggestion
methods for ITP. We formulate the task of deciding the appropriateness of a tactic
for a particular proof state as an ILP task. Although previous research has addressed
making tactic predictions, it lacks explainability in its decision-making process. Moreover,
existing methods solely utilize pre-computed features. However, pre-computation is
prohibitively expensive for complex and precise features.

24

2.4 Automated Strategy Invention for Confluence of Term Rewrite Systems (contribution
beyond the PhD)

Using the ILP representation, we enrich the feature space by encoding additional,
computationally expensive features as background predicates. Besides representing
nodes in the AST as representation predicates, we also develop feature predicates and
anonymous predicates as the background predicates. Feature predicates capture positional
relationships between nodes and the equality between subterms in the AST. To leverage
the ILP’s generalization ability, anonymous predicates substitute the original nodes with
their respective datatype in Coq’s source code.

We use the enriched feature space to learn rules to explain the applicability of a tactic
to a given proof state and filter the output of an existing tactic prediction approach using
the learned rules.

Our empirical analysis validates the effectiveness of anonymous feature predicates in
learning precise rules. We also use experiments to demonstrate the combination of ILP
with an existing approach enhances the accuracy of making tactic predictions compared
to the existing approach.

My Contributions

I conceived the concept of learning rules to explain when to use a tactic. I extracted the
dataset, implemented the predicates and the algorithm for reordering predictions, and
conducted the experiments. I also wrote the paper.

2.4 Automated Strategy Invention for Confluence of Term
Rewrite Systems (contribution beyond the PhD)

The following work has not been published but is also a project that I worked on during
my PhD.

We investigate the application of machine learning to term rewriting, a research field
closely associated with formal theorem proving. Term rewriting can be leveraged to verify
the validity of formulas in equational logic, which serves as the foundation for equational
theorem provers [BG94, Sma21]. It is also widely applied to ITP and ATP to simplify
the proof state for efficient computation and further application of other proof strategies.

Many properties of term rewrite systems are known to be undecidable. As a consequence,
contemporary automatic term rewriting tools employ a diverse set of techniques to prove
a certain property. The extensive variety of available rewriting techniques creates a
vast strategy space, making the discovery of optimal strategies an intractable task for
humans. The difficulty motivates us to automatically invent strategies for automatic
term rewriting tools.

We develop the first learning-guided automatic confluence prover, where confluence is
an important property of TRSs. We automatically invent a large number of strategies for
the state-of-the-art automatic confluence prover CSI. Moreover, we design a mechanism to
combine the invented strategies into a unified strategy. To address the limitations of the
current confluence analysis dataset, which is too small for machine learning applications,
we randomly generate a substantial number of TRSs and construct a new dataset.

25

2 Contributions

Our empirical analysis validates that CSI with the invented unified strategy can
(dis)prove confluence for more TRSs than the state-of-the-art approach. The invented
strategies also discover proofs for several problems whose proofs have never been found
by any participant in the annual confluence competition.

2.5 Transformers are Efficient Compilers, Provably (contribution
beyond the PhD)

During my PhD, I worked on a project that has been accepted for presentation at the
NeurIPS 2024 Workshop M3L. This work is currently under review for publication in a
standard conference.

Transformers-based LLMs have exhibited remarkable performance across diverse fields;
however, their theoretical capabilities remain only partially understood. In particular,
LLMs have demonstrated notable progress in code generation [Any23, NHX+23] and com-
pilation tasks [Tae23]. For instance, the Meta Large Language Model Compiler [CSG+24]
enhances state-of-the-art LLMs by enabling them to better interpret compiler intermedi-
ate representations, assembly language, and optimization techniques, leading to improved
compiler optimizations.

Given these advancements, a theoretical exploration of transformers’ expressive power in
compilation tasks becomes imperative. This research is the first to rigorously examine the
expressive power of transformers in the context of compilers for programming languages.

We propose a representative programming language, Mini-Husky, which encapsulates
the core features of modern C-like languages. Assuming that the input code can be
tokenized into a sequence of length L, this sequence is characterized by bounded depths
in both its AST and a crucial step in type analysis called type inference [Pie02]. Our
theoretical results demonstrate that transformers can perform compilation tasks including
abstract syntax tree generation, symbol resolution, and type analysis by relying only
on the logarithm of the input sequence length L. In contrast, we show that recurrent
neural networks (RNNs) require at least a linear dependency on L to accomplish the
same tasks. We further validate these findings through empirical experiments, confirming
the superiority of transformers over RNNs in this domain.

A key technical contribution of our work is the development of the domain-specific
programming language Cyberton, which is capable of automatically generating proofs
regarding the expressive power of transformers. Its development is driven by the signifi-
cant complexities inherent in manually constructing expressive power proofs for neural
networks.

26

Chapter 3

Online Machine Learning Techniques for
Coq: a Comparison

3.1 Abstract
We present a comparison of several online machine learning techniques for tactical
learning and proving in the Coq proof assistant. This work builds on top of Tactician,
a plugin for Coq that learns from proofs written by the user to synthesize new proofs.
Learning happens in an online manner, meaning that Tactician’s machine learning model
is updated immediately every time the user performs a step in an interactive proof. This
has important advantages compared to the more studied offline learning systems: (1)
it provides the user with a seamless, interactive experience with Tactician and, (2) it
takes advantage of locality of proof similarity, which means that proofs similar to the
current proof are likely to be found close by. We implement two online methods, namely
approximate k-nearest neighbors based on locality sensitive hashing forests and random
decision forests. Additionally, we conduct experiments with gradient boosted trees in an
offline setting using XGBoost. We compare the relative performance of Tactician using
these three learning methods on Coq’s standard library.

3.2 Introduction
The users of interactive theorem proving systems are in dire need of a digital sidekick,
which helps them reduce the time spent proving the mundane parts of their theories,
cutting down on the man-hours needed to turn an informal theory into a formal one. The
obvious way of creating such a digital assistant is using machine learning. However, creat-
ing a practically usable assistant comes with some requirements that are not necessarily
conducive to the most trendy machine learning techniques, such as deep learning.

The environment provided by ITPs is highly dynamic, as it maintains an ever-changing
global context of definitions, lemmas, and custom tactics. Hence, proving lemmas within
such environments requires intimate knowledge of all the defined objects within the global
context. This is contrasted by—for example—the game of chess; even though the search
space is enormous, the pieces always move according to the same rules, and no new kinds
of pieces can be added. Additionally, the interactive nature of ITPs demands that machine

27

3 Online Machine Learning Techniques for Coq: a Comparison

learning techniques do not need absurd amounts of time and resources to train (unless a
pre-trained model is highly generic and widely applicable across domains; something that
has not been achieved yet). In this paper, we are interested in online learning techniques
that quickly learn from user input and immediately utilize this information. We do this
in the context of the Coq proof assistant [The19] and specifically Tactician [BUG20c]—a
plugin for Coq that is designed to learn from the proofs written by a user and apply that
knowledge to prove new lemmas.

Tactician performs a number of functions, such as proof recording, tactic prediction,
proof search, and proof reconstruction. In this paper, we focus on tactic prediction. For
this, we need a machine learning technique that accepts as input a database of proofs,
represented as pairs containing a proof state and the tactic that was used to advance the
proof. From this database, a machine learning model is built. The machine learning task
is to predict an appropriate tactic when given a proof state. Because the model needs to
operate in an interactive environment, we pose four requirements the learning technique
needs to satisfy:

1. The model (datastructure) needs to support dynamic updates. That is, the addition
of a new pair of a proof state and tactic to the current model needs to be done in
(near) constant time.

2. The model should limit its memory usage to fit in a consumer laptop. We have
used the arbitrary limit of 4 GB.

3. The model should support querying in (near) constant time.

4. The model should be persistent (in the functional programming sense [DSST89]).
This enables the model to be synchronized with the interactive Coq document, in
which the user can navigate back and forth.

3.2.1 Contributions
In this work, we have implemented two online learning models. An improved version
of the locality sensitive hashing scheme for k-nearest neighbors is described in detail
in Section 3.4.1. An implementation of random forest is described in Section 3.4.2. In
Section 3.5, we evaluate both models, comparing the number of lemmas of Coq’s standard
library they can prove in a chronological setting (i.e., emulating the growing library).

In addition to the online models, as a proof of concept, we also experiment in an offline
fashion with boosted trees, specifically XGBoost [CG16] in Section 3.4.3. Even though
the model learned by XGBoost cannot be used directly in the online setting described
above, boosted trees are today among the strongest learning methods. Online algorithms
for boosted trees do exist [ZZS+19], and we intend to implement them in the future.

The techniques described here require representing proof states as feature vectors.
Tactician already supported proof state representation using simple hand-rolled fea-
tures [BUG20a]. In addition, Section 3.3 describes our addition of more advanced
features of the proof states, which are shown to improve Tactician’s performance in
Section 3.5.

28

3.3 Tactic and Proof State Representation

3.3 Tactic and Proof State Representation
To build a learning model, we need to characterize proof states and the tactics applied
to them. To represent tactics, we first perform basic decompositions and simplifications
and denote the resulting atomic tactics by their hashes [BUG20a].

Tactician’s original proof state features [BUG20a] consist merely of identifiers and
adjacent identifier pairs in the abstract syntax tree (AST). Various other, more ad-
vanced features have been considered for automated reasoning systems built over large
formal mathematical knowledge bases [CJSU19a, GKU17, KUV15b]. To enhance the
performance of Tactician, we modify the old feature set and define new features as follows.

Top-down Oriented AST Walks We add top-down oriented walks in the AST of length
up to 3 with syntax placeholders. For instance, the unit clause f(g(x)) will contain the
features:

f:AppFun , g:AppFun , x:AppArg , f: AppFun (g: AppFun),
g: AppFun (x: AppArg), f: AppFun (g: AppFun (x: AppArg))

The feature g:AppFun indicates that g is able to act as a function in the term tree, and
x:AppArg means that x is only an argument of a function.

Vertical Abstracted Walks We add vertical walks in the term tree from the root to
atoms in which nonatomic nodes are substituted by their syntax roles. For the term
f1(f2(f3(a))), we can convert each function symbol to AppFun whereas the atom a is
transformed to a:AppArg as above. Subsequently, we can export this as the feature
AppFun(AppFun(AppFun(a:AppArg))). Such abstracted features are designed to better
capture the overall abstract structure of the AST.

Top-level Structures We add top-level patterns by replacing the atomic nodes and
substructures deeper than level 2 with a single symbol X. Additionally, to separate the
function body and arguments, we append the arity of the function to the corresponding
converted symbol. As an example, consider the term f(g(b, c), a) consisting of atoms
a, b, c, f, g. We first replace a, f, g with X because they are atomic. We further transform
f and g to X2 according to the number of their arguments. However, b and c break
the depth constraint and should be merged to a single X. Finally, the concrete term
is converted to an abstract structure X2(X2(X),X). Abstracting a term to its top-level
structure is useful for determining whether a “logical" tactic should be applied. As an
illustration, the presence of X ∧ X in the goal often indicates that we should perform
case analysis by the split tactic. Since we typically do not need all the nodes of a term
to decide such structural information, and we want to balance the generalization with
specificity, we use the maximum depth 2.

Premise and Goal Separation Because local hypotheses typically play a very different
role than the conclusion of a proof state, we separate their feature spaces. This can be

29

3 Online Machine Learning Techniques for Coq: a Comparison

done by serially numbering the features and adding a sufficiently large constant to the
goal features.

Adding Occurrence Counts In the first version of Tactician, we have used only a simple
boolean version of the features. We try to improve on this by adding the number of
occurrences of each feature in the proof state.

3.4 Prediction Models
3.4.1 Locality Sensitive Hashing Forests for Online kNN
One of the simplest methods to find correlations between proof states is to define a metric
or similarity function d(x, y) on the proof states. One can then extract an ordered list of
length k from a database of proof states that are as similar as possible to the reference
proof state according to d. Assuming that d does a good job identifying similar proof
states, one can then use tactics known to be useful in a known proof state for an unseen
proof state. In this paper, we refer to this technique as the k-nearest neighbor (k-NN)
method (even though this terminology is somewhat overloaded in the literature).

Our distance function is based on the features described in Section 3.3. We compare
these features using the Jaccard index J(f1, f2). Optionally, features can be weighted
using the TfIdf statistic [Jon04], in which case the generalized index Jw(f1, f2) is used.

J(f1, f2) = |f1 ∩ f2|
|f1 ∪ f2| tfidf(x) = log N

|x|N
Jw(f1, f2) =

P
x∈f1∩f2 tfidf(x)

P
x∈f1∪f2 tfidf(x)

Here N is the database size, and |x|N is the number of times feature x occurs in the
database. In previous work, we have made a more detailed comparison of similarity
functions [BUG20a].

A naive implementation of the k-NN method is not very useful in the online setting
because the time complexity for a query grows linearly with the size of the database.
Indexing methods, such as k-d trees, exist to speed up queries [Ben75]. However, these
methods do not scale well when the dimensionality of the data increases [HIM12]. In
this work, we instead implement an approximate version of the k-NN method based
on Locality Sensitive Hashing (LSH) [GIM99]. This is an upgrade of our previous LSH
implementation that was not persistent and was slower. We also describe our functional
implementation of the method in detail for the first time here.

The essential idea of this technique is to hash feature vectors into buckets using a family
of hash functions that guarantee that similar vectors hash to the same bucket with high
probability (according to the given similarity function). To find a k-NN approximation,
one can simply return the contents of the bucket corresponding to the current proof
state. For the Jaccard index, the appropriate family of hash functions are the MinHash
functions [Bro97].

The downside of the naive LSH method is that its parameters are difficult to tune. The
probability that the vectors that hash to the same bucket are similar can be increased by

30

3.4 Prediction Models

associating more than one hash function to the bucket. All values of the hash functions
then need to pair-wise agree for the items in the bucket. However, this will naturally
decrease the size of the bucket, lowering the number of examples k (of k-NN) that can
be retrieved. The parameter k can be increased again by simply maintaining multiple
independent bucketing datastructures. Tuning these parameters is critically dependent
on the size of the database, the length of the feature vectors, and the desired value of
k. To overcome this, we implement a highly efficient, persistent, functional variant of
Locality Sensitive Hashing Forest [BCG05] (LSHF), which is able to tune these parameters
automatically, leaving (almost) no parameters to be tuned manually. Below we give a
high-level overview of the algorithm as it is modified for a functional setting. For a more
in-depth discussion on the correctness of the algorithm, we refer to the previous reference.

LSHFs consist of a forest (collection) of tries T1 . . . Tn. Every trie has an associated
hash function hi that is a member of a (near) universal hashing family mapping a feature
down to a single bit (a hash function mapping to an integer can be used by taking the
result modulus two). To add a new example to this model, it is inserted into each trie
according to a path (sequence) of bits. Every bit of this path can be shown to be locally
sensitive for the Jaccard index [BCG05]. The path of an example is calculated using the
set of features that represents the proof state in the example.

pathi(f) = sort({hi(x) | x ∈ f})

For a given trie T , the subtrie starting at a given path b1 . . . bm can be seen as the
bucket to which examples that agree on the hashes b1 . . . bm are assigned. Longer paths
point to smaller buckets containing less similar examples, while shorter paths point to
larger buckets containing increasingly similar examples. Hence, to retrieve the neighbors
of a proof state with features f , one should start by finding examples that share the
entire path of f . To retrieve more examples, one starts collecting the subtrees starting
at smaller and smaller prefixes of pathi(f). To increase the accuracy and number of
examples retrieved, this procedure can be performed on multiple tries simultaneously, as
outlined in Algorithm 2.

Tuning the LSHF model consists mainly of choosing the appropriate number of tries
that maximizes the speed versus accuracy trade-off. Experiments show that 11 trees is
the optimal value. Additionally, for efficiency reasons, it is a good idea to set a limit on
the depth of the tries to prevent highly similar examples from creating a deep trie. For
our dataset, a maximum depth of 20 is sufficient.

3.4.2 Online Random Forest
Random forests are a popular machine learning method combining many randomized
decision trees into one ensemble, which produces predictions via voting [Bre01a]. Even
though the decision trees are not strong learners on their own, because they are inten-
tionally decorrelated, the voting procedure greatly improves on top of their individual
predictive performance. The decision trees consist of internal nodes labeled by decision
rules and leaves labeled by examples. In our case, these are tactics to be applied in the
proofs.

31

3 Online Machine Learning Techniques for Coq: a Comparison

Algorithm 2 Querying the Locality Sensitive Hashing Forest
1: function QueryLSHF(F , f) ▷ F a forest, f a feature set
2: P ← ⟨pathi(f) : i ∈ [1..|F|]⟩
3: neighbors ← FilterDuplicates(SimultaneousDescend(F , P))
4: Optionally re-sort neighbors according to real Jaccard index
5: function SimultaneousDescend(F , P)
6: Frel ← ⟨ if head(P) then left(T) else right(T) : T ∈ F when not leaf(T) ⟩
7: Firrel ← ⟨ if leaf(T) then T elseif head(P) then right(T) else left(T) : T ∈ F ⟩
8: if Frel is empty then
9: neighbors ← empty list

10: else
11: P ′ ← ⟨tail(Pi) : i ∈ [1..n]⟩
12: neighbors ← SimultaneousDescend(Frel, P ′)
13: if |neighbors| ≥ k then
14: return neighbors
15: else
16: return Append(neighbors, Concatenate(⟨ Collect(T : T ∈ Firrel⟩)))

Random forests are a versatile method that requires little tuning of its hyperparameters.
Their architecture is also relatively simple, which makes it easy to provide a custom
OCaml implementation easily integrable with Tactician, adhering to its requirement of
avoiding mutable data structures. Direct usage of existing random forest implementations
is impossible due to challenges in Tactician’s learning setting. These challenges are: (1)
numerous sparse features, (2) the necessity of online learning, as detailed in the next two
paragraphs.

The decision rules in nodes of the decision trees are based on the features of the training
examples. These rules are chosen to maximize the information gain, i.e., to minimize the
impurity of the set of labels in the node.1 There are more than 37, 000 binary and sparse
features in Tactician. Since the learner integrated with Tactician needs to be fast, one
needs to be careful when optimizing the splits in the tree nodes.

Random forests are typically trained in an offline manner where the whole training data
is available at the beginning of the training. In Tactician this would be quite suboptimal.
To take advantage of the locality of proof similarity and to be able to use data coming
from new proofs written by a user, we want to immediately update the machine learning
model after each proof.

There are approaches to turn random forests into online learners [DH00, SLS+09]
which inspired our implementation. The authors of [DH00] propose a methodology where
new training examples are passed to the leaves of the decision trees, and under certain
statistical conditions, the leaf is split and converted to a new decision node followed by
two new leaves. We take a similar approach, but deciding a split in our implementation

1If we have labels {a, a, b, b, b}, ideally, we would like to produce a split which passes all the examples
with label a to one side and the examples with b to the other side.

32

3.4 Prediction Models

Algorithm 3 Adding training a example e to a decision tree T
1: function AddExampleToTree(T , e)
2: match T with
3: Node(R, Tl, Tr): ▷ R – binary rule, Tl, Tr – left and right subtrees
4: match R(e) with
5: Left: return Node(R, AddExampleToTree(Tl, e), Tr)
6: Right: return Node(R, Tl, AddExampleToTree(Tr, e))
7: Leaf(l, E): ▷ l – label/tactic, E – examples
8: E ← Append(E , e)
9: if SplitCondition(E) then

10: R ← GenerateSplitRule(E)
11: E l, Er ← Split(R, E)
12: ll ← label of random example from El

13: lr ← label of random example from Er

14: return Node(R, Leaf(ll, El), Leaf(lr, Er))
15: else
16: return Leaf(l, E)

is simpler and computationally cheaper.
The pseudocode describing our implementation is presented below. Algorithm 3 shows

how the training examples are added to the decision trees. A new training example is
passed down the tree to one of its leaves. The trajectory of this pass is governed by
binary decision rules in the nodes of the tree. Each rule checks whether a given feature is
present in the example. Once the example reaches a leaf, it is saved there, and a decision
is made whether to extend the tree (using function SplitCondition). This happens
only when the Gini Impurity measure [Mit97] on the set of examples in the leaves is
greater than a given impurity threshold i (a hyperparameter of the model). When the
split is done, the leaf becomes an internal node with a new split rule, and the collected
examples from the leaf are passed down to the two new leaves. The new rule (an output
from GenerateSplitRule) is produced in the following way. N features are selected
from the features of the examples, where N is the square root of the number of examples.
The selection of the features is randomized and made in such a way that features that are
distinguishing between the examples have higher probability: First, we randomly select
two examples from the leaf, and then we randomly select a feature from the difference of
sets of features of the two examples. Among such selected features, the one maximizing
the information gain [Mit97] of the split rule based on it is selected. The two new leaves
get labels randomly selected from the examples belonging to the given leaf.

When adding an example to a random forest (Algorithm 4), first, a decision is made
whether a new tree (in the form of a single leaf) should be added to the forest. It happens
with probability 1

n , where n is the number of trees in the forest under the condition that
n is lower than a given threshold.

Predicting a tactic for a given example with a random forest (Algorithm 5) is done

33

3 Online Machine Learning Techniques for Coq: a Comparison

Algorithm 4 Adding a training example e to a random forest F
1: function AddExampleToForest(F , e, nmax) ▷ nmax – max number of trees
2: n ← number of trees in F
3: m ← random number from {1, . . . n}
4: Fupdated ← empty list
5: if n < nmax and m = 1 then
6: T ← leaf labeled by tactic used in e
7: Fupdated ← Append(Fupdated, T)
8: for all T ∈ F do
9: T ← AddExampleToTree(T , e)

10: Fupdated ← Append(Fupdated, T)
11: return Fupdated

Algorithm 5 Predicting labels for unlabeled e in the random forest F
1: function PredictForest(F , e)
2: P ← empty list ▷ P – predictions
3: for all T ∈ F do
4: t ← PredictTree(e)
5: append t to P
6: R ← Vote(P) ▷ R – ranking of tactics
7: return R
8: function PredictTree(T , e)
9: match T with

10: Node(R, T l, T r):
11: match R(e) with
12: Left: return PredictTree(T l, e)
13: Right: return PredictTree(T r, e)
14: Leaf(l, E): return l

in two steps. First, the example is passed to the leaves of all the trees and the labels
(tactics) in the leaves are saved. Then the ranking of the tactics is made based on their
frequencies.

Tuning Hyperparameters

There are two hyperparameters in our implementation of random forests: (1) the maximal
number of trees in the forest and (2) the impurity threshold for performing the node splits.
To determine the influence of these parameters on the predictive power, we perform a
grid search. For this, we randomly split the data that is not held out for testing (see
Section 3.5.1) into a training and validation part. The results of the grid search are
shown in Figure 3.1. The best numbers of trees are 160 (for top-1 accuracy) and 320

34

3.4 Prediction Models

Figure 3.1: Results of hyperparameter tuning for random forests. The blue circle corre-
sponds to top-10 accuracy (how often the correct tactic was present in the
first 10 predictions) whereas the red square corresponds to top-1 accuracy.

10 20 40 80 160320640
0.1

0.2

0.3

Number of trees

A
cc

ur
ac

y

0.1 0.3 0.5 0.7 0.9
0.1

0.15

0.2

0.25

Impurity threshold

(for top-10 accuracy). We used these two values for the rest of the experiments. For the
impurity threshold, it is difficult to see a visible trend in performance; thus we selected
0.5 as our default.

3.4.3 Boosted Trees

Gradient boosted decision trees are a state-of-the-art machine learning algorithm that
transforms weak base learners, decision trees, into a method with stronger predictive
power by appropriate combinations of the base models. One efficient and powerful
implementation is the XGBoost library. Here, we perform some initial experiments in an
offline setting for tactic prediction. Although XGBoost can at the moment not be directly
integrated with Tactician, this gives us a useful baseline based on existing state-of-the-art
technology. Below, we illustrate a procedure of developing our XGBoost model based on
binary logistic regression.

The input to XGBoost is a sparse matrix containing rows with the format of (ϕP , ϕT)
where ϕP includes the features of a proof state, and ϕT characterizes a tactic related to
the proof state. We transform each proof state to a sparse feature vector ϕP containing
the features’ occurrence counts. Since there may be a large number of features in a
given Coq development environment, which may hinder the efficiency of training and
prediction, it is reasonable to decrease the dimension of the vectors. We hash the features
to 20, 000 buckets by using the modulo of the feature’s index. As above, we also remap
the tactic hashes to a 20, 000-dimensional space separated from the state features.

The training examples get labels 1 or 0 based on the tactics being useful or not for
the proof state. A tactic for a certain proof state is labeled as positive if it is exactly
the one applied to this state in the library. In contrast, negative tactics are elements
in the tactic space that differ from the positive instance. We obtain negative data by
two approaches: strong negatives and random negatives. Strong negative instances are
obtained by arbitrarily selecting a subset from the best-100 k-NN predictions for this
state. In the other approach, negative instances are arbitrarily chosen from the entire
tactic space.

35

3 Online Machine Learning Techniques for Coq: a Comparison

Figure 3.2: Results of hyperparameter tuning for gradient boosted trees. In consistence
with Figure 3.1, the blue circle (red square) corresponds to top-10 (top-1)
accuracy, respectively. The graph of negative ratios contains two additional
curves of random negative examples. The brown circle relates to top-10
accuracy, whereas the black star presents the results of top-1 accuracy.

1 2 4 8 16 32

0.1

0.2

0.3

Negative ratios

A
cc

ur
ac

y

1 8 64 512 4096

0.1

0.2

0.3

Number of trees

0.01 0.04 0.16 0.64

0.1

0.2

0.3

Eta parameters

A
cc

ur
ac

y

1 2 4 8 16
0

0.1

0.2

0.3

Max depth of trees

With a trained gradient boosted trees model, we can predict the scores of the tactics
for an unseen proof state P . First, the top-100 k-NN predictions are preselected. Then,
for each tactic, we input (ϕP , ϕT) to the model to obtain the score of T . The tactics are
then sorted according to their scores.

Tuning Hyperparameters

Similarly as for the random forest model (Section 3.4.2), we optimize the most important
hyperparameters of the XGBoost training algorithm on the data coming from the non-
sink nodes in the dependency graph of Coq’s standard library (see Section 3.5.1). One
essential parameter is the ratio of negative examples. Ratio n indicates that we generate
n negative instances for each recorded proof state. Other influential parameters that we
tune are: eta (learning-rate), number of trees, and max depth. Due to the limitations
of computing resources, we assume a set of default parameters: ratio = 8, eta = 0.2,
number of trees = 500, max depth = 10, and then separately modify each of these
parameters to observe the influence caused by the change, which is depicted in Figure 3.2.
Both strong and random negatives are evaluated. Obviously, strong negatives perform
better than random negatives, and increasing the negative ratios will certainly lead to

36

3.5 Experimental Evaluation

higher success rates. The figure also shows that a higher number of trees results in better
performance. Learning rates are between 0.08 and 0.64 give good results. It is also
apparent that deeper trees (at least 8) increase the accuracy.

Experimental Setup

The XGBoost model is evaluated on the task of tactic prediction both in the split setting
and the chronological setting (illustrated in Section 3.5). We use the strong negative
examples and determine the final parameters—ratio = 16, eta = 0.2, number of trees =
1024, max depth = 10—for generating a model from non-sink nodes and use that to
predict for sink nodes.

Since the entire dataset contains approximately 250, 000 proof states, and it is time-
consuming to generate a unique XGBoost model for each test case, we propose several
ways to speed up the chronological evaluation. Instead of training on the data from all
preceding states, we merely provide 1, 000 instances occurring previously as the training
data. According to the results of parameter tuning depicted in Figure 3.2, we decide on
the hyperparameters—ratio = 4, eta = 0.2, number of trees = 256, max depth = 10—to
balance the accuracy and efficiency.

3.5 Experimental Evaluation

To compare the performance of the described machine learning models, we perform
three kinds of experiments: split evaluation, chronological evaluation, and evaluation in
Tactician. Achieving good performance in the last type of evaluation is the main goal.
All three machine learning models are evaluated in the first two kinds of experiments,
while in Tactician we only evaluate k-NN and online random forest. This is because the
XGBoost system, while being potentially the strongest machine learner among tested,
may not be easily turned into an online learner and integrated into Tactician. We adopt
the original features—term and term pairs—for evaluation outside Tactician, whereas
both the original features and the new are tested on Tactician’s benchmark. To determine
the relative importance of the feature classes described in Section 3.3, we benchmark the
addition of each class separately in Tactician. All evaluations are performed on data
extracted from the standard library of Coq 8.11.

3.5.1 Split Evaluation

In the directed acyclic graph of dependencies of the Coq modules, there are 545 nodes. 104
of them are sink nodes, i.e., these are the modules that do not appear among dependencies
of any other module. We used these modules as final testing data for evaluation outside
Tactician. The rest of the data was randomly split into training and validation parts
and was used for parameter tuning of random forest and gradient boosted trees. The
models with tuned hyperparameters were evaluated on the testing data. The results of
the evaluation of the three tested models are shown in the first row of Table 3.1.

37

3 Online Machine Learning Techniques for Coq: a Comparison

Table 3.1: Performance of the three tested machine learning models in two types of
evaluation: using a split of the dataset and a chronological evaluation through
the dataset. top-n refers to the frequency of the correct tactic being present
in the first n predictions from a machine learning model.

Machine learning system
k-NN Random Forest XGBoost

Evaluation type top-1 top-10 top-1 top-10 top-1 top-10
split 18.8% 34.2% 32.1% 41.2% 18.2% 38.2%
chronological 17.3% 43.7% 29.9% 58.9% 18.2% 43.4%

3.5.2 Chronological Evaluation
Although the split evaluation from the previous experiment is interesting, it does not
correspond entirely to the Tactician’s internal mode of operation. To simulate the real-
world scenario in an offline setting, we create an individual model for each proof state
by learning from all the previous states—data from dependent files and preceding lines
in the local file. The second row of Table 3.1 presents the results of the evaluation in
chronological order.

3.5.3 Evaluation in Tactician
Table 3.2 shows the results of the evaluation of two online learners—the k-NN and the
random forest—within Tactician. The hyperparameters of the random forest model were
chosen based on the grid search in Section 3.4.2. We run the proof search for every lemma
in the library with a 40-second time limit on both the original and the improved features.

The random forest performed marginally better than k-NN on both kinds of features.
With old features the k-NN proved 3831 lemmas (being 33.7% out of all 11370), whereas
the random forest proved 4011 lemmas (35.3% of all). With the new features, both
models performed better, and again, the random forest proved more lemmas (4117, 36.2%
of all) than k-NN (3945, 34.7% of all).

It is somewhat surprising that the random forest, which performed much better than
k-NN on the split in the offline evaluation, is only better by a small margin in Tactician.
This may be related to the time and memory consumption of random forest, which may
be higher than for k-NN on certain kinds of data.2

It is worth noting that k-NN and random forest resulted in quite different sets of proofs.
The columns marked as union show that the size of the union of proofs constructed by
the two models is significantly larger than the number of proofs found by each model
separately. In total, both models resulted in 4503 (39.6%) proofs using old features and
4597 (40.4%) proofs using the new features.

2Doing the splits in the leaves has quadratic time complexity with respect to the number of examples
stored in the leaf; sometimes it happens, that leaves of the trees store large number of examples.

38

3.5 Experimental Evaluation

Table 3.2: Proving performance of two online learners integrated with Tactician, k-NN
and random forest, in the Coq Standard Library. The percentages in the table
correspond to the fraction of lemmas proved in a given Coq module. The
columns union show what fraction of the lemmas was proved by at least one
of the learners. RF is an abbreviation of random forest.

Coq module #Lemmas Features type

Original New

k-NN RF union k-NN RF union

All 1137 33.7% 35.3% 39.6% 34.7% 36.2% 40.4%
Arith 293 52% 59% 65% 56% 59% 66%
Bool 130 93% 87% 93% 92% 88% 92%
Classes 191 80% 76% 81% 79% 79% 83%
FSets 1137 32% 34% 37% 32% 35% 39%
Floats 5 20% 20% 20% 40% 19% 40%
Init 164 73% 51% 73% 73% 56% 73%
Lists 388 38% 43% 47% 38% 44% 49%
Logic 341 31% 27% 34% 32% 31% 35%
MSets 830 38% 40% 43% 36% 40% 43%
NArith 288 37% 43% 44% 35% 42% 47%
Numbers 2198 23% 22% 27% 24% 23% 27%
PArith 280 31% 40% 44% 35% 39% 45%
Program 28 75% 64% 75% 78% 66% 78%
QArith 295 33% 40% 43% 31% 39% 45%
Reals 1756 19% 23% 25% 21% 24% 26%
Relations 37 29% 24% 40% 27% 26% 29%
Setoids 4 1.00 1.00 1.00 1.00 97% 1.00
Sets 222 43% 42% 49% 49% 47% 53%
Sorting 136 26% 29% 33% 25% 30% 33%
Strings 74 22% 22% 27% 17% 14% 20%
Structures 390 45% 49% 54% 51% 51% 56%
Vectors 37 37% 29% 40% 21% 23% 27%
Wellfounded 36 19% 05% 19% 16% 13% 16%
ZArith 953 41% 46% 49% 40% 43% 46%
btauto 44 11% 20% 20% 20% 17% 22%
funind 4 75% 50% 75% 50% 73% 75%
micromega 339 21% 27% 29% 27% 25% 30%
nsatz 27 33% 33% 37% 40% 26% 40%
omega 37 40% 67% 67% 48% 63% 64%
rtauto 33 30% 39% 48% 33% 44% 51%
setoid_ring 362 21% 23% 26% 27% 27% 30%
ssr 311 68% 55% 69% 70% 57% 71%

3.5.4 Feature Evaluation
Table 3.3 depicts the influence of adding the new classes of features described in Section 3.3
to the previous baseline.3 All of the newly produced features improve the success rates.

3The results here are not directly comparable to those in Table 3.2 mainly due to the usage of a
non-indexed version of k-NN in contrast to the algorithm presented in 2.

39

3 Online Machine Learning Techniques for Coq: a Comparison

Table 3.3: Proving performance of each feature modification. O, W, V, T , S, C denote
original features, top-down oriented AST walks, vertical abstract walks, top-
level structures, premise and goal separation, and adding feature occurrence,
respectively. The symbol ⊕ denotes that we combine the original features and
a new modification during the experiments.
Features O O ⊕ W O ⊕ V O ⊕ T O ⊕ S O ⊕ C
Success rates (%) 32.75 32.82 34.16 33.65 34.42 34.97

However, the top-down oriented AST walks contribute little, probably due to Tactician
having already included term tree walks up to length 2. Every other modification obtains
a reasonable improvement, which confirms the intuitions described in Section 3.3.

3.6 Related Work
Random forests were first used in the context of theorem proving by Färber [FK15b],
where multi-path querying of a random forest would improve on k-NN results for premise
selection. Nagashima and He [NH18] proposed a proof method recommendation system
for Isabelle/HOL based on decision trees on top of precisely engineered features. A small
number of trees and features allowed for explainable recommendations. Frameworks
based on random boosted trees (XGBoost, LightGBM) have also been used in automated
reasoning, in the context of guiding tableaux connection proof search [KUMO18b] and the
superposition calculus proof search [CJSU19a], as well as for handling negative examples
in premise selection [PU18].

Machine learning to predict tactics was first considered by Gauthier et al. [GKU17]
in the context of the HOL4 theorem prover. His later improvements [GKU+21b] added
Monte-Carlo tree search, tactic orthogonalization, and integration of both Metis and
a hammer [GK15a]. A similar system for HOL Light was developed by Bansal et al.
[BLR+19b]. Nagashima and Kumar developed the proof search component [NK17] of
such a system for Isabelle/HOL. This work builds upon Tactician [BUG20c, BUG20a],
adapting and improving these works for dependent type theory and the Coq proof
assistant.

3.7 Conclusion
We have implemented several new methods for learning tactical guidance of Coq proofs
in the Tactician system. This includes better proof state features and an improved
version of approximate k-nearest neighbor based on locality sensitive hashing forests. A
completely new addition is our online implementation of random forest in Coq, which
can now be used instead of or together with the k-nearest neighbor. We have also started
to experiment with strong state-of-the-art learners based on gradient boosted trees, so
far in an offline setting using binary learning with negative examples.

40

3.7 Conclusion

Our random forest improves very significantly on the k-nearest neighbor in an offline
accuracy-based evaluation. In an online theorem-proving evaluation, the improvement
is not as big, possibly due to the speed of the two methods and the importance of
backtracking during the proof search. The methods are, however, quite complementary
and running both of them in parallel increases the overall performance of Tactician from
33.7% (k-NN with the old features) to 40.4% in 40s. Our best new method (RF with the
new features) now solves 36.2% of the problems in 40s.

The offline experiments with gradient boosted trees are so far inconclusive. They
outperform k-nearest neighbor in top-10 accuracy, but the difference is small, and the
random forest performs much better in this metric. Since the random forest learns
only from positive examples, this likely shows that learning in the binary setting with
negative examples is challenging on our Tactician data. In particular, we likely need
good semantic feature characterizations of the tactics, obtained e.g., by computing the
difference between the features of the proof states before and after the tactic application.
The experiments, however, already confirm the importance of choosing good negative
data to learn from in the binary setting.

41

Chapter 4

Learning Proof Transformations and its
Applications in Interactive Theorem Proving

4.1 abstract
Interactive theorem provers are today increasingly used to certify mathematical theories.
To formally prove a theorem, reasoning procedures called tactics are invoked successively
on the proof states starting with the initial theorem statement, transforming them into
subsequent intermediate goals, and ultimately discharging all proof obligations. In this
work, we develop and experimentally evaluate approaches that predict the most likely
tactics that will achieve particular desired transformations of proof states. First, we design
several characterizations to efficiently capture the semantics of the proof transformations.
Then we use them to create large datasets on which we train state-of-the-art random
forests and language models. The trained models are evaluated experimentally, and we
show that our best model is able to guess the right tactic for a given proof transformation
in 74% of the cases. Finally, we use the trained methods in two applications: proof
shortening and tactic suggesting. To the best of our knowledge, this is the first time
that tactic synthesis is trained on proof transformations and assists interactive theorem
proving in these ways.

4.2 Introduction
Interactive theorem provers (ITPs) [HUW14] are sophisticated systems used for con-
structing machine-verified proofs. Various proof assistants, such as HOL4 [SN08b], HOL
Light [Har96], Lean [dMKA+15], Isabelle/HOL [NWP02], and Mizar [BBG+15], are used
by formalizers. Coq [The20] is one of the most popular proof assistant systems. Coq
formalizers invoke reasoning procedures called tactics that transform proof states into
simpler proof states, eventually discharging all proof obligations and thus proving the
initial proof state.

To give a simple example, we show a Coq proof of the equality of the lengths of a list
and its reverse (Figure 4.1). To complete the proof, one can perform induction on the
list l (with the help of the tactic induction l as [| n l’ IHl’]), splitting the proof
state into a case where l is empty and a case where l is nonempty. In the first case,

43

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

Theorem rev_length : ∀ l : list nat, length (rev l) = length l.
Proof.

intros l. induction l as [| n l’ IHl’].
- reflexivity.
- simpl. rewrite → app_length. simpl. rewrite → IHl’.

rewrite add_comm. reflexivity.
Qed.

Figure 4.1: A formal Coq proof, showing the equality property of the lengths of a list
and its reverse

n : nat
l’ : list nat
IHl’ : length (rev l’) = length l’
___________________________________(1/1)
length l’ + 1 = S (length l’)

(a) Before state

n : nat
l’ : list nat
IHl’ : length (rev l’) = length l’
___________________________________(1/1)
1 + length l’ = S (length l’)

(b) After state

Figure 4.2: The before and after states of rewrite add_comm in Figure 4.1, with hy-
potheses above the dashed line and the required goal below it.

the goal reduces to length (rev []) = length [], which is easily discharged using
simple computation. In the second case, we obtain the induction hypothesis IHl’ that
states length (rev l’) = length l’ and need to prove that the equation still holds
when the original list has a natural number n prepended to it. After some simplification,
we transform the length of the concatenation of two lists into the summation of their
individual lengths. Then, with the help of the induction hypothesis, we simplify the goal.
Finally, we rewrite the goal by the commutative property of addition and obtain a simple
equation to prove.

A Coq proof state consists of a list of hypotheses and a goal that needs to be proven.
Given a proof state before the tactic application, the tactic may either transform the before
state to several after states or finish the proof. The semantic of a tactic is captured by
the (usually infinite) set of proof state transformations that can potentially be generated
by that tactic. In this work, we approximate that infinite set with a finite dataset of
transformations that occur in real proofs written by Coq users. We then use machine
learning models to gain an understanding of tactics using their approximated semantics.

As an example, Figure 4.2 presents the before and after states of the tactic rewrite
add_comm at its position in Figure 4.1. In this particular case, the hypotheses remain
unchanged, but in the goal, the two sides of the addition are swapped.

In this paper, we consider the machine learning task of predicting a tactic capable of
generating a given proof state transformation and investigate the applications of this task.
Formally, given a before state ps and n after states {ps′}1..n, we attempt to predict a
tactic t that transforms ps to {ps′′}1..n such that ps′

i is equal to ps′′
i modulo α-equivalence

for every i.

44

4.2 Introduction

4.2.1 Motivation
Tactic prediction methods have so far relied solely on before states, typically to guide
automated tactical proof search in systems like Tactician [BUG20b]. We are interested
in synthesizing tactics based both on the before and after states for a number of reasons.

First, there are multiple interesting applications of this task. For example, formalizers
may want to arrive at a particular proof state, given a particular initial proof state. Or,
given particular before and after states that were generated with a sequence of tactics,
we may want to find a single tactic capturing the transformation, thus shortening and
simplifying the proof, and teaching the formalizer how to use the available tactics.

Second, our work is the first step to designing a novel human-like proof search strategy.
When mathematicians write pencil-and-pen proofs, they often first imagine some inter-
mediate goals and then sequentially fill in the gaps. This provides another motivation:
our trained predictors can recommend the tactics that will bridge the gaps between such
intermediate human-designed proof goals.

Third, the task can be of particular importance for the ITPs which support constructing
proofs in a declarative proof style, such as Isabelle, Mizar, and Lean. In declarative-style
proofs often the after states are specified by the user manually. A large formal library,
Mizar Mathematical Library [BBG+18], is developed in a declarative style. The Isabelle
Archive of Formal Proofs (one of the most developed libraries today) is also predominantly
written in a declarative style. Our approach can be directly applied to predict tactics
able to fill the gap between two subsequent declarative statements.

Finally, the learned tactic embeddings could be used to perform MuZero-style [SAH+20]
reinforcement learning, which means obtaining the after states by combining the em-
beddings of the before states and of the tactics without actually running the ITP. This
could be particularly useful when some tactic applications require large computational
resources.

4.2.2 Contributions
The main contributions of our paper can be summarized as follows.

1. To our best knowledge, we are the first to predict tactics based on the transformation
they make between before and after states.

2. In Section 4.3, to capture the semantics of tactics, we design three characterizations:
feature difference, anti-unification, and tree difference.

3. In Section 4.5, we conduct experiments to verify the strengths of our characteriza-
tions with a random forests classifier and the GPT-2 language model.

4. In Section 4.6, we propose and evaluate two applications of the task, namely tactic
suggestion and proof shortening.

Besides the above-mentioned contributions, Section 4.4 introduces the preliminaries of
the learning technology used in this paper. We discuss two related research fields in
Section 4.7. The conclusions and future work are presented in Section 4.8.

45

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

4.3 Proof State Characterizations
To train the machine learning models, we need to provide characterizations of the before
and after states. Apart from directly using the unprocessed textual representation of
proof states, we design three characterizations: feature difference, anti-unification, and
tree difference.

4.3.1 Feature Difference

To characterize the proof states, we start with the features used by [ZBP+21]. In that
work, the features were used to apply machine learning to predict tactics for proof states.
For example, GOAL-$l’ and HYPS-Coq.Lists.List.rev-$l’ are two features extracted
from the before state in Figure 4.2. The prefixes GOAL and HYPS denote whether a feature
belongs to the goal or the hypotheses. The symbol $l’ denotes a node that occurs in
the abstract syntax tree (AST) of the proof state. The prefix $ means that l’ denotes a
named variable. We subsequently consider the nodes connected in the AST. For example,
the feature Coq.Lists.List.rev-$l’ means that the identifier of the reversion operation
of a list and the list l’ are connected in the AST.

For the current work, we additionally consider feature difference. From the before state
ps and after states {ps′}1..n, we extract features f and {f ′}1..n, respectively using the
procedure discussed above. We define f ′ as the union of {f ′}1..n. By set difference, we
compute the disappeared features f −f ′ and the appearing features f ′−f . The disappeared
features and appearing features are together used as feature difference characterization
of the tactic.

4.3.2 Anti-unification

Anti-unification, first proposed by Plotkin [Plo71] and Reynolds [Rey70], aims to
calculate generalizations of the given objects. Since Coq is based on the Calculus of
Inductive Constructions (CIC) [PM15], an appropriate anti-unification algorithm for Coq
should be higher-order. However, higher-order anti-unification is undecidable [Pfe91].
Therefore, we first convert Coq terms to first-order terms so that we can execute a
decidable and efficient first-order anti-unification algorithm.

To encode Coq terms into first-order logic, we transform them recursively following the
AST. First-order applications and constants are encoded directly, other applications use
the apply functor app and all other cases use special first-order functions (e.g., a dependent
product is encoded as a first-order function prod). The goal of the before state in
Figure 4.2 will be converted to the first-order term = (+(length(l′), S(O)), S(length(l′))).
The non-leaves =, +, length, S denote function symbols. The leaves l′ and O denote
constants.

Terms in first-order anti-unification are defined as t ::= x | a | f(t1, ..., tn) where x
is a variable, a is a constant, f is an n-ary function symbol, and t is a term. In this
paper, letters s, t, u denote terms, letters f, g, h denote function symbols, letters a, b

46

4.3 Proof State Characterizations

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

Var0 Var1

S

length

l’

Figure 4.3: The least general generalization of the before and after states in Figure 4.2

denote constants, and letters x, y denote variables. Substitutions map variables to terms
and are usually written in the form of sets. We can represent a substitution σ as a
set {x 7→ σ(x) | x ̸= σ(x)} where σ(x) is the term mapped by x. The application of
a substitution σ to a term t is represented as tσ. If t is a variable, then tσ = σ(t). If
t = f(t1, ..., tn), then tσ = f(t1σ, ..., tnσ). A term u is called a generalization of a term t
if there exists a substitution σ such that uσ = t. For instance, the term f(g(x), y) is a
generalization of the term f(g(a), h(a, b)). The substitution σ is {x 7→ a, y 7→ h(a, b)}
such that f(g(x), y)σ = f(g(a), h(a, b)).

Anti-unification aims to obtain the least general generalization (lgg) of two terms s
and t. A term u is called a generalization of s and t if there exist substitutions σ1 and
σ2 such that uσ1 = s ∧ uσ2 = t. A generalization u′ of s and t is called the lgg if, for
any generalization u of s and t, there is a substitution σ, such that u′σ = u. Assuming ϕ
is a bijective function from a pair of terms to a variable, given two terms s and t, the
anti-unification algorithm AU calculates the lgg using the two rules below.

• AU(s, t) = f(AU(s1, t1), ..., AU(sn, tn)) if s = f(s1, ..., sn), t = f(t1, ..., tn)

• AU(s, t) = ϕ(s, t) if the preceding rule does not match.

Figure 4.3 presents the lgg of the before and after states considered in Figure 4.2.
Compared to the before state, most of the nodes in the lgg remain the same. The
differences stay in the left side of the equality in the goal: length l’ is substituted
with Var0, and the natural number 1 is substituted with Var1. We need to apply the
substitutions {var0 7→ length l′, var1 7→ 1} and {var0 7→ 1, var1 7→ length l′} to the lgg
to obtain the before and after states, respectively.

We compute the lggs of the goals and the hypotheses separately. We can directly
anti-unify the goals of the before and after states. However, the number of hypotheses

47

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

may be changed by the tactic application. For instance, the tactic intros introduces
new hypotheses, while the tactic clear H removes the hypothesis H. Suppose we are
anti-unifying the hypotheses hyps(h1, ..., hn) and hyps(h1, ..., hn, hn+1). The first rule
of anti-unification immediately fails, and the second rule will generate a variable that
corresponds to all hypotheses in the before state and all hypotheses in the after states.
Therefore, anti-unifying all hypotheses together prevents us from developing a compact
characterization. To calculate the lggs of hypotheses, we first match the hypotheses with
the same names. Then, we compute an lgg on each pair. We refer to the hypotheses that
are only in the before state and only in the after state as respectively deleted hypotheses
and inserted hypotheses. Different from the pairwise hypotheses, we do not perform
anti-unification on the deleted hypotheses and inserted hypotheses, and they remain
unchanged.

We choose anti-unification because it can generate a more compact representation
compared with directly utilizing the before and after states. Consider Figure 4.2, we need
a Coq string of the before state and another Coq string of the after state to characterize
the transformation. Notice that many parts of the before state are unchanged after the
tactic application. It is redundant to represent these unchanged parts twice in both the
before and after states. However, anti-unification enables us to use a single lgg and the
substitutions to characterize the transformation. The unchanged parts of the before and
after states are shared in the lgg. Moreover, previous research has demonstrated that
features based on generalization are very helpful for theorem proving [KUV15a].

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

0 1

2

(a) Deletion context

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

1 0

2

(b) Insertion context

Figure 4.4: The deletion and insertion contexts of the before and after states in Fig-
ure 4.2. Hole0, Hole1, and Hole2 denote length l’, 1, and S(length l’),
respectively.

48

4.3 Proof State Characterizations

4.3.3 Tree Difference

In addition to anti-unification, we propose a characterization based on a tree difference
algorithm [MS19]. Compared to anti-unification, tree difference is better at generalizing
the differences between the before and after states. Tree difference extends the standard
Unix diff [HM76] algorithm by the capability to compute the differences according to the
tree structures. Since proof states have tree structures, such tree differences can be used
to characterize the transformations.

Take the before and after states in Figure 4.2 for demonstration. First, for the
hypotheses that are the same in the before and after states, we keep them unchanged.
Therefore, the hypotheses n, l’, and IHl’ remain the same.

The next step is to extract common subtrees from the original trees (except for the
unchanged hypotheses) to obtain more compact characterizations. We focus on the
ASTs of Coq terms. Assuming there is an oracle to judge whether the current subtree
is a common subtree, we traverse a tree from the root. The calculation of the oracle is
explained in the original paper [MS19]. If the current subtree is a common subtree and
not a leaf node, we substitute it with a hole. We do not substitute leaves with holes
because, in practice, the substitutions of leaves lead to many unexpected holes. The
same common subtrees should always be substituted with the same hole. The results of
applying the substitutions to the before and after states are called the deletion context
and the insertion context, respectively. After the substitutions, the deletion and insertion
contexts are shown in Figure 4.4.

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

0 1 1 0

2 2

Figure 4.5: The patch of the before and after states in Figure 4.2

Afterward, we calculate the greatest common prefix (gcp) of the deletion and insertion
contexts and obtain a patch. According to the original algorithm, if the two trees have
the same non-hole node, we keep the node unchanged and execute the algorithm on their
children. Otherwise, we denote them as a change.

49

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

0 1

+

1 0

2 2

Figure 4.6: The result of applying the closure function to the patch in Figure 4.5

Similar to anti-unification, due to the deletion, insertion, and reordering of the hy-
potheses, we need to adjust the gcp algorithm for proof states. We match hypotheses
by their names and obtain the deleted hypotheses, inserted hypotheses, and matched
hypotheses as in Section 4.3.2. We only calculate gcps on the matched hypotheses. The
deleted hypotheses and inserted hypotheses are represented as a change. Executing gcp
on proof states returns a patch in the format of state(hyps_patch, goal_patch) where
hyps_patch is constructed by hyps(h1, ..., hn, change(del_hyps, ins_hyps)). Each hi is
the patch of two matched hypotheses. Figure 4.5 depicts the patch of the before and
after states in Figure 4.2.

Subsequently, we need to calculate the closure of a patch. The intention is to confirm
that every change is closed: the left and right sides contain the same holes. Notice
that the patch in Figure 4.5 contains two unclosed changes, Change(Hole0, Hole1)
and Change(Hole1, Hole0). The closure function will go to the subtree, whose root
is the parent node of the unclosed change. Then, restore the subtree with the deletion
and insertion contexts before we execute gcp on them. The procedure repeats until all
changes are closed. Since the gcp function on proof states also returns a patch in a tree
structure, we can run the closure function on it. If any patch of matched hypotheses
hi or change(del_hyps, ins_hyps) are not closed, we restore the hyps_patch with the
original deletion and insertion contexts of the hypotheses. Then, if the goal_patch or
the deletion and insertion contexts of the hypotheses are not closed, we restore the patch
of the proof states with the entire deletion and insertion contexts of the two proof states.
Figure 4.6 depicts the patch after the execution of the closure function.

The final step is to replace the identical changes with their origin term. The original
algorithm may cause identical changes, such as Change(Hole2, Hole2) in Figure 4.6.
Since we want a compact characterization, they are not necessary.

Tree difference is better at generalizing the differences compared to anti-unification.

50

4.4 Learning Models

Take the example in Figure 4.2 for instance. The lgg in Figure 4.3 merely shows that the
proof state changes in the position of the variables. The substitutions may be different if
we execute rewrite add_comm on different proof states. However, in the patch generated
by the tree difference in Figure 4.6, the changes are generalized because we substitute
common subterms with holes and will be the same even if we execute rewrite add_comm
on different proof states.

4.3.4 Input Formats
During training, the language model receives the string <Characterization> Tactic:
<Tactic> as input. <Characterization> has four variations:

• Before:<Before State>

• Before:<Before State> After:[<After State>]

• Anti:[<Substs> <Delete_hyps> <Insert_hyps> <Lgg>]

• TreeDiff:[<Patch> <Hole>]

A proof state is represented as a sequent <Hyps> |- <Goal>. The plain texts (like
Tactic:) serve as prompts, while the placeholders (such as <Before State> and
<Tactic>) are substituted according to the proof context. [] denotes a list. Dur-
ing prediction, the language model receives <Characterization> Tactic: as input and
outputs the predicted tactics.

Random forests are fed discrete features as input. For feature difference, the disappeared
features and appearing features are distinguished from each other (appearing features and
disappeared features as introduced in section 4.3.1). To utilize anti-unification, we convert
the lgg and the terms in the substitution that should be used to obtain the before and
after states to features in three disjoint spaces. For anti-unification, we also distinguish
the features of deleted hypotheses and inserted hypotheses from other ones. For tree
difference, we distinguish the gcp of the proof states, the origin and the destination of
changes, and the common subterms into four spaces.

4.4 Learning Models
We consider two machine learning models for the task. The models will be compared
experimentally in the next section.

The first model is a random forest classifier [Bre01b]. Random forests are based on
decision trees. In decision trees, leaves represent labels (tactics in our case), and internal
nodes correspond to features. A rule is a path from the root to a non-leaf. It represents
the conjunction of all features on the path. A rule is determined by maximizing the
information gain of examples. For instance, if we have examples with labels {b, b, b, a, a},
we want to generate a rule that passes all examples with the label a to its left child and
all examples with the label b to its right child. A forest makes predictions by voting
based on a large number of decision trees. Random forests contain several sub-forests.

51

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

Each sub-forest is built on a random subset of the entire dataset. We choose a random
forest implementation that has previously been used to predict tactics for Coq [ZBP+21].

The other used machine learning technique is the pre-trained language model GPT-
2 [RWC+19]. GPT-2 is based on neural networks, which consist of many artificial neurons
to learn from training data. The self-attention [VSP+17] technique is intensively applied
in GPT-2 to differentially weigh every part of the input data. As a language model,
GPT-2 predicts the probability distribution of the next word given a sequence of words
as the input. GPT-2 is a pre-trained language model. The concept of pre-training
imitates the learning process of humans. When humans encounter a new task, humans
do not need to learn it from scratch. They will transfer and reuse their old knowledge
to learn to solve it. Similarly, GPT-2 is pre-trained on a large natural language dataset
BooksCorpus [ZKZ+15]. Afterward, GPT-2 can reuse the knowledge of natural language
learned from pre-training to solve new tasks. To be adapted to a new task, we need to
fine-tune GPT-2 on a relatively small dataset and slightly modify the weights learned from
pre-training. We decide on GPT-2 because pre-trained language models have recently
demonstrated outstanding achievements in natural language process (NLP) [BMR+20]
and formal mathematics [UJ20, WJL+22].

4.5 Experiments

We perform the experiments on the dataset extracted from the Coq standard library.
The dataset consists of 158, 494 states extracted from 11, 372 lemmas. We randomly split
the dataset into three subsets for training, validation, and testing in an 80-10-10% ratio.
First, we use 100 trees by default and optimize the Gini Impurity [MM97]. Gini Impurity
is a metric of the information gain. After the optimization, we set the Gini Impurity to
its best value, try various numbers of trees and obtain the optimized number of trees.
Finally, the best combination of Gini Impurity and the number of trees is determined
for each characterization. The experiments with GPT-2 are based on the Hugging Face
library [WDS+19]. In particular, we employ the smallest GPT-2. The hyper-parameters
are: eta = 3e − 4, num_beams = 3, batch_size = 32. During training, we apply a linear
schedule with the first 20% training steps for warm-up. The remaining parameters are
left as their default values. At most 50 tokens are predicted for a single tactic. We
truncate the input on the left side if it is longer than the maximal length limitation
of GPT-2 (1024 tokens). Language models have length limitations for efficiency. The
attention mechanism used by them causes a quadratic usage of memory as the length of
tokens scales. Every model is trained for 25 epochs on an NVIDIA V100 GPU, and the
snapshot with the highest accuracy on the validation dataset is selected for testing.

Table 4.1 depicts the results of our experiments. The accuracies of the combinations
of before states with after states are significantly better than only relying on the before
states in both random forests and GPT-2. Thus, we conclude that taking after states into
consideration is very helpful to learn the semantics of tactics. The accuracies of GPT-2
are significantly higher than random forests, which confirms that the pre-trained language
model is a more advanced machine learning technique compared to random forests.

52

4.5 Experiments

Table 4.1: Results on the test dataset, showing how often the prediction makes the same
transformation as the tactic in the library. The transformations are considered
modulo α-equivalence.

random forests GPT-2
before 43.23% 46.84%

before after 52.17% 67.45%
feature difference 59.34% –

anti-unification 58.59% 71.74%
tree difference 58.98% 73.83%

For random forests, all of the feature difference, anti-unification, and tree difference
perform better than the unprocessed before and after states. This indicates that our
characterizations can extract more precise features for random forests. We do not apply
GPT-2 to feature differences, as it relies on natural language. In principle, it would
be possible to give it feature differences directly as input, but as there are very few
similarities between features and natural language it would be a serious disadvantage to
the model. The knowledge grasped by pretraining is difficult to be used to understand
features. Although feature difference is a little better than anti-unification and tree
difference, their results are quite similar. The probable explanation is that random
forests are not good at learning from sophisticated features. Random forests cannot learn
meaningful knowledge from all three characterizations and almost only learn to make
correct predictions for the simple tactics. Similarly, with GPT-2, anti-unification and tree
difference provide more accurate predictions than the unprocessed before and after states.
We suppose the explanation is that we are able to appropriately shorten the length of the
input and also keep important information about the proof transformation. Appropriately
shortening the input length is beneficial for GPT-2 because it has a maximal limitation
on the number of input tokens. Table 4.2 compares the percentages of the inputs that are
longer than the maximal length limitation. The statistics show that our implementation
significantly reduces the probability that the input is over the maximal length limitation.
Tree difference can provide more accurate predictions compared to anti-unification with
both random forests and GPT-2. This may be attributed to that the generalization made
by tree difference is easier to learn by machine learning models.

Table 4.2: The ratios of how many inputs exceed the maximal length limitation
before before after anti-unification tree difference

ratio 2.07% 7.96% 4.07% 3.90%

53

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

Table 4.3: The first five tactics suggested by each characterization. The tactics displayed
in bold result in the desired after states.

before before after anti-unification tree difference

1 trivial rewrite <-
minus_n_O

rewrite <-
minus_n_O

rewrite
sub_0_r

2 simpl rewrite
sub_0_r

rewrite
Nat.sub_0_r

rewrite
Nat.sub_0_r

3 rewrite <-
minus_n_O

rewrite <-
minus_n_0 simpl simpl

4 rewrite <-
plus_n_O simpl rewrite

sub_0_r
rewrite <-

sub_0_r

5 auto rewrite <-
sub_0_r

rewrite <-
plus_n_O

apply
sub_0_r

4.6 Applications

In this section, we propose two promising applications of the task. We only evaluate the
most accurate of the methods proposed in the previous Section 4.5 (GPT-2) on the two
tasks.

The first, more direct application, is making tactic suggestions. Given a before state,
it is common for an ITP user to have an intuition of the intermediate proof states that
are necessary to complete the proof. However, sometimes the user cannot guess the
appropriate tactic needed to make the transformations. Using our model with the before
state and the imagined intermediate states, the user can get a complete proposed proof as
output. Hence, our model will predict the likely tactics to perform the transformations.

The other application is shortening existing Coq proofs. Specifically, for the transfor-
mation ps0 ⇒t0 ps1 ⇒t1 ps2... ⇒tn psn+1, where ps is a proof state and t is a tactic, we
want to predict a tactic t′ such that ps0 ⇒t′ ps′ where ps′ and psn+1 are equal under
α-equivalence. Thus, we can replace the tactic sequence with a single tactic and decrease
the length of the Coq proof. A restriction for this task is that because we are only
interested in exploring shorter paths between proof states, psn+1 should not be a finishing
state.

4.6.1 Tactic Suggestion

We view the experiments in Section 4.5 as the evaluation of tactic suggestions. The before
and after states extracted from the Coq standard library are considered as the states
that are presented in the Coq editor and those in users’ minds, respectively. The results
show that taking the after states into consideration, together with the more compact
characterization, is essential for correctly suggesting tactics.

The following is an actual tactic suggestion question taken from the Coq Discourse

54

4.6 Applications

Table 4.4: The shortening ratios and amounts of redundant tactics with different charac-
terizations and sequence lengths.

length before before after anti-unification tree difference

2 ratio 0.379% 0.824% 0.891% 0.833%
number 215 468 506 473

3 ratio 0.039% 0.148% 0.151% 0.148%
number 22 84 86 84

Forum1. The question can be summarized as finding a tactic that transforms the following
before state to the after state. The goal of the before state is to prove that the element
indexed by m − 0 in a list equals the element indexed by m.

• Before state: l : list nat, x:nat, m : nat, H0 : 1 <= m |- nth (m -
0) l 0 = nth m l 0

• After state: l : list nat, x:nat, m : nat, H0 : 1 <= m |- nth m l 0
= nth m l 0

Table 4.3 shows the first five tactics predicted by each model. If we consider only the
before state, we will obtain the correct prediction in the third place. However, the first
two synthesized tactics using anti-unification, tree difference as well as unprocessed before
and after states are appropriate. Besides the tactics displayed in bold, other tactics do not
perform the expected transformation due to various reasons. Some tactics such as trivial,
simpl, and auto do not change the proof state. The tactics rewrite <- plus_n_O and
apply sub_0_r are not applicable and cause errors. The lemma minus_n_0 used in
rewrite <- minus_n_0 does not exist in the Coq standard library. Although rewrite
<- sub_0_r does not cause an error, it leads to an unexpected after state l : list nat,
x:nat, m : nat, H0 : 1 <= m |- nth (m - 0) l 0 = nth m l 0 - 0. Since the
operations executed by trivial, simpl, and auto are quite complicated and may depend
on the context, we assume it is difficult for the model to comprehensively understand
them. Their occurrences in the first five predictions may be mainly because they occur
quite frequently in the training data. The results confirm that the combination of before
and after states is beneficial for suitably suggesting tactics.

4.6.2 Shortening Proofs
The results presented in the previous Section 4.5 focused on decomposed tactics. This
means compound tactic expressions that perform several steps at once have been de-
composed into individual tactic invocations. We apply the technique that is developed
by [BUG20a] to decompose the tactics. Here, we utilize the same models; however, we
focus on the original human-written tactics and try to shorten these (shortening expanded

1https://coq.discourse.group/t/how-to-avoid-awkward-assertions/1153/2

55

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

tactics would be unfair). For all tactic sequences of lengths two and three in the training
dataset, we input their before and after states into the model. In our experiment, we can
only consider the states in the training dataset since our model is trained on all present
tactics. Compared to the validation dataset and testing dataset, our model should be
able to give better predictions on proof shortening for the training dataset. The amount
of original tactics in the training dataset is 56,788. The model synthesizes 10 tactics
for each sequence, and we execute them in Coq to verify that they perform the same
transformation as the sequence modulo α-equivalence.

The results are presented in Table 4.4. We define the number of redundant tactics of
ps0 ⇒t0 ps1 ⇒t1 ps2... ⇒tn psn+1 as n. The shortening ratio is defined as the number of
all discovered redundant tactics divided by the total number of occurrences of tactics in
the training dataset. In this section, our method only applies to a tactic sequence that,
besides the last tactic, every intermediate tactic produces a single after state. While in
Section 4.5, our experiments apply to tactic applications that may produce several after
states. The reason is that it is difficult to calculate the number of redundant tactics if
intermediate tactics produce several after states. The tactic sequence will become a tree
of tactics, and each path consists of a sequence of tactics. We initially expected that the
shortening ratios would not be very high because of the selected dataset. Indeed, the
Coq standard library is written by Coq experts and has been edited and improved for
decades, so we expected that there is not much room to improve. However, given the size
of the dataset, the proposed technique can find a number of redundant tactics, which lets
us conclude that taking the after states into consideration is useful for proof shortening.

We discover many interesting cases, where proofs can be optimized. We present two
examples of such proofs in Table 4.5. The first is about the Riemann integral where ring
and field denote algebraic structures. The Coq user first substituted a subterm in the
proof state, rewrote the goal by several lemmas, and finally applied a lemma about rings.
However, our model discovers the non-trivial transformation on ring can be completed
with a single transformation in field.

In the second example, the Coq library authors first applied the lemma Qle_lteq to
transform the goal into a disjunction. Later, they selected the left side of the disjunction
to continue the proof. Our model is able to figure out that the operation is redundant.
Indeed it finds another lemma Qlt_le_weak that is able to immediately transform the
goal to the left part of the disjunction.

In addition to such more impressive examples of simpler, shorter proofs, our model is
also able to find a few abbreviations. Such abbreviations make the proof shorter but do
not necessarily improve their readability. For instance, our model sometimes combines
unfold Un_growing and intro into intros x y P H n. It uses the implicit mechanism
of intros to unfold Un_growing. However, a Coq user will not be able to understand
what operation intros x y P H n conducts without actually executing the Coq script.

56

4.7 Related Work

Table 4.5: Two examples of shortening of proofs using the prediction. In both of the
presented cases, a single tactic provides an equivalent transformation as a
sequence of tactics. Since the hypotheses are not changed in any of the
presented examples, we omit them and only present the goals for simplicity.

1 field makes the same transformation as (Tactic1. Tactic2.)
State 1 = (x - (x + h0)) * - / h0

Tactic1 replace (x - (x + h0)) with (- h0); [| ring]

State 1 = - h0 * - / h0

Tactic2
rewrite Ropp_mult_d istr_l_reverse;
rewrite Ropp_mult_distr_r_reverse;

rewrite Ropp_involutive; apply Rinv_r_sym

State h0 <> 0

2 apply Qlt_le_weak makes the same transformation as (Tactic1. Tactic2.)
State (Qabs (xn p - yn q) <= 1 # z * k)%Q

Tactic1 apply Qle_lteq

State (Qabs (xn p - yn q) < 1 # z * k)%Q ∨
(Qabs (xn p - yn q) == 1 # z * k)%Q

Tactic2 left

State (Qabs (xn p - yn q) < 1 # z * k)%Q

4.7 Related Work
Several problems originating in formal mathematics and theorem proving have been
considered from the machine learning point of view. One of the most explored ones is
premise selection [AHK+14a]. The goal of this task is to find lemmas in a large library,
that are most likely to prove a given conjecture. For premise selection, the meaning
of dependency in formal mathematics has been explored using both approaches that
try to explicitly define the logical semantics [KUV15a], as well as approaches that use
deep learning for this [WTWD17]. Next, it is possible to apply machine learning to
guide inference-based theorem provers. As part of this task, implicitly the meaning
of provability and step usefulness are derived by the learning methods. This has been
explored in the two top-performing first-order theorem provers [Sud21, JU17] as well
as in higher-order logic automated theorem proving [FB16]. Similarly, the meaning of
the usefulness of a proof step has been considered, for example as part of the HOLStep
[KCS17], where various machine learning methods try to predict if particular inferences
are needed in a proof. All these tasks are different from the task that we propose in the

57

4 Learning Proof Transformations and its Applications in Interactive Theorem Proving

current paper.
Various proof automation systems have emerged to construct proofs by tactic prediction

and proof search. SEPIA infers tactics for Coq by tactic trace and automata [GWR15].
TacticToe [GKU+21a] and Tactician [BUG20a, ZBP+21] apply classical statistical learn-
ing techniques such k-nearest neighbors [Dud76] and random forests [Bre01b] to generate
tactic predictions based on the before states. Several systems use neural networks for the
same task, e.g. HOList [BLR+19a], CoqGym [YD19], and Lime [WRL+21]. These are
all different from the current work that considers the after states as well.

Autoformalization [KUV17b] is a machine translation task applied to formal mathe-
matical proofs. The accuracy of the best methods applied to the task is still very weak in
comparison with human formalization [WBKU20b], however, the neural methods already
show some minimal understanding of the meaning of formalization, for example by finding
equivalent formulations. Again this is a different task from the one considered in the
current work.

4.8 Conclusion
In this paper, we propose a new machine learning task, with which we aim to capture
the semantics of tactics in formal mathematics. Based on a dataset of almost 160
thousand proof states we consider synthesizing a tactic that transforms a before state to
the expected after states. We implement three novel characterizations to describe the
transformation: feature difference, anti-unification, and tree difference. The results of
the experiments confirm the effectiveness of our characterizations. Two applications of
the task are discussed: tactic suggestion for declarative proofs and proof shortening.

In the future, we will investigate if tactic embeddings can be used directly. We can
also try to estimate the after states by calculating the embeddings of the before state and
the tactic or align tactics between systems in a similar way to how concepts are already
aligned between systems [GK19].

Acknowledgements This work was partially supported by the ERC Starting Grant
SMART no. 714034, the ERC Consolidator grant AI4REASON no. 649043, the
European Regional Development Fund under the Czech project AI&Reasoning no.
CZ.02.1.01/0.0/0.0/15_003/0000466, the Cost action CA20111 EuroProofNet, the ERC-
CZ project POSTMAN no. LL1902, Amazon Research Awards, and the EU ICT-48 2020
project TAILOR no. 952215.

58

Chapter 5

Learning Rules Explaining Interactive
Theorem Proving Tactic Prediction

5.1 abstract
Formally verifying the correctness of mathematical proofs is more accessible than ever,
however, the learning curve remains steep for many of the state-of-the-art interactive
theorem provers (ITP). Deriving the most appropriate subsequent proof step, and
reasoning about it, given the multitude of possibilities, remains a daunting task for
novice users. To improve the situation, several investigations have developed machine
learning based guidance for tactic selection. Such approaches struggle to learn non-trivial
relationships between the chosen tactic and the structure of the proof state and represent
them as symbolic expressions.

To address these issues we (i) We represent the problem as an Inductive Logic Pro-
gramming (ILP) task, (ii) Using the ILP representation we enriched the feature space
by encoding additional, computationally expensive properties as background knowledge
predicates, (iii) We use this enriched feature space to learn rules explaining when a
tactic is applicable to a given proof state, (iv) We use the learned rules to filter the
output of an existing tactic selection approach and empirically show improvement over
the non-filtering approaches.

5.2 Introduction
Interactive Theorem Provers (ITP), such as Coq [The20], Lean [dMKA+15], and Is-
abelle [Pau94], are powerful tools that combine human instruction with computer verifica-
tion to construct formal mathematical proofs, providing a reliable means of certification
and ensuring safety in critical applications.

These systems operate as follows: the user specifies a goal to prove, the initial proof
state. Then the user specifies tactics (an operation transforming a proof state into proof
states). Certain tactics close proof states. The proof is complete if there are no remaining
open proof states, i.e., the goal has been proved.

Given the complexity of ITP systems, a fully automated approach to proving user
specified goals is intractable. Numerous investigations have instead focused on providing

59

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

the user with guidance through tactic suggestion.
The methods used in practice by ITP users are statistical machine learning methods

such as k-nearest neighbors (k-NN) and naive Bayes [GKU+21a]. These methods take a
goal g, select a goal g′ most similar goal to g, and rank the particular tactics relevant for
solving g′ based on their likelihood of solving g.

Neural network and LLM-based approaches addressing the task include: CoqGym [YD19]
trains tree neural networks to automatically construct proofs for Coq. Thor [JLT+22]
combines LLMs and external symbolic solvers to search for proofs for Isabelle. LLMs
are also applied to synthesising training data to enhance the performance of theorem
proving [X+23]. Despite showing slight improvement in performance during machine
learning evaluations, in practice these methods require long training for each new theory,
which makes them less useful for day to day proof development.

Additionally, they lack interpretability. When a user receives predictions, they may
want to know why a particular tactic was chosen over another tactic to better understand
what actions they should take in the future.

Furthermore, guidance based on statistical learning approaches often requires propo-
sitionalisation of features, calculated based on the structure of the abstract syntax tree
(AST) of a proof state [ZBP+21], e.g., there is a path between nodes X and Y in tree T.
For complex and precise features, pre-computation is prohibitively expensive.

Moreover, logical inference is significantly influenced by the small error margins
present in the statistical inferencing mechanisms of LLMs and similar models. Thus,
predictions based on chained logical inferences will quickly suffer a loss of predicative
accuracy [LeC23].

In contrast to pre-computed features, we represent such features as logic programs and
compute them only when needed for learning. For example, we define logic programs for
the existence of two particular nodes on a path (of arbitrary length) from the root of the
tree as (above(AST, X, Y)). Below, we present a learned rule for the simplification tactic
which states that the tactic is applicable to a proof state when the goal node of the proof
state contains a constant above two constructs (also in the goal) which differ.

tac(A,"simpl") :-
goal_node(const,A,B,C), goal_node(construct,A,D,E),
goal_above(A,B,D), goal_node(construct,A,F,E),dif(F,D),
goal_above(A,B,F).

The rules, as presented above, are learned using inductive logic programming (ILP), in
particular, Aleph [Sri01]. In addition to providing rules explaining tactic prediction, we
use the resulting rules to filter the output of k-NN, in particular, the classifier presented
in [BUG20b, GKU+21a] (Tactician and TacticToe). Essentially, we want to determine
whether ps, r ⊨ pt where ps is a logic program representing the proof state, r is a learned
rule for the tactic t, and pt is the head predicate of r denoting that t should be applied to
ps. Thus, given the list of recommended tactics by a k-NN classifier, we can further filter
this list using the learned rules. Our hypothesis is that features of proof state defined
through logic programs can be used to learn rules which can be used to filter the output
of a k-NN model to improve accuracy.

60

5.3 Background

In addition to improved performance, our approach produces rules to explain the
predictions. Consider again the aforementioned rule of simpl that specifies that the
goal may be simplified if it contains a constant above two constructors with different
positions. Here, the constructor and the constant denote the datatypes of Coq’s terms.
The same variable E confirms that the two constructors must correspond to the same
identifier in Coq. This rule may suit the Coq structure S x − S y which denotes
(1 + x) − (1 + y). It can be simplified to x − y. S denotes a constructor, and − denotes a
constant. The first argument of goal_node is a constant that is constrained by us via
mode declarations [Sri01].

We use the ILP system Aleph [Sri01] together with a user-defined cost function to
evaluate the learned rules on the Coq standard library. We chose Aleph because it has
empirically good results [CD22]. We refrain from using modern ILP approaches such as
Popper [CM21] as the underlying ASP solvers have difficulty generating models when
many variables are required and high-arity definitions are included in the background. We
develop representation predicates (goal_node) to efficiently denote the nodes of the AST.
We also develop feature predicates (goal_above) which denote the properties of the AST
calculated based on the representation predicates. The motivation for developing feature
predicates is that propositionalization of it would significantly enlarge the representation
making it impractical to use. Our experiments confirm that feature predicates can learn
more precise rules (rules with higher F-1 scores [S+07]) compared to representation
predicates. Additionally, the experiments demonstrate that the combination of ILP
and k-NN can improve the accuracy of tactic suggestions in Tactician, the main tactic
prediction system for Coq.

Our contributions can be summarized as follows:
• First, we express the task of predicting the best tactic to apply to the given proof

state as an ILP task.

• Second, using the ILP representation we enriched the feature space by encoding
additional, computationally expensive features as background knowledge predicates,
allowing us to avoid grounding the features which are computationally expensive.

• Third, We use this enriched feature space to learn rules explaining when a tactic is
applicable to a given proof state and filter the output of an existing tactic selection
approach using these rules.

• Finally, We empirically show improvement over the non-filtering approaches.
This is the first time an investigation has considered ILP as a tool for improving tactic

suggestion methods for ITPs.

5.3 Background
5.3.1 Theorem Proving in Coq
Coq is one of the most popular proof assistants and has been widely used for building
trustworthy software [Ler21] and verifying the correctness of mathematical proofs [G+08].

61

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

Figure 5.1: A Coq proof of the associative property of addition and the proof state before
simpl.

Coq tactics are proof state transformations that provide a high-level combination of
underlying logical inferences. To illustrate how theorems are formalized in Coq, we
present a simple example in Figure 5.1. Here, we want to prove the associative property
of addition. The natural numbers in Coq are defined by two constructors O and S. O
denotes 0, and S n denotes n+1. Here, the initial proof state is the same as the statement
of the theorem. We first apply induction on n and obtain two cases corresponding to
the two constructors. In the first case, n equals 0. After some simplifications, we can
prove 0 = 0 by the tactic reflexivity. The second case is a bit more complicated,
and we need to apply the induction hypothesis IHn to finish the proof. Figure 5.1 also
presents a concrete example of a proof state. A proof state consists of a goal to prove and
several hypotheses. The goal is below the dashed line. IHn, n, m, and p are the names of
hypotheses. A proof state is often represented as a sequent E ⊢ g where E and g denote
the hypotheses and the goal, respectively.

5.3.2 k-NN adaptations to theorem proving

Several machine learning algorithms have been adapted to theorem proving tasks. In
most cases, simpler algorithms adapted to formal reasoning tasks perform better than
deep learning based methods in practice. For this reason, modified k-NN (explained
in [BUG20a]) is the main algorithm for TacticToe and Tactician. Even if evaluations with
deep learning or large tree-based classifiers have shown some theoretical improvements,
the simpler algorithms training for the particular theories developed by users, give a
larger practical advantage to the users. As such, we focus on the modified k-NN in
this work. Standard k-NN starts by calculating the distance between a new proof state
and all known proof states in the database. The distance is measured by the similarity
between the features of the proof states, usually using tree walks in the AST of the proof
state [KUV15c]. The dependencies of such selected neighbours, with additional scaling by
their distances, inclusion of the neighbours themselves, and further modifications exhibit
commendable empirical performance [R+24], and are therefore the default algorithm
both in Tactictoe and Tactician.

62

5.4 Background Knowledge

5.4 Background Knowledge
To utilize ILP, we need to appropriately define the background knowledge. We start this
section by encoding the nodes of AST as representation predicates. Then we propose new
feature predicates that will allow leveraging the power of ILP. We finally add predicate
anonymization, already very useful in automated reasoning systems, to representation
and feature predicates.

5.4.1 Representation Predicates
Every node in the AST of the proof state is converted to a fact. There are two categories
of nodes: identifiers of existing objects and constructors of Coq’s datatype. A node in
the goal is converted to goal_node(name, nat, goal_idx). The argument name refers
to the value of the node. A unique natural number is assigned to every proof state
to identify it. The argument goal_idx uses a sequence of natural numbers to specify
the position of the node in the goal. A node in a hypothesis is converted to a fact
hyp_node(name, nat, hyp_name, hyp_idx). Compared to a goal_idx, a hyp_idx starts
with the name of a hypothesis so that two hyp_idx from different hypotheses have different
prefixes. The goal_node and hyp_node predicates are called representation predicates
in this work.

5.4.2 Feature Predicates
We also define two categories of feature predicates which represent the properties of AST
based on the representation predicates.

Positional Predicates represents the relative relationships between nodes’ positions.
The predicate goal_left(Goal_idx1, Goal_idx2) and goal_above(Nat, Goal_idx1,
Goal_idx2) respectively checks whether the node is left (above) to another node in the
goal. They are inspired by the horizontal features and vertical features used in previous
works [CJSU19b, ZBP+21]. Similarly, we define hyp_left(Hyp_idx1, Hyp_idx2) and
hyp_above(Nat, Hyp_idx1, Hyp_idx2). Previous works have confirmed the usefulness
of using the occurrence numbers of features in feature characterization, which inspires us
to develop the predicate dif(Goal_idx1, Goal_idx2). It denotes that the same node
multiply occurs in different positions in the goal.

Equational Predicates check the equality between two terms. The predicate eq_goal_term(Nat,
Goal_idx1, Goal_idx2) checks that the two subterms in the goal are the same. The
root nodes of the two subterms are located in the positions Goal_idx1 and Goal_idx2,
respectively. It pertains to reflexivity which proves a goal of the equation if the
equality holds after some normalization. Thus, it can prove x = x and inspires us to
develop eq_goal_term. The predicate eq_goal_hyp_term(Nat, Goal_idx, Hyp_idx)
is inspired by a number of tactics that check the equality between the goal and the hy-
potheses, such as assumption, apply, and auto. For instance, assumption proves a goal

63

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

training dataset orthogonalization example selection rule generation

prediction proof state tactic prediction by k-NN prediction reordering by rules

optimization reordered predictions evaluation rule optimization

Figure 5.2: An overview of the procedures of the learning framework.

if it equals a hypothesis. Assume a proof state H1 : Q x, H2 : P x → Q x ⊢ Q x which
can be proved by assumption. The predicate eq_goal_hyp_term checks the equality
between the goal and Q x in a hypothesis. The predicate is_hyp_root(Nat, Hyp_idx)
ensures the node is the root of a hypothesis. Thus, it can show the equality only holds
between the goal and H1 instead of H2. With a reason akin to that of is_hyp_root,
we define is_goal_root(Nat, Goal_idx). The equality between two terms in differ-
ent hypotheses is checked by eq_hyp_term(Nat, Hyp_idx1, Hyp_idx2). It is useful
for tactics that can apply hypotheses several times, e.g., auto. Assume a proof state
H1 : P x, H2 : P x → Q x ⊢ Q x. First, auto applies H2 to the goal and changes the
goal to P x. Then, it applies H1 to prove the new goal. The description of the operation
requires to show that H1 equals to the premise of H2.

5.4.3 Anonymous Predicates

We also substitute identifiers with more abstract descriptions to facilitate the generaliza-
tion ability of ILP. The substitution is similar to that in ENIGMA anonymous [J+20].
The predicates that accept original nodes and abstract nodes as their first arguments
are called original predicates and anonymous predicates, respectively. We substitute
identifiers with their categories, consisting of inductive types, constants, constructors, and
variables. Besides the abstract nodes, we also include the original nodes as arguments in
goal_node and hyp_node. We need them because when checking the equality, we want
to compare the original nodes. Afterward, the anonymous predicates of nodes change to
goal_node(anonym_name, nat, goal_idx, origin_name) and
hyp_node(anonym_name, nat, hyp_name, hyp_idx, origin_name). Some basic identi-
fiers are not substituted, which consist of logic_false, logic_true, and, or, iff, not,
eq, bool_true, and bool_false. There are both logic and boolean values of true and
false because Coq can represent objects in logic or programs. Concerning the constructors
of Coq’s datatypes, we only retain four important constructors: rel, prod, lambda, and
evar.

5.5 Method
Figure 5.2 presents an overview of our learning framework. During the training, we first
perform orthogonalization, a technique introduced in TacticToe, to clean the dataset.
Then, we select examples and apply ILP to generate rules. To make predictions, first,
k-NN predicts a sequence of likely helpful tactics. Afterward, the rules are used as a filter

64

5.5 Method

to reorder the predictions. The optimization procedure denotes removing some low-quality
rules. This is achieved by evaluating the reordered predictions in the validation dataset
and removing the low-quality ones. In the next subsections, we describe these parts.

5.5.1 Orthogonalization

In some cases, different tactics could transform the same proof state in the same way.
This raises ambiguity and makes learning difficult. Orthogonalization is used to reduce
such ambiguity. In the orthogonalization, we only focus on four very popular tactics in
the Coq standard library: assumption, reflexivity, trivial, and auto. We denote
the sets of proof states which can be closed by assumption, reflexivity, trivial, and
auto as AS, R, T , and AT , respectively. There exist the relations AS ⊊ T , R ⊊ T ,
and T ⊊ AT . For each proof state ps to which the tactic t is applied, the above four
automation tactics are sequentially tried. If ps can be finished by the automation tactic
t′, we replace t by t′. If none of the four tactics can finish the proof state, the original
t is preserved. The orthogonalization procedure is simpler than in TacticToe, which
orthogonalizes all tactics. This is because our current predicates can only capture a part
of the usage of tactics. We leave full orthogonalization as future work.

5.5.2 Example Selection

Choosing appropriate training examples is crucial for learning reasonable rules. For a
specific tactic tac, the proof states to which it is applied are regarded as the positive
examples. The proof states to which the tactics different from tac are applied are regarded
as the negative examples. We experimentally determine the number of positive and
negative examples for learning rules. We develop a clustering mechanism to split positive
examples into roughly equal-sized clusters. We experimentally evaluate the combinations
of different numbers of negative examples and different numbers of positive examples.

We choose an implementation of a constrained k-means algorithm [LK18] to split
positive examples into clusters of roughly the same size. The original k-means algo-
rithm [HW79] can only split examples into a certain number of clusters. In contrast,
constrained k-means can also specify the lower bound and the upper bound of the size
of the clusters, which is important to give good sizes of training examples for each ILP
learning task.

We apply k-NN to discover negative examples for each positive example. As this
pre-processing step is not theorem-proving specific, we use the general k-NN from the
scikit-learn library [P+11]. We use the same features as Tactician [ZBP+21]. For each
positive example, k-NN calculates the distance between it and every negative example in
the training data. Then, we rank the negative examples in an ascending order of distance.

5.5.3 Training and Prediction

For each tactic, we use Aleph to generate ILP rules for each cluster of positive examples
and its associated negative examples. Afterwards, all the rules are merged together, and

65

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

Algorithm 6 Preselection Reorder
Input: a sequence of tactics tac1..50 preselected by k-NN for a proof state
Output: a sequence of tactics which is a reorder of the preselection
goods ← []
bads ← []
for i ∈ {1..50} do

if taci is accepted by learned rules then
append taci to the end of goods

else
append taci to the end of bads

reorder ← the sequence of appending bads to the end of goods
return reorder

duplicated rules are removed. Finally, we remove the rules of tactics that are logically
subsumed by other rules of the same tactic.

Algorithm 6 illustrates the procedures of making predictions. We use the state-of-the-
art k-NN in Tactician. The features are the same as those used in Section 5.5.2. Assume
a pair of a proof state and a tactic (ps, tac). To make predictions, first, k-NN preselects
a sequence of likely tactics tac1..50. For each taci, we use the learned rules to determine
whether to accept it. During the evaluation, the prediction taci is (un)expected if taci is
(un)equal to tac. If the rules accept (reject) a tactic, the prediction is a declared positive
(negative). If the rules reject a taci equal to tac, we regard the prediction made by the
rules as a false negative (FN). Based on the expected tactics and acceptances, we also
obtain true positives (TPs), true negatives (TNs), and false positives (FPs).

5.5.4 Rule Optimization

The idea of rule optimization is to remove some low-quality rules to increase the overall
performance of rules. For the evaluation of all rules, we chose the F-1 score as the metric,
defined as 2T P

2T P +F P +F N , because it is a standard metric for evaluating imbalanced data.
As an illustration of the imbalance, given a pair of a proof state and a tactic tac, rules
make predictions for 50 preselected tactics. However, at most one is the same as tac. If
a rule is overly general, which means that the number of FPs introduced by it is much
larger than the number of TPs introduced by it, removing it will increase the overall F-1
score.

Although a large number of negative examples prevents generating overly general rules,
using them may not produce the best rules for two reasons. First, our background can
merely capture a portion of the usage of the tactics; thus, a significantly large number
of negative examples cannot produce perfect rules but may produce overly specific
rules. Second, some negative examples in our dataset are actually false negatives. A
mathematician may be able to choose the next step from a couple of tactics that make
different proof transformations. Orthogonalization in Section 5.5.1 can only partially
remove such overlaps between tactics, thereby decreasing the number of false negatives.

66

5.6 Experiments

It is computationally prohibitive to perform full orthogonalization of our data. Observe
that, our experiments still show an increase in accuracy in light of the noisy data.

Our approach allows us to learn many rules explaining a particular tactic. Over the
training set, some of these rules capture the usage of the given tactic better than others.
Before, moving to testing on unseen data, we prune the learn rules and keep only those
that performed well on the validation set.

To determine which rules to include, we evaluate the quality of each rule in the
validation dataset and remove those with low qualities. The left rules are used for the
evaluation on the test dataset. We measure the quality of each rule and remove it if its
quality is below a certain threshold. We set different thresholds and choose the threshold
leading to the highest F-1 score via experiments. For the metric of the quality of a single
rule, we use precision, defined as T P

T P +F P . Here, FP and TP are produced by a single
rule. Precision is a good metric because if a rule is too general, its precision will be low
and we will be able to remove it to improve the overall F-1 score.

5.6 Experiments

We conducted the experiments on the Coq standard library [CK18a]. We chose the
Coq standard library as the benchmark because it is a standard dataset for evaluating
machine learning for Coq. Moreover, it comprises well-crafted proofs developed by
Coq experts and has been optimized for decades. The Coq standard library consists
of 41 theories and 151,678 proof states in total. The code for this paper is available at
https://github.com/Zhang-Liao/ilp_coq.

Most parameters of Aleph were left as default besides three parameters. We set the
maximal length of a clause to 1,000, the upper bound of proof depth to 1,000, and the
largest number of nodes to be explored during the search to 30,000. We define a cost
function similar to the default cost function because, by default, Aleph cannot learn with
no negative examples or only one positive example. The user-defined cost function was
only used when there were no negative examples or exactly one positive example. We set
a timeout of ten minutes for learning.

We conducted the experiments in the transfer-theory setting, which means different
Coq theories are used for training, validation, and testing. We use this setting because it
simulates a practical application scenario of ILP. Mathematicians develop new theories
based on the definitions and proven theorems in the developed theories. To be practically
beneficial, ILP should also learn rules from training theories, and the learned rules should
help make tactic suggestions for theories that do not depend on the training theories. The
training theory should be carefully chosen before conducting experiments. The theory
Structures was chosen for training because it has a balanced distribution of various
tactics. To be consistent with the transfer-theory setting, the testing theories should not
depend on Structures. From the Coq standard library, we chose all theories which do
not depend on Structures for testing including rtauto, FSets, Wellfounded, funind,
btauto, nsatz, and MSets. Afterward, from all the theories that do not depend on the
testing theories, we randomly chose five theories: PArith, Relations, Bool, Logic, and

67

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

���

���

���

���

�
��

���������������

���

���

���

���

�
��

����������������

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
��

��
��
��

��
��
��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
��

��
��
��

��
��
��

���

���

���

���

�
��

���������������

����������

��

��

��

��

Figure 5.3: F-1 scores of different parameters when qualt is set to 0, 0.18, or 0.30. AF,
AR, OF, and OR denote the anonymous feature predicates, the anonymous
representation predicates, the original feature predicates, and the original
representation predicates, respectively. In the x-axis caption P and N denote
pos and neg, respectively.

Lists, merged as the validation dataset.

5.6.1 Parameter Optimization

In Section 5.5, we introduced three additional hyper-parameters beyond those already
present in Aleph. They are the size of the cluster of positive examples (pos), the number
of negative examples of each positive example (neg), and the quality-theshold (qualt)
below which the rule should be removed.

We evaluated the F-1 scores of different predicate categories with different parameters.
There are four predicate categories AF, AR, OF, and OR, respectively denoting the
anonymous feature predicates, the anonymous representation predicates, the original
feature predicates, and the original representation predicates. AF and OF contain
both representation predicates and feature predicates, while AF and AR only contain
anonymous predicates. We chose pos between 0 and 32. For neg, we chose it between 0
and 64. For all the combinations of pos and neg, rules were generated. Afterward, the
learned rules were evaluated in the validation dataset. Finally, we calculated the F-1
scores with different values of qualt. The range of qualt was set between 0 and 0.30, with
intervals of 0.06.

Figure 5.3 depicts the F-1 scores when qualt = {0, 0.18, 0.30}. The significance of qualt
is evident. When qualt = 0, the best F-1 scores of all predicate categories hover around
0.10. The best scores become significantly higher than 0.10 when qualt = 0.18. The low
F-1 scores of qualt = 0 are caused by some overly general rules which are discussed in

68

5.6 Experiments

Table 5.1: The best parameters
of each predicate cat-
egory.

Parameter AF AR OF OR
Precision 0.18 0.12 0.18 0.12
Positive 1 16 4 1
Negative 32 1 1 1

Table 5.2: The F-1 scores in the test dataset.
Theory AF AR OF OR
rtauto 0.564 0.401 0.502 0.440
FSets 0.266 0.125 0.193 0.144
Wellfounded 0.229 0.049 0.134 0.135
funind 0.545 0.0 0.0 0.0
btauto 0.339 0.125 0.162 0.122
nsatz 0.164 0.070 0.163 0.116
MSets 0.272 0.084 0.143 0.095

Section 5.5.4. An example of such an overly general rule is provided below, showing the
necessity of employing an appropriate qualt.

tac(A,"reflexivity") :- goal_node(coq_Init_Logic_eq,A,B,C).

The above rule denotes that reflexivity is appropriate whenever there is an equal sign
in the goal. It is too general and irrelevant to the usage of reflexivity as explained
in Section 5.4.2. With qualt = 0.30, the best F-1 scores decrease again. The decline
is attributed to the fact that most rules remained by a very high qualt are excessively
specific, thereby producing a limited number of TPs.

Afterward, we analyze the results obtained with qualt = 0.18 since the F-1 scores
are notably higher than those with qualt = {0, 0.30}. None of the predicate categories
obtains the highest F-1 score with pos = 32. We assume the reason is that an overly
large pos may gather many irrelevant positive examples, which causes difficulties in
choosing negative examples. If two positive examples significantly differ, an appropriate
negative example for one of them may be inappropriate for the other. A large value
of neg generally decreases the F-1 scores of all predicates except for AF . A possible
explanation is that too many negative examples cause AR, OF , and OR to learn overly
specific rules. Due to the expressivity of AF , it can still learn some reasonable rules.

Table 5.1 displays the optimal parameters of all predicate categories. The generalization
does not work well for OF and OR, but already with AF its F-1 score peak necessitates
a large neg, indicating its superior ability to distinguish positive examples from negative
examples and to learn precise rules. Perhaps due to the reason that our background
knowledge is incapable of perfectly capturing the usage of tactics, AF also uses pos = 1.
A small pos allows AF to learn many rules for diverse situations. AR requires pos = 16
to achieve its peak F-1 score, possibly due to its limitation of representing AST in a
highly generalized manner.

The training times for each category of predicates are presented in Figure 5.4. The total
training time is calculated by summing the training times for the examples associated with
each cluster of tactics. Learning definitions of feature predicates is computationally more
costly than learning definitions of representation predicates, likely due to the resource
overhead required for the former. Moreover, learning anonymous predicates requires more
time than original predicates. We hypothesize that obfuscating some of the structure
of the proof terms (when learning anonymous predicates) correlates with an increase in

69

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
��

��
�
��

��
�
��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
��

��
��
��

��
��
��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
��

��
��
��

��
��
��

�

���

���

���

���

���

���

�
��

�
��
�
��
�
��
�
�

����������

��

��

��

��

Figure 5.4: Training times for different categories of predicates.

the size of the search space and thus longer learning times when searching for programs
distinguishing a large number of positive examples from negative examples. In some cases
the learning phase took more than ten hours, indicating potential future work to improve
the computational efficiency. Nevertheless, our learning is still significantly faster than
contemporary neural networks trained to solve similar problems and, in addition, we
provide an explanation of our decisions (in the form of a logic program).

5.6.2 Testing

According to parameter optimization, we choose the rules with the best parameter and
test the performance in the test dataset. Table 5.2 shows the F-1 scores in the test
dataset. Using a background knowledge consisting of AF predicate definitions during
training results in rules which perform best during testing. This owes to that AF can
learn precise rules to characterize the usage of tactics. In comparison, the rules learned
by AR are too general, and the rules learned by OF and OR are too specific. In all
theories, except those consisting of only a few proof states (funind has only 14 proof
states), training with OF, OR, and AR background knowledge results in rules performing
well on the test data F-1 scores. We also evaluated whether the combination of ILP and
k-NN can improve the accuracy of k-NN. The algorithm of reordering is explained in
Section 5.5.3. Figure 5.5 shows the results of the top-k accuracies in different theories.
In all the theories, the combination of ILP and k-NN increases the accuracies of k-NN.

5.7 Case Studies and Limitations
To illustrate that we indeed learn precise rules, besides the example of simpl presented
in Section 5.2, we present three more examples in this section. The rule of trivial suits
the goal A → B = B. First, trivial introduces A as a hypothesis, changing the proof
state to H : A ⊢ B = B. Next, trivial can automatically prove B = B. The rule of
auto aligns the proof state of the structure H : B ⊢ A ∨ B. The tactic auto decomposes
the disjunction, and the goal changes to either proving A or proving B. Then, it proves
B with the hypothesis. In contrast, trivial cannot decompose the disjunction. The rule

70

5.8 Related Work

��

��

��

��

�
�
�
�
��
�
�

��������������� �������������� ��������������������

� �� �� �� �� ��

�����

���������������

� �� �� �� �� ��

�����

��

��

��

��

�
�
�
�
��
�
�

���������������

� �� �� �� �� ��

�����

��������������

� �� �� �� �� ��

�����

��������������

������

������

������

������

������

���

Figure 5.5: Top-k accuracies in the test theories. It denotes how often the label is
predicted in the first k predictions. The symbol + denotes using the rules
learned by a certain predicate category to reorder the preselections.

of intuition suits the goal A ↔ A which cannot be proved by auto. In comparison,
intuition can perform stronger automation than auto and can prove it.

tac(A,"trivial") :-
goal_node(prod,A,B,C),goal_node(const,A,D,E), goal_above(A,B,D),
goal_node(const,A,F,E),goal_above(A,B,F),eq_goal_term(A,F,D).

tac(A,"auto") :-
goal_node(coq_Init_Logic_or,A,B,C),goal_node(const,A,D,E),
goal_above(A,B,D),hyp_node(const,A,F,G,E),eq_goal_hyp_term(A,D,G).

tac(A,"intuition") :-
goal_node(coq_Init_Logic_iff,A,B,C),goal_node(const,A,D,E),
goal_above(A,B,D),goal_node(const,A,F,E),eq_goal_term(A,F,D)

Albeit we can learn several reasonable rules, many tactics are difficult to describe.
There are several reasons for the difficulties. First, our current work cannot generalize
tactics with different arguments. For instance, assume there are two tactics apply H1
and apply H2 where H1 and H2 are names of hypotheses. They are regarded as different
tactics but may have the same behavior. Second, the usage of some tactics such as
induction is inherently complicated [Nag19]. Third, the same mathematical theorem
can proved in various ways which leads to many overlaps between the usage of tactics.

5.8 Related Work
There are several tasks of machine learning for theorem proving. Premise selection is prob-
ably the most well-discovered task. It studies the question of how to predict possibly useful
lemmas for a given theorem. Quite a lot of classical learning methods [AHK+14b, GK15b]
and neural networks [ISA+16] have been applied to premise selection. The most relevant
task to our work is learning-based formal theory proving. Researchers have investigated
both employing machine learning to learn from human-written proofs [GKU+21a] and
guide some sophisticated software to automatically construct proofs [KUMO18a].

71

5 Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

5.9 Conclusion and Future Work
We have developed the first application of ILP to interactive theorem proving. For
this, we have developed new feature predicates, able to dynamically calculate features
based on the representation of AST of the proof state. We proposed a method for using
ILP effectively for tactic prediction. We experimentally evaluated the rules learned
by ILP and compared them to practically used prediction mechanisms in ITPs. The
experiments confirm that the method gives explainable tactic predictions. Our work
shows the potential of applications of ILP to improve ITP tactic suggestion methods.

Several improvements are possible. We would like to use our work with stronger
ILP systems, such as Popper. However, given that our background knowledge includes
predicates with high arity and our method builds large rules with many variables, the
underlying ASP (SAT) solver used by Popper struggles with the generation of models.
Improvements to our encoding and recent work on improving the performance of Popper
can make this research direction viable in the near future. Next, it is interesting to use
ILP to capture the relations between arguments of tactics and the objects to which the
arguments refer. Finally, we plan to investigate the application of ILP to other ITP
tasks [ZBKU23].

Acknowledgments This work was supported by the Czech Science Foundation Grant No.
22-06414L, the Cost action CA20111 EuroProofNet, the ERC PoC grant no. 101156734
FormalWeb3, Amazon Research Awards, the EU ICT-48 2020 project no. 952215 TAILOR,
the ERC CZ project no. LL1902 POSTMAN, and the University of Innsbruck doctoral
scholarship promotion of young talent.

72

Chapter 6

Conclusion

6.1 Summary
This dissertation exhibits various approaches aimed at enhancing proof automation for
the ITP, with a specific focus on the Coq proof assistant.

I have developed innovative features and several learning models for tactic-based ITP
guidance within the Coq proof assistant. These features extend those used in Tactician,
an existing proof automation system for Coq. The learning models implemented include
locality-sensitive hashing forests, online random forests, and gradient-boosted trees.
Empirical results demonstrate that the newly developed features and models outperform
Tactician’s original features and the original k-NN model.

In addition, I have proposed a novel task—learning proof transformations—which closely
aligns with tactic-based ITP guidance. I have introduced three distinct characterizations
for proof transformations: feature difference, anti-unification, and tree difference. Two
key applications have been identified for this task: reducing proof length and providing
tactic suggestions. Experimental results validate the accuracy of these characterizations
and their practical applications.

Furthermore, I have applied ILP to infer rules for determining when specific tactics
should be employed. I have designed an approach where these learned rules serve as
filters to reorder tactic predictions generated by statistical learning algorithms. Several
predicates have been introduced to ensure precise rule learning, with experiments con-
firming their ability to improve prediction accuracy through tactic reordering using ILP
rules.

6.2 Future Work
6.2.1 Stronger Online Learning
Online learning plays a pivotal role in developing tactic-based ITP guidance. This is
because the construction of formal proofs often requires incorporating local hypotheses,
recently proven lemmas, newly defined tactics, and proof patterns from nearby theorems,
all of which may be relevant to the current theorem under consideration.

Despite its importance, research into online learning for ITP remains underexplored.
While we have developed two models in the dissertation—locality-sensitive hashing forests
and online random forests—these approaches face certain limitations. First, they are

73

6 Conclusion

not widely considered state-of-the-art in the machine learning community, where neural
networks and LLMs are preferred due to their versatility across diverse domains. Second,
the techniques underlying our models are outdated, originating from methods developed
over two decades ago.

Limitations are also apparent in other research on online learning for ITP. For instance,
Graph2Tac [BOR+24] decomposes unseen definitions into sub-components and predicts
embeddings using those of known sub-components. However, this domain-specific ap-
proach contrasts with the broader focus of the online learning community, which seeks
to address challenges at a foundational level by enhancing learning techniques, such
as modifying cost functions or altering model structures [HSLZ21]. These generalized
approaches can be applied across a wide range of tasks, whereas Graph2Tac’s method
requires specialized decomposition and network architecture tailored to the problem
domain.

In the future, I aim to integrate advanced online learning methods into tactic-based
ITP guidance. Given the complexity of both online learning and theorem proving, further
advancements in online learning algorithms may be necessary to achieve significant
improvements in performance.

6.2.2 Neuro-Symbolic Learning for Proof Automation

Symbolic learning may be essential for advancing robust tactic-based ITP guidance, given
its reliance on sophisticated logical reasoning. While neural networks and LLMs have
demonstrated remarkable success across numerous research domains, they continue to
exhibit limitations in acquiring strong reasoning capabilities [FPG24]. One contributing
factor to this deficiency is the probabilistic nature of inferences generated by neural
networks, which introduces the potential for errors. Since reasoning typically involves
multiple inferential steps, the cumulative effect of these errors can ultimately result in
extremely incorrect predictions [LeC23].

In contrast, symbolic learning excels at reasoning by learning logical rules. When these
rules are valid, each inference step is guaranteed to be correct, thereby ensuring the
reliability of complex reasoning processes involving multiple steps.

I aim to leverage cutting-edge neuro-symbolic learning approaches to enhance tactic-
based ITP guidance. Although I integrate statistical and symbolic learning methods in
Chapter 5, this integration remains rudimentary. A more promising approach would be
to explore the application of advanced neuro-symbolic methods, such as α-ILP [SPDK23]
and abductive learning [DXYZ19].

Nevertheless, I am concerned that current neuro-symbolic learning techniques may
fall short in addressing formal reasoning tasks. A potentially more fruitful strategy
would involve developing stronger neuro-symbolic methods in simpler domains, such as
image classification. Once we achieve significant advances in neuro-symbolic AI, these
methods can be applied to formal reasoning. A promising direction is to investigate
neuro-symbolic approaches for learning object concepts from images, a topic explored in
prior research [MGK+19, ERSLT18].

74

6.2 Future Work

6.2.3 Large Language Models for Proof Automation

I aim to investigate the application of LLMs to proof automation, given their status as
state-of-the-art learning models. The GPT-2 model employed in Chapter 4, with only
117 million parameters, pales in comparison to more recent architectures like GPT-4,
which comprises approximately 1.76 trillion parameters. Empirical evidence from diverse
fields such as natural language processing and image classification indicates that larger
models tend to achieve superior performance. It is therefore plausible that deploying
larger models in the context of proof automation will yield similarly enhanced outcomes.

Additionally, I intend to leverage cutting-edge learning techniques developed for
LLMs in the domain of proof automation. One prominent research area in the LLM
community focuses on the creation of more intelligent AI agents [GCW+24]. Another
compelling avenue is post-training, a technique that has contributed significantly to
the success of models such as GPT-o1 [Ope24]. This model has substantially advanced
the reasoning capabilities of LLMs, achieving results that closely approach human-level
performance, particularly in tasks requiring advanced reasoning. The central idea behind
post-training techniques is to perform more comprehensive reasoning before generating
outputs and to iteratively expand high-quality training data, employing methods akin to
reinforcement learning [ZWMG22, ZHS+24, JYX+23]. Given that both intelligent agent
architectures and post-training strategies markedly improve LLMs’ reasoning capabilities,
it is reasonable to expect that the application of these novel techniques could also enhance
the performance of proof automation systems.

Another promising direction involves generating additional formal proof data using
LLMs. A key advantage of formal mathematics is its verifiability: once a proof is
verified by ITP, its correctness is guaranteed, unlike natural language question-answering,
which suffers from the inherent ambiguity of human language. However, the corpus of
high-quality formal mathematical data remains significantly smaller than that of natural
language, rendering it insufficient for training contemporary LLMs. A feasible strategy
involves proposing formal definitions and theorems, then employing LLMs to search for
proofs of these theorems, with the correctness of the generated proofs subsequently verified
by ITPs. This newly generated formal data can then be incorporated into the training
set, thereby expanding the dataset for future iterations. Several studies have already
demonstrated early success with this approach [WJL+22, X+23, TWL+24, XGS+24].

6.2.4 Learning for Rewriting

A considerable body of machine learning research has been applied to ATP and ITP,
while the exploration of its use in term rewriting remains comparatively limited. In future
work, I aim to extend machine learning techniques to various term rewriting challenges.
These include: (1) predicting strategies for a given TRS, (2) forecasting interpretations
for termination algorithms, (3) designing strategies for automatic term rewriting tools
beyond CSI, and (4) automatically generating invariants to verify program equivalences.

Another area of interest is the development of more diverse and systematic benchmarks
for term rewriting. Although the ATP and term rewriting communities are closely

75

6 Conclusion

related, ATP research attracts greater attention. One notable advantage of the ATP
field is that research progress is facilitated by a robust set of benchmarks, enabling
systematic evaluation. These benchmarks span diverse problem domains and allow for
both practical assessments, such as problem-solving speed, and theoretical investigations.
In the future, I intend to construct similarly systematic evaluation benchmarks tailored
to term rewriting.

76

Bibliography
[AAA+23] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,

Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[AEEM14] María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. A
modular order-sorted equational generalization algorithm. Information
and Computation, 235:98–136, 2014.

[AHK+14a] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and
Josef Urban. Premise selection for mathematics by corpus analysis and
kernel methods. J. Autom. Reason., 52(2):191–213, 2014.

[AHK+14b] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and
Josef Urban. Premise selection for mathematics by corpus analysis and
kernel methods. Journal of automated reasoning, 52:191–213, 2014.

[Any23] Anysphere. Cursor, 2023.

[AYT09] Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. Proving confluence
of term rewriting systems automatically. In Rewriting Techniques and
Applications: 20th International Conference, RTA 2009 Brasília, Brazil,
June 29-July 1, 2009 Proceedings 20, pages 93–102. Springer, 2009.

[BBC+23] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng,
Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report.
arXiv preprint arXiv:2309.16609, 2023.

[BBG+15] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz,
Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban.
Mizar: State-of-the-art and beyond. In Intelligent Computer Mathematics:
International Conference, CICM 2015, pages 261–279. Springer, 2015.

[BBG+18] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz,
Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the
mizar mathematical library for interactive proof development in mizar.
Journal of Automated Reasoning, 61:9–32, 2018.

[BBP13] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C Paulson.
Extending sledgehammer with smt solvers. Journal of automated reasoning,
51(1):109–128, 2013.

77

Bibliography

[BCG05] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH Forest: Self-
tuning indexes for similarity search. In Allan Ellis and Tatsuya Hagino,
editors, Proceedings of the 14th International Conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005, pages 651–660. ACM,
2005.

[BCGD+06] Frédéric Blanqui, Solange Coupet-Grimal, William Delobel, Sébastien
Hinderer, and Adam Koprowski. Color: a coq library on rewriting and
termination. In Eighth International Workshop on Termination-WST 2006,
2006.

[BCMM21] Candice Bentéjac, Anna Csörgő, and Gonzalo Martínez-Muñoz. A com-
parative analysis of gradient boosting algorithms. Artificial Intelligence
Review, 54:1937–1967, 2021.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[Ber08] Yves Bertot. A short presentation of coq. In Theorem Proving in Higher
Order Logics: 21st International Conference, TPHOLs 2008, Montreal,
Canada, August 18-21, 2008. Proceedings 21, pages 12–16. Springer, 2008.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computa-
tion, 4(3):217–247, 1994.

[BK22] Chad E Brown and Cezary Kaliszyk. Lash 1.0 (system description). In
International Joint Conference on Automated Reasoning, pages 350–358.
Springer, 2022.

[BKPU16a] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and
Josef Urban. Hammering towards qed. Journal of Formalized Reasoning,
9(1):101–148, 2016.

[BKPU16b] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and
Josef Urban. Hammering towards QED. J. Formalized Reasoning, 9(1):101–
148, 2016.

[Bla23] Lasse Blaauwbroek. Tactician’s web of large-scale formal knowledge,
December 2023.

[BLR+19a] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart
Wilcox. HOList: An environment for machine learning of higher order
logic theorem proving. In International Conference on Machine Learning,
pages 454–463. PMLR, 2019.

78

Bibliography

[BLR+19b] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and
Stewart Wilcox. Holist: An environment for machine learning of higher or-
der logic theorem proving. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 454–463.
PMLR, 2019.

[BM14] Robert S Boyer and J Strother Moore. A computational logic handbook:
Formerly notes and reports in computer science and applied mathematics.
Elsevier, 2014.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
university press, 1998.

[BOR+24] Lasse Blaauwbroek, Mirek Olšák, Jason Rute, Fidel Ivan Schaposnik
Massolo, Jelle Piepenbrock, and Vasily Pestun. Graph2tac: Online repre-
sentation learning of formal math concepts. In Forty-first International
Conference on Machine Learning, 2024.

[Bre01a] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[Bre01b] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[Bro97] Andrei Z. Broder. On the resemblance and containment of documents. In
Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and James A. Storer,
editors, Compression and Complexity of SEQUENCES 1997, Positano,
Amalfitan Coast, Salerno, Italy, June 11-13, 1997, Proceedings, pages
21–29. IEEE, 1997.

[Bro12] Chad E Brown. Satallax: An automatic higher-order prover. In Automated
Reasoning: 6th International Joint Conference, IJCAR 2012, Manchester,
UK, June 26-29, 2012. Proceedings 6, pages 111–117. Springer, 2012.

[BUG20a] Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. Tactic learning and
proving for the Coq proof assistant. In Elvira Albert and Laura Kovács,
editors, Proceedings of the 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR 2020, volume 73
of EPiC Series in Computing, pages 138–150. EasyChair, 2020.

[BUG20b] Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. The Tactician –
A seamless, interactive tactic learner and prover for Coq. In Christoph

79

Bibliography

Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics
- 13th International Conference, CICM 2020, volume 12236 of LNCS, pages
271–277. Springer, 2020.

[BUG20c] Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. The Tactician –
A seamless, interactive tactic learner and prover for Coq. In Christoph
Benzmüller and Bruce R. Miller, editors, Proceedings of the 13th Inter-
national Conference on Intelligent Computer Mathematics CICM 2020,
Bertinoro, Italy, July 26-31, 2020, volume 12236 of LNCS, pages 271–277.
Springer, 2020.

[CCF+07] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier
Urbain. Certification of automated termination proofs. In Frontiers of
Combining Systems: 6th International Symposium, FroCoS 2007 Liverpool,
UK, September 10-12, 2007 Proceedings 6, pages 148–162. Springer, 2007.

[CD22] Andrew Cropper and Sebastijan Dumančić. Inductive logic programming
at 30: a new introduction. Journal of Artificial Intelligence Research,
74:765–850, 2022.

[CFU08] Pierre Courtieu, Julien Forest, and Xavier Urbain. Certifying a termination
criterion based on graphs, without graphs. In International Conference on
Theorem Proving in Higher Order Logics, pages 183–198. Springer, 2008.

[CG16] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 785–794, 2016.

[Chl13] Adam Chlipala. Certified programming with dependent types: a pragmatic
introduction to the Coq proof assistant. MIT Press, 2013.

[CJSU19a] Karel Chvalovský, Jan Jakubuv, Martin Suda, and Josef Urban. ENIGMA-
NG: Efficient neural and gradient-boosted inference guidance for E. In
Pascal Fontaine, editor, Proceedings of the 27th International Conference
on Automated Deduction, CADE 27, Natal, Brazil, August 27-30, 2019,
volume 11716 of LNCS, pages 197–215. Springer, 2019.

[CJSU19b] Karel Chvalovský, Jan Jakubův, Martin Suda, and Josef Urban. Enigma-
ng: efficient neural and gradient-boosted inference guidance for e. In
CADE 27: August 27–30, 2019, Proceedings 27, pages 197–215. Springer,
2019.

[CK18a] Łukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for
dependent type theory. Journal of automated reasoning, 61:423–453, 2018.

[CK18b] Lukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automation for
dependent type theory. J. Autom. Reasoning, 61(1-4):423–453, 2018.

80

Bibliography

[CK23] David M Cerna and Temur Kutsia. Anti-unification and generalization: a
survey. arXiv preprint arXiv:2302.00277, 2023.

[CM21] Andrew Cropper and Rolf Morel. Learning programs by learning from
failures. Machine Learning, 110:801–856, 2021.

[cop] The cops dataset.

[CSG+24] Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas
Gehring, Gabriel Synnaeve, and Hugh Leather. Meta large language model
compiler: Foundation models of compiler optimization. arXiv preprint
arXiv:2407.02524, 2024.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[Del00] David Delahaye. A tactic language for the system coq. In Logic for
Programming and Automated Reasoning: 7th International Conference,
LPAR 2000 Reunion Island, France, November 6–10, 2000 Proceedings 7,
pages 85–95. Springer, 2000.

[DH00] Pedro M. Domingos and Geoff Hulten. Mining high-speed data streams.
In Raghu Ramakrishnan, Salvatore J. Stolfo, Roberto J. Bayardo, and
Ismail Parsa, editors, Proceedings of the sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 71–80. ACM,
2000.

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. The Lean theorem prover (system description). In
CADE-25: 25th International Conference on Automated Deduction, pages
378–388. Springer, 2015.

[DR08] Luc De Raedt. Logical and relational learning. Springer Science & Business
Media, 2008.

[DRKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A
probabilistic prolog and its application in link discovery. In IJCAI, volume 7,
pages 2462–2467. Hyderabad, 2007.

[DSST89] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre
Tarjan. Making data structures persistent. J. Comput. Syst. Sci., 38(1):86–
124, 1989.

[Dud76] Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule.
IEEE Transactions on Systems, Man, and Cybernetics, (4):325–327, 1976.

81

Bibliography

[DXYZ19] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging
machine learning and logical reasoning by abductive learning. Advances
in Neural Information Processing Systems, 32, 2019.

[EG18] Richard Evans and Edward Grefenstette. Learning explanatory rules from
noisy data. Journal of Artificial Intelligence Research, 61:1–64, 2018.

[ERSLT18] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum.
Learning to infer graphics programs from hand-drawn images. Advances
in neural information processing systems, 31, 2018.

[FB16] Michael Färber and Chad E. Brown. Internal guidance for Satallax. In
Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning - 8th
International Joint Conference, IJCAR 2016, volume 9706 of LNCS, pages
349–361. Springer, 2016.

[Fel15] Bertram Felgenhauer. Confluence of Term Rewriting: Theory and Au-
tomation. PhD thesis, PhD thesis, University of Innsbruck, 2015.

[FGMP97] Moreno Falaschi, Maurizio Gabbrielli, Kim Marriott, and Catuscia
Palamidessi. Confluence in concurrent constraint programming. The-
oretical Computer Science, 183(2):281–315, 1997.

[Fit12] Melvin Fitting. First-order logic and automated theorem proving. Springer
Science & Business Media, 2012.

[FK15a] Michael Färber and Cezary Kaliszyk. Random forests for premise selection.
In International Symposium on Frontiers of Combining Systems, pages
325–340. Springer, 2015.

[FK15b] Michael Färber and Cezary Kaliszyk. Random forests for premise selection.
In Carsten Lutz and Silvio Ranise, editors, Proceedings of Frontiers of
Combining Systems (FroCoS’15), volume 9322 of LNCS, pages 325–340.
Springer, 2015.

[FPG24] Evelina Fedorenko, Steven T Piantadosi, and Edward AF Gibson. Lan-
guage is primarily a tool for communication rather than thought. Nature,
630(8017):575–586, 2024.

[G+08] Georges Gonthier et al. Formal proof–the four-color theorem. Notices of
the AMS, 55(11):1382–1393, 2008.

[GCJ+21] Zarathustra A Goertzel, Karel Chvalovský, Jan Jakubův, Miroslav Olšák,
and Josef Urban. Fast and slow enigmas and parental guidance. In
International Symposium on Frontiers of Combining Systems, pages 173–
191. Springer, 2021.

82

Bibliography

[GCW+24] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei,
Nitesh V Chawla, Olaf Wiest, and Xiangliang Zhang. Large language
model based multi-agents: A survey of progress and challenges. arXiv
preprint arXiv:2402.01680, 2024.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in
high dimensions via hashing. In Malcolm P. Atkinson, Maria E. Orlowska,
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors,
Proceedings of 25th International Conference on Very Large Data Bases,
VLDB’99, September 7-10, 1999, Edinburgh, Scotland, UK, pages 518–529.
Morgan Kaufmann, 1999.

[GJK+22] Zarathustra A Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák,
Jelle Piepenbrock, and Josef Urban. The isabelle enigma. arXiv preprint
arXiv:2205.01981, 2022.

[GK15a] Thibault Gauthier and Cezary Kaliszyk. Premise selection and external
provers for HOL4. In Xavier Leroy and Alwen Tiu, editors, Proceedings
of the 4th Conference on Certified Programs and Proofs (CPP’15), pages
49–57. ACM, 2015.

[GK15b] Thibault Gauthier and Cezary Kaliszyk. Premise selection and external
provers for hol4. In CPP, pages 49–57, 2015.

[GK19] Thibault Gauthier and Cezary Kaliszyk. Aligning concepts across proof
assistant libraries. J. Symbolic Computation, 90:89–123, 2019.

[GKU17] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning
to reason with HOL4 tactics. In Thomas Eiter and David Sands, editors,
Proceedings of the 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR-21, volume 46 of EPiC Series
in Computing, pages 125–143. EasyChair, 2017.

[GKU+21a] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and
Michael Norrish. TacticToe: Learning to prove with tactics. Journal of
Automated Reasoning, 65(2):257–286, 2021.

[GKU+21b] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and
Michael Norrish. TacticToe: Learning to prove with tactics. J. Autom.
Reason., 65(2):257–286, 2021.

[GMR+15] Jürgen Giesl, Frédéric Mesnard, Albert Rubio, René Thiemann, and
Johannes Waldmann. Termination competition (termcomp 2015). In In-
ternational Conference on Automated Deduction, pages 105–108. Springer,
2015.

[Göd92] Kurt Gödel. On formally undecidable propositions of Principia Mathemat-
ica and related systems. Courier Corporation, 1992.

83

Bibliography

[GSKT06] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. Aprove 1.2:
Automatic termination proofs in the dependency pair framework. In
International Joint Conference on Automated Reasoning, pages 281–286.
Springer, 2006.

[GWR15] Thomas Gransden, Neil Walkinshaw, and Rajeev Raman. SEPIA: Search
for proofs using inferred automata. In International Conference on Auto-
mated Deduction, pages 246–255. Springer, 2015.

[H+21] Jesse Michael Han et al. Proof artifact co-training for theorem proving
with language models. arXiv preprint arXiv:2102.06203, 2021.

[HAB+17] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison,
Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean McLaughlin,
Tat Thang Nguyen, et al. A formal proof of the Kepler conjecture. In
Forum of mathematics, Pi, volume 5. Cambridge University Press, 2017.

[Har96] John Harrison. Hol light: A tutorial introduction. In Formal Methods
in Computer-Aided Design: First International Conference, FMCAD’96
Palo Alto, CA, USA, November 6–8, 1996 Proceedings 1, pages 265–269.
Springer, 1996.

[Har09] John Harrison. Hol light: An overview. In International Conference on
Theorem Proving in Higher Order Logics, pages 60–66. Springer, 2009.

[HB13] Florian Haftmann and Lukas Bulwahn. Code generation from isabelle/hol
theories. Part of the Isabelle documentation: http://isabelle. in. tum.
de/dist/Isabelle2017/doc/codegen. pdf, 2013.

[HIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest
neighbor: Towards removing the curse of dimensionality. Theory Comput.,
8(1):321–350, 2012.

[HK20] John T Hancock and Taghi M Khoshgoftaar. Catboost for big data: an
interdisciplinary review. Journal of big data, 7(1):94, 2020.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of
typed attributed graph transformation systems. In International Confer-
ence on Graph Transformation, pages 161–176. Springer, 2002.

[HM76] James Wayne Hunt and M Douglas MacIlroy. An algorithm for differential
file comparison. Bell Laboratories Murray Hill, 1976.

[HSLZ21] Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning:
A comprehensive survey. Neurocomputing, 459:249–289, 2021.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

84

Bibliography

[HUW14] John Harrison, Josef Urban, and Freek Wiedijk. History of interactive
theorem proving. In Computational Logic, volume 9 of Handbook of the
History of Logic, pages 135–214. Elsevier, 2014.

[HW79] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c
(applied statistics), 28(1):100–108, 1979.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[ISA+16] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén,
François Chollet, and Josef Urban. Deepmath-deep sequence models
for premise selection. NIPS, 29, 2016.

[J+20] Jan Jakubův et al. Enigma anonymous: Symbol-independent inference
guiding machine (system description). In IJCAR, pages 448–463. Springer,
2020.

[Jac01] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

[JKJ+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular founda-
tion for higher-order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[JLT+22] Albert Q Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski,
Tomasz Odrzygóźdź, Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor:
Wielding hammers to integrate language models and automated theorem
provers. arXiv preprint arXiv:2205.10893, 2022.

[JM24] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition with Language Models. 3rd edition, 2024. Online
manuscript released August 20, 2024.

[Jon04] Karen Spärck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation, 60(5):493–502, 2004.

[JU17] Jan Jakubuv and Josef Urban. ENIGMA: efficient learning-based inference
guiding machine. In Herman Geuvers, Matthew England, Osman Hasan,
Florian Rabe, and Olaf Teschke, editors, Intelligent Computer Mathematics
- 10th International Conference, CICM 2017, volume 10383 of LNCS, pages
292–302. Springer, 2017.

[Jur00] Daniel Jurafsky. Speech and language processing, 2000.

85

Bibliography

[JYX+23] Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale
Fung. Towards mitigating llm hallucination via self reflection. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pages
1827–1843, 2023.

[KCS17] Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A
machine learning dataset for higher-order logic theorem proving. In ICLR
2017. OpenReview.net, 2017.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, et al. seL4: Formal verification of an OS kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 207–220, 2009.

[KMF+17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient
boosting decision tree. Advances in neural information processing systems,
30, 2017.

[KMH+20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

[KSZM09] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp.
Tyrolean termination tool 2. In Rewriting Techniques and Applications:
20th International Conference, RTA 2009 Brasília, Brazil, June 29-July 1,
2009 Proceedings 20, pages 295–304. Springer, 2009.

[KU13] Cezary Kaliszyk and Josef Urban. Stronger automation for flyspeck by
feature weighting and strategy evolution. In Third International Workshop
on Proof Exchange for Theorem Proving (PxTP 2013), page 87, 2013.

[KUMO18a] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák.
Reinforcement learning of theorem proving. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

[KUMO18b] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák.
Reinforcement learning of theorem proving. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 8836–8847.
Curran Associates, Inc., 2018.

86

Bibliography

[KUV15a] Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Efficient semantic features
for automated reasoning over large theories. In Qiang Yang and Michael J.
Wooldridge, editors, IJCAI 2015, pages 3084–3090. AAAI Press, 2015.

[KUV15b] Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Efficient semantic features
for automated reasoning over large theories. In Qiang Yang and Michael
Wooldridge, editors, Proceedings of the 24th International Joint Conference
on Artificial Intelligence, (IJCAI’15), pages 3084–3090. AAAI Press, 2015.

[KUV15c] Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Efficient semantic features
for automated reasoning over large theories. In Qiang Yang and Michael
Wooldridge, editors, IJCAI, pages 3084–3090. AAAI Press, 2015.

[KUV17a] Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Automating formalization
by statistical and semantic parsing of mathematics. In Interactive The-
orem Proving: 8th International Conference, ITP 2017, Brasília, Brazil,
September 26–29, 2017, Proceedings 8, pages 12–27. Springer, 2017.

[KUV17b] Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Automating formalization
by statistical and semantic parsing of mathematics. In Mauricio Ayala-
Rincón and César A. Muñoz, editors, Interactive Theorem Proving - 8th
International Conference, ITP 2017, volume 10499 of LNCS, pages 12–27.
Springer, 2017.

[LeC23] Yann LeCun. Do large language models need sensory grounding for meaning
and understanding. In Workshop on Philosophy of Deep Learning, 2023.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[Ler21] Xavier Leroy. The CompCert C verified compiler: Documentation and
user’s manual. PhD thesis, Inria, 2021.

[LK18] Josh Levy-Kramer. k-means-constrained, April 2018.

[MAT+23] Maciej Mikuła, Szymon Antoniak, Szymon Tworkowski, Albert Qiaochu
Jiang, Jin Peng Zhou, Christian Szegedy, Łukasz Kuciński, Piotr Miłoś, and
Yuhuai Wu. Magnushammer: A transformer-based approach to premise
selection. arXiv preprint arXiv:2303.04488, 2023.

[MGK+19] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and
Jiajun Wu. The neuro-symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision. arXiv preprint arXiv:1904.12584,
2019.

[MIB+24] Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher,
Joshua B Tenenbaum, and Evelina Fedorenko. Dissociating language
and thought in large language models. Trends in Cognitive Sciences, 2024.

87

Bibliography

[Mit97] Tom M. Mitchell. Machine learning, International Edition. McGraw-Hill
Series in Computer Science. McGraw-Hill, 1997.

[MLM23] Aart Middeldorp, Alexander Lochmann, and Fabian Mitterwallner. First-
order theory of rewriting for linear variable-separated rewrite systems:
Automation, formalization, certification. Journal of Automated Reasoning,
67(2):14, 2023.

[MM97] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1.
McGraw-hill New York, 1997.

[MO99] Heiko Mantel and Jens Otten. lintap: A tableau prover for linear logic. In
International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, pages 217–231. Springer, 1999.

[Moc12a] Shinichi Mochizuki. Inter-universal teichmuller theory i: Construction of
hodge theaters. Under review, 2012.

[Moc12b] Shinichi Mochizuki. Inter-universal teichmuller theory ii: Hodge-arakelov-
theoretic evaluation. Under review, 2012.

[Moc12c] Shinichi Mochizuki. Inter-universal teichmuller theory iii: Canonical
splittings of the log-theta-lattice. Under review, 2012.

[Moc12d] Shinichi Mochizuki. Inter-universal teichmuller theory iv: Log-volume
computations and set-theoretic foundations. Under review, 2012.

[MS19] Victor Cacciari Miraldo and Wouter Swierstra. An efficient algorithm
for type-safe structural diffing. Proceedings of the ACM on Programming
Languages, 3(ICFP):1–29, 2019.

[Mug95] Stephen Muggleton. Inverse entailment and progol. New generation
computing, 13:245–286, 1995.

[Nag19] Yutaka Nagashima. Lifter: language to encode induction heuristics for
isabelle/hol. In Programming Languages and Systems: 17th Asian Sympo-
sium, APLAS 2019, December 1–4, 2019, Proceedings 17, pages 266–287.
Springer, 2019.

[NH18] Yutaka Nagashima and Yilun He. Pamper: proof method recommendation
system for isabelle/hol. In Marianne Huchard, Christian Kästner, and
Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, pages 362–372. ACM, 2018.

[NHX+23] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and
Yingbo Zhou. Codegen2: Lessons for training llms on programming and
natural languages. ICLR, 2023.

88

Bibliography

[NK17] Yutaka Nagashima and Ramana Kumar. A proof strategy language and
proof script generation for Isabelle/HOL. In Leonardo de Moura, editor,
Proceedings of the 26th International Conference on Automated Deduction,
CADE 26, volume 10395 of LNCS, pages 528–545. Springer, 2017.

[NLA19] Max S New, Daniel R Licata, and Amal Ahmed. Gradual type theory.
Proceedings of the ACM on Programming Languages, 3(POPL):1–31, 2019.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002.

[OKU20] Miroslav Olšák, Cezary Kaliszyk, and Josef Urban. Property invariant
embedding for automated reasoning. In ECAI 2020, pages 1395–1402. IOS
Press, 2020.

[Ope24] OpenAI. Openai o1 system card, September 2024.

[P+11] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[Pau94] Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

[Ped19] Pierre-Marie Pedrot. Ltac2: tactical warfare. In The Fifth International
Workshop on Coq for Programming Languages, CoqPL, volume 2019, 2019.

[Pet09] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[Pfe91] Frank Pfenning. Unification and anti-unification in the calculus of con-
structions. In LICS, volume 91, pages 74–85, 1991.

[Pie02] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[Plo71] Gordon D Plotkin. A further note on inductive generalization. Machine
intelligence, 6:101–124, 1971.

[PM15] Christine Paulin-Mohring. Introduction to the calculus of inductive con-
structions, 2015.

[PMA23] Bartosz Piotrowski, Ramon Fernández Mir, and Edward Ayers. Machine-
learned premise selection for lean. In International Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods, pages
175–186. Springer, 2023.

[Pro13] The Univalent Foundations Program. Homotopy type theory: Univalent
foundations of mathematics. arXiv preprint arXiv:1308.0729, 2013.

[PU18] Bartosz Piotrowski and Josef Urban. ATPboost: Learning premise selection
in binary setting with ATP feedback. In IJCAR, volume 10900 of LNCS,
pages 566–574, 2018.

89

Bibliography

[PU20] Bartosz Piotrowski and Josef Urban. Guiding inferences in connection
tableau by recurrent neural networks. In International Conference on
Intelligent Computer Mathematics, pages 309–314. Springer, 2020.

[Qui90] J. Ross Quinlan. Learning logical definitions from relations. Machine
learning, 5:239–266, 1990.

[R+24] Jason Rute et al. Graph2tac: Learning hierarchical representations of
math concepts in theorem proving. arXiv preprint arXiv:2401.02949, 2024.

[Ray09] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied
Logic, 7(3):329–340, 2009.

[Rey70] John C Reynolds. Transformational systems and algebraic structure of
atomic formulas. Machine intelligence, 5:135–151, 1970.

[RV99] Alexandre Riazanov and Andrei Voronkov. Vampire. In Harald Ganzinger,
editor, CADE-16 – 16th International Conference on Automated Deduction,
Trento, Italy, July 7-10, 1999, Proceedings, volume 1632 of LNCS, pages
292–296. Springer, 1999.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[S+07] Yutaka Sasaki et al. The truth of the f-measure. Teach tutor mater,
1(5):1–5, 2007.

[SAH+20] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, 2020.

[Sch13] Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart
Middeldorp, and Andrei Voronkov, editors, LPAR-19 – 19th International
Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning, Stellenbosch, South Africa, December 14-19, 2013. Proceedings,
volume 8312 of LNCS, pages 735–743. Springer, 2013.

[SLS+09] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst
Bischof. On-line random forests. In 12th IEEE International Conference
on Computer Vision Workshops, ICCV Workshops 2009, Kyoto, Japan,
September 27 - October 4, 2009, pages 1393–1400. IEEE Computer Society,
2009.

[Sma21] Nicholas Smallbone. Twee: An equational theorem prover. In CADE,
pages 602–613, 2021.

90

Bibliography

[SN08a] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Ot-
mane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors, Proceed-
ings of the 21st International Conference on Theorem Proving in Higher
Order Logics, TPHOLs 2008, Montreal, Canada, August 18-21, 2008,
volume 5170 of LNCS, pages 28–32. Springer, 2008.

[SN08b] Konrad Slind and Michael Norrish. A brief overview of hol4. In Inter-
national Conference on Theorem Proving in Higher Order Logics, pages
28–32. Springer, 2008.

[SPDK23] Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian
Kersting. α ilp: thinking visual scenes as differentiable logic programs.
Machine Learning, 112(5):1465–1497, 2023.

[Sri01] Ashwin Srinivasan. The aleph manual, 2001.

[ST14] Christian Sternagel and René Thiemann. The certification problem format.
arXiv preprint arXiv:1410.8220, 2014.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
isomorphism. Elsevier, 2006.

[Sud21] Martin Suda. Vampire with a brain is a good ITP hammer. In Boris
Konev and Giles Reger, editors, Frontiers of Combining Systems - 13th
International Symposium, FroCoS 2021, volume 12941 of LNCS, pages
192–209. Springer, 2021.

[Swi08] Wouter Swierstra. Data types à la carte. Journal of functional programming,
18(4):423–436, 2008.

[TAB+23] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M
Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

[Tae23] Victor Taelin. Agda to typescript compilation with sonnet-3.5, 2023.
Accessed: September 29, 2024.

[The19] The Coq Development Team. The Coq proof assistant, version 8.11.0, Oct
2019.

[The20] The Coq Development Team. Coq reference manual 8.11.1, 2020.

[TS09] René Thiemann and Christian Sternagel. Certification of termination
proofs using ceta. In International Conference on Theorem Proving in
Higher Order Logics, pages 452–468. Springer, 2009.

91

Bibliography

[TWL+24] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving
olympiad geometry without human demonstrations. Nature, 625(7995):476–
482, 2024.

[UB07] Josef Urban and Grzegorz Bancerek. Presenting and explaining mizar.
Electronic Notes in Theoretical Computer Science, 174(2):63–74, 2007.

[UJ20] Josef Urban and Jan Jakubův. First neural conjecturing datasets and exper-
iments. In International Conference on Intelligent Computer Mathematics,
pages 315–323. Springer, 2020.

[VdBHKO02] Mark GJ Van den Brand, Jan Heering, Paul Klint, and Pieter A Olivier.
Compiling language definitions: the asf+ sdf compiler. ACM Transactions
on Programming Languages and Systems (TOPLAS), 24(4):334–368, 2002.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[WBKU20a] Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Explo-
ration of neural machine translation in autoformalization of mathematics in
mizar. In Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, pages 85–98, 2020.

[WBKU20b] Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Ex-
ploration of neural machine translation in autoformalization of mathematics
in mizar. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, pages 85–98. ACM, 2020.

[WDS+19] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771, 2019.

[Wen99] Markus Wenzel. Isar—a generic interpretative approach to readable formal
proof documents. In International Conference on Theorem Proving in
Higher Order Logics, pages 167–183. Springer, 1999.

[WJL+22] Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus N Rabe, Charles Staats,
Mateja Jamnik, and Christian Szegedy. Autoformalization with large
language models. arXiv preprint arXiv:2205.12615, 2022.

[WKU18] Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments
with neural translation of informal to formal mathematics. In Intelli-
gent Computer Mathematics: 11th International Conference, CICM 2018,
Hagenberg, Austria, August 13-17, 2018, Proceedings 11, pages 255–270.
Springer, 2018.

92

Bibliography

[WRL+21] Yuhuai Wu, Markus N Rabe, Wenda Li, Jimmy Ba, Roger B Grosse,
and Christian Szegedy. Lime: Learning inductive bias for primitives of
mathematical reasoning. In International Conference on Machine Learning,
pages 11251–11262. PMLR, 2021.

[WTWD17] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for
theorem proving by deep graph embedding. Advances in neural information
processing systems, 30, 2017.

[X+23] Huajian Xin et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023.

[XGS+24] Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu,
Chong Ruan, Wenda Li, and Xiaodan Liang. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic data. arXiv preprint
arXiv:2405.14333, 2024.

[Y+23] Kaiyu Yang et al. Leandojo: Theorem proving with retrieval-augmented
language models. arXiv preprint arXiv:2306.15626, 2023.

[YD19] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting
with proof assistants. In International Conference on Machine Learning,
pages 6984–6994. PMLR, 2019.

[YD21] Kaiyu Yang and Jia Deng. Learning symbolic rules for reasoning in
quasi-natural language. arXiv preprint arXiv:2111.12038, 2021.

[ZBKU23] Liao Zhang, Lasse Blaauwbroek, Cezary Kaliszyk, and Josef Urban. Learn-
ing proof transformations and its applications in interactive theorem
proving. In International Symposium on Frontiers of Combining Systems,
pages 236–254. Springer Nature Switzerland Cham, 2023.

[ZBP+21] Liao Zhang, Lasse Blaauwbroek, Bartosz Piotrowski, Prokop Černý, Cezary
Kaliszyk, and Josef Urban. Online machine learning techniques for Coq:
A comparison. In International Conference on Intelligent Computer Math-
ematics, pages 67–83. Springer, 2021.

[ZCK24] Liao Zhang, David M Cerna, and Cezary Kaliszyk. Learning rules ex-
plaining interactive theorem proving tactic prediction. arXiv preprint
arXiv:2411.01188, 2024.

[ZFM11] Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp. Csi–a con-
fluence tool. In Automated Deduction–CADE-23: 23rd International
Conference on Automated Deduction, Wrocław, Poland, July 31-August 5,
2011. Proceedings 23, pages 499–505. Springer, 2011.

[ZHS+24] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber,
and Noah D Goodman. Quiet-star: Language models can teach themselves
to think before speaking. arXiv preprint arXiv:2403.09629, 2024.

93

Bibliography

[ZKZ+15] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Ur-
tasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies:
Towards story-like visual explanations by watching movies and reading
books. In Proceedings of the IEEE international conference on computer
vision, pages 19–27, 2015.

[ZWMG22] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Boot-
strapping reasoning with reasoning. Advances in Neural Information
Processing Systems, 35:15476–15488, 2022.

[ZZS+19] Chongsheng Zhang, Yuan Zhang, Xianjin Shi, George Almpanidis, Gaojuan
Fan, and Xiajiong Shen. On incremental learning for gradient boosting
decision trees. Neural Process. Lett., 50(1):957–987, 2019.

94

