
Automated Strategy Invention for Confluence of Term Rewrite Systems

Liao Zhang1,2 , Fabian Mitterwallner1 , Jan Jakubův3 and Cezary Kaliszyk4,1

1University of Innsbruck
2Shanghai Jiao Tong University

3Czech Technical University in Prague
4University of Melbourne

zhangliao714@gmail.com, fabian.mitterwallner@uibk.ac.at, {jakubuv, cezarykaliszyk}@gmail.com

Abstract

Term rewriting plays a crucial role in software ver-
ification and compiler optimization. With dozens
of highly parameterizable techniques developed to
prove various system properties, automatic term
rewriting tools work in an extensive parameter
space. This complexity exceeds human capacity
for parameter selection, motivating an investigation
into automated strategy invention. In this paper, we
focus on confluence of term rewrite systems, and
apply AI techniques to invent strategies for auto-
matic confluence proving. Moreover, we randomly
generate a large dataset to analyze confluence for
term rewrite systems. We improve the state-of-
the-art automatic confluence prover CSI: When
equipped with our invented strategies, it surpasses
its human-designed strategies both on the aug-
mented dataset and on the original human-created
benchmark dataset ARI-COPS, proving/disproving
the confluence of several term rewrite systems for
which no automated proofs were known before.

1 Introduction
Term rewriting studies substituting subterms of a formula
with other terms [Baader and Nipkow, 1998], playing
an important role in automated reasoning [Bachmair and
Ganzinger, 1994], software verification [Meseguer, 2003],
and compiler optimization [Willsey et al., 2021]. Mathe-
maticians have developed various techniques to analyze the
properties of term rewrite systems (TRSs). However, many
properties are undecidable [Baader and Nipkow, 1998], im-
plying that no technique can consistently prove a particular
property. To navigate this undecidability, modern term rewrit-
ing provers typically employ complicated strategies, incorpo-
rating wide arrays of rewriting analysis techniques, with the
hope that one will be effective. Each technique often accom-
panies several flags to control its behavior. The diversity of
techniques and their controlling flags result in a vast parame-
ter space for modern automated term rewriting provers.

Manually optimizing strategies for undecidable problems
is beyond human capacity given the extensive parameter
space. This inspires us to apply AI techniques to search for

appropriate strategies automatically. In this paper, we fo-
cus on confluence, an important property of term rewriting,
and discuss automated strategy invention for the state-of-the-
art confluence prover CSI [Nagele et al., 2017]. We mod-
ify Grackle [Hůla and Jakubův, 2022], an automatic tool to
generate a strategy portfolio, encoding strategies that require
transformations and complex schedules such as parallelism.

Directly using a tool like Grackle to randomly generate
parameters for CSI may produce unsound results. This is
a unique challenge compared to previous applications of
Grackle [Hůla and Jakubův, 2022; Aleksandrova et al., 2024].
The solvers to which Grackle was previously applied always
produce sound results, while CSI’s users need to carefully
specify their strategies to ensure soundness.

We also augment the human-built confluence problems
database (ARI-COPS)1, a representative benchmark for the
annual confluence competition (CoCo)2. Before 2024, CoCo
used the COPS database as the benchmark. An unpublished
duplicate checker is executed to remove duplicated problems
in COPS, resulting in the ARI-COPS database, which is used
in CoCo 2024. As ARI-COPS has been created manually, it
includes only 566 TRSs. They are of high quality, but the
relatively small number is still inadequate for data-driven AI
techniques that require large amounts of training data. To
handle this problem, we generate a large number of TRSs
randomly, but ensure that they are interesting enough to an-
alyze. For this, we develop a procedure to confirm a relative
balance in the number of TRSs most quickly solved by dif-
ferent confluence analysis techniques within the dataset.

We evaluate our strategy invention approach in ARI-COPS
and the augmented dataset. On both of the datasets, the in-
vented strategies surpass CSI’s competition strategy. In par-
ticular, we prove (non-)confluence for several TRSs that have
not been proved by any automatic confluence provers in the
history of the CoCo competition.

As an example, our invented strategy is able to dis-
prove confluence for the ARI-COPS problem 846.ari
(991.trs in COPS), never proved by any participant in
CoCo. The key is the application of the redundant rule
technique [Nagele et al., 2015] with non-standard argu-
ments. CSI’s competition strategy performs redundant

1https://ari-cops.uibk.ac.at/
2https://project-coco.uibk.ac.at/

-narrowfwd -narrowbwd -size 7 prior to perform-
ing non-confluence analysis. The flags narrowfwd and
narrowbwd determine the categories of redundant rules to
generate. Our tool automatically discovered that by changing
the original redundant rule transformation to redundant
-development 6 -size 7, we can prove this problem.
A larger value for the flag development causes a larger
number of development redundant rules to be added. We no-
tice that the value six is crucial as small values below three
are ineffective for 846.ari. This is only one of the several
TRSs which our new strategies can solve as discussed in the
later sections.

The main reason why it is difficult to discover new proofs
in CoCo, is because CSI’s competition strategy developed
rewriting experts is very complicated, for which a compre-
hensive explanation is presented in the technical appendix.
For example the competition strategy includes the develop-
ment redundant rule technique [Nagele et al., 2015]. The
original evaluation of it shows no improvement over other
redundant rule techniques in COPS at that time. Thus, CSI’s
developers decided not to use it in the competition strategy.
As COPS grows, it becomes helpful in some new TRSs such
as 846.ari. However, the default strategy has only slightly
changed over the past years, and the development redundant
rule technique has never been tried. One reason for this could
be that choosing sound parameters is challenging even for
rewriting experts. Meanwhile, competition strategy is highly
complicated and has a prohibitively large configuration space
both in the number of parameters and structures of the strat-
egy itself. We leverage Grackle to do the tedious strategy
search. It can automatically optimize the strategies better than
experts as the dataset grows. Other rewriting tools do not dis-
cover the proof perhaps because they do not implement the
essential techniques for solving the problems.
Contributions. First, to our best knowledge, our work is
the first application of AI techniques to automatic confluence
provers. We automatically generate a lot of strategies for the
state-of-the-art confluence prover CSI and combine them as
a unified strategy. Second, we carefully design the parame-
ter search space for CSI to confirm the soundness of strategy
invention. Third, we build a large dataset for confluence anal-
ysis, comprising randomly generated TRSs and problems in
the ARI-COPS dataset. Finally, empirical results show that
our strategy invention approach surpasses CSI’s competition
strategy both in ARI-COPS and the augmented datasets. No-
tably, we discover several proofs for (non-)confluence that
have never been discovered by any automatic confluence
provers in the annual confluence competition.

2 Background
2.1 Term Rewriting
We informally define some theoretical properties of term
rewriting in this section, hoping to ease the understanding
of the behavior underlining automatic confluence provers. A
formal description can be found in the technical appendix.

We assume a disjoint set of variable symbols and a fi-
nite signature of function symbols. Constants are function
symbols with zero arity. The set of terms is built up from

variables and function symbols. The set of variables occur-
ring in a term t is denoted by Var(t). A term rewrite sys-
tem (TRS) consists of a set of rewrite rules l → r where
l, r ∈ terms , l /∈ variables , and Var(r) ⊆ Var(l). We write
t1 →∗ tn to denote t1 → t2 → ... → tn where n can be
one. A TRS is confluent if and only if ∀s, t, u ∈ terms(s→∗

t ∧ s →∗ u ⇒ ∃v ∈ terms(t →∗ v ∧ u →∗ v)). Con-
sider the TRS of {f(g(x), h(x)) → a, g(b) → d, h(c) →
d} [Gramlich, 1996]. It is not confluent since f(d, h(b)) ←
f(g(b), h(b)) → a, and no rules are applicable to f(d, h(b))
and a. A rewrite rule l → r is called left-linear if no variable
occurs multiple times in l. A TRS is called left-linear if all
its rules are left-linear. Left-linearity is crucial for confluence
analysis since most existing confluence techniques only ap-
ply to such systems. In this paper, a term is called complex if
it is neither a variable nor a constant.

2.2 CSI
CSI is one of the state-of-the-art automatic confluence
provers that participates in CoCo. It ranked first in five
categories of competitions in CoCo 2024. To show (non-
)confluence of TRSs, CSI automatically executes a range of
techniques, scheduled by a complicated configuration docu-
ment written by experts in confluence analysis. Subsequently,
CSI either outputs YES, NO, or MAYBE indicating confluence,
non-confluence, or indetermination, respectively.

CSI implements many techniques applicable to the analy-
sis of TRSs (many of them parametrized or transforming the
system into one that can be analyzed by other techniques)
and utilizes a complicated strategy language to control them.
In CSI, these techniques are called processors. They are de-
signed to prove the properties of TRSs, perform various trans-
formations, and check the satisfiability of certain conditions.
The strategy language can flexibly combine the execution of
processors such as specifying parallel or sequential applica-
tions, disregarding unexpected results, assigning time lim-
its, and designating repeated applications. The details of the
strategy language are presented in the technical appendix.

Since the generated proofs are almost always large and dif-
ficult to check manually, CSI relies on an external certifier
CeTA [Thiemann and Sternagel, 2009] to verify its proofs.
To utilize CeTA, CSI outputs a certificate of its proof in the
certification problem format [Sternagel and Thiemann, 2014].
Given a certificate, CeTA will either answer CERTIFIED or
present a reason to reject it. Not all processors implemented
in CSI are verifiable because CSI cannot produce certificates
for all processors, and CeTA does not implement the verifica-
tion procedures for all processors.

2.3 Grackle
Grackle [Hůla and Jakubův, 2022] is a strategy optimiza-

tion system designed to automate the generation of various
effective strategies for a given solver based on benchmark
problems. Such solvers receive a problem and decide the sat-
isfiability of a particular property of the problem. It was origi-
nally designed for automated reasoning tools and has been ap-
plied to various provers such as Prover9 [McCune, 2005] and
Lash [Brown and Kaliszyk, 2022]. We choose Grackle for
our research, as it is highly adaptable and we are not aware of

Algorithm 1 GrackleLoop: an outline of the strategy portfo-
lio invention loop.
Input: initial strategies S, benchmark problems P ,

hyperparameters β
Output: a strategy portfolio Φ

1: Φstrat ← S
2: while termination criteria is not satisfied do
3: Evaluate(P,Φ, β)
4: Φcur ← Reduce(P,Φ, β)
5: s← Select(P,Φ, β)
6: if s is None then return Φ
7: s0 ← Specialize(s,P,Φ, β)
8: Φstrat ← Φstrat ∪ s0
9: end while

any strategy invention program that would allow the kinds of
strategies needed for automatic rewriting tools. Additionally,
Grackle has achieved good results with the solvers it was pre-
viously applied to. The strategy invention problem of Grackle
is formally defined below.

Definition 1 (Strategy Invention Problem). Assume a set of
initial strategies S. In the benchmark of examples P , the
problem is to invent a bounded set of complementary strate-
gies S ′ that can prove the largest number of problems in P .
Complementary strategies means that ∀s′i ∈ S ′, s′i should
master a subset of problems P ′

i ⊆ P , such that ∀i ̸= j,
s′j ∈ S ′ cannot solve any problem in P ′

i quicker than s′i.

Algorithm 1 outlines the strategy portfolio invention loop
of Grackle, which invents strategies via a genetic algorithm
and parameter tuning with randomness. The variable Φ de-
notes the current state, including information like all invented
strategies Φstrat, and the current generation of strategies
Φcur. The first phase is generation evaluation (evaluate). In
this phase, Grackle evaluates all strategies Φstrat in its port-
folio on the benchmark P . The evaluation results are stored
in Φ to avoid duplicated execution.

Next, Grackle performs generation reduction (reduce). It
assigns scores to every strategy in Φstrat based on the evalu-
ation results in the previous phase. A configurable number of
strategies with the highest scores becomes the current gener-
ation of strategies Φcur.

The third phase is strategy selection (select). It selects
a strategy s from the current generation of strategies Φcur

based on certain criteria, which is then used to invent new
strategies. If no strategy can be selected, the algorithm termi-
nates.

Finally, strategy specialization (specialize) invents a new
strategy s0 via specializing s over its best-performing prob-
lems Ps in P . Grackle then executes external parameter
tuning programs such as ParamILS [Hutter et al., 2009] or
SMAC3 [Lindauer et al., 2022], tuning parameters for the se-
lected strategy s with randomness. The goal is to invent a
new strategy s0 such that it performs better than s ion Ps.
The new strategy s0 will be added to the portfolio Φ.

Grackle employs the same approach to describe its pa-
rameter search space as ParamILS. The space is described
by a set of available parameters, each of which is associ-

ated with a default value and several disjoint potential val-
ues. Grackle users need to input the potential values based on
their domain-specific experiences on the particular solvers.
We refer to [Hůla and Jakubův, 2022] for a comprehensive
explanation of Grackle.

3 Strategy Invention and Combination
To generate a better strategy for CSI, we first invent a large set
of complementary strategies, and then appropriately combine
a subset of the invented strategies into a single strategy.

3.1 Strategy Invention
To find new strategies for CSI, we first need to represent the
parameter space in a meaningful way. The parameter space
needs to be designed with precision to guarantee soundness.

There are three reasons why CSI may produce unsound
results given an entirely random strategy. First, some pro-
cessors are not intended for confluence analysis. They may
intend to prove other properties of TRSs, such as termina-
tion [Baader and Nipkow, 1998]. Second, even for the same
processor, it may be designed to prove different properties of
TRSs with different flags. Third, some transformation pro-
cessors may change the goal of CSI to prove another property
of TRSs, which is different from confluence such as relative
termination [Zantema, 2004].

We separate CSI’s competition strategy into 23 sub-
strategies, which, along with CSI’s competition strategy, also
serve as the initial strategies for Grackle. Among the 23 sub-
strategies, nine are mainly used to show confluence, and 14
are used to show non-confluence. A comprehensive explana-
tion of the division is shown in the technical appendix.

We maintain the structure used in CSI’s competition strat-
egy during the strategy invention because CSI relies on cer-
tain combinations of processors to (dis)prove confluence.
There are papers proving theorems for confluence analysis,
stating that if some properties of a TRS can be proved, then
it is (non-)confluent. Such a theorem can be implemented
as a single processor, which checks whether the given TRS
satisfies the properties required by the theorem. However,
not all such theorems are implemented as a processor. To
utilize such theorems, we need to combine CSI’s strategy
language and processors to perform transformations on the
original TRS and prove the necessary properties of the trans-
formed problem. If we generate strategies randomly, it will be
difficult to generate such useful structures and may produce
unsound strategies due to inappropriate transformations.

We search for three categories of parameters. First, we
search for processor flags which do not violate the soundness
guarantee. For instance, -development 6 in Section 1 is
a processor flag for the redundant processor. To ensure
soundness, we only search for flags of processors existing in
CSI’s competition strategy. Second, we include iteration pa-
rameters, such as time limits or repeated numbers of execu-
tion, to regulate the running of a certain sub-strategy. These
parameters are defined in CSI’s strategy language. More-
over, we add a boolean execution-controlling parameter for
some parallel or sequential executed sub-strategies, indicat-
ing whether to run the particular sub-strategies in confluence

analysis. Assume a strategy A||B, where || denotes a par-
allel execution. The boolean parameters for A and B can rep-
resent whether to run one, both, or neither of them.

We need to construct a strategy for CSI using the parame-
ters searched by Grackle. To achieve this, we start with CSI’s
competition strategy, replacing the processor flags and iter-
ation parameters with relevant invented parameters. Then,
we disable sub-strategies according to the boolean execution-
controlling parameters.

The most challenging part of our work is the proper defi-
nition of the parameter space to confirm CSI’s soundness. As
the exact definition is quite technical and verbose, we present
the explanation of the parameter space and show an invented
strategy in the technical appendix.

3.2 Strategy Combination
After inventing several complementary strategies, we want to
combine them into a single strategy and compare it with the
competition strategy of CSI. The combination is performed
by choosing a few strategies from Grackle’s final portfolio
and appropriately assigning a time limit to each of them.

To effectively divide the time, we split the whole one
minute into several time splits. Next, we greedily allocate
a strategy to each time split in the sequence by order. Each
newly chosen strategy aims at proving the largest number of
remaining benchmark problems that have not been proved by
the previously chosen strategies. We shuffle the sequence
100 times and greedily select strategies for each shuffled se-
quence, resulting in strategy schedules comprising sequences
of pairs of strategies and time splits. To use a strategy sched-
ule, CSI executes each strategy in it by order for a duration of
the relevant time split. We split the one-minute duration into
many sequences and perform the greedy strategy selection for
each. We finally choose the strategy schedule that maximizes
the number of provable problems. The details of the strategy
combination are explained in the technical appendix.

4 Dataset Augmentation
Although ARI-COPS is meticulously built by term rewriting
experts, it is unsuitable for AI techniques. First, it is relatively
small which is insufficient for contemporary AI techniques.
Second, there may be an imbalance in ARI-COPS because
the problems come from rewriting literature. The examples
are often of theoretical interest and are constructed to illus-
trate specific confluence analysis techniques. However, TRSs
encountered in practical applications can contain redundant
rules that are irrelevant to illustrating a certain property.

4.1 TRS Generation Procedure
We develop a program to randomly generate a large dataset
of TRSs, receiving multiple parameters to control the overall
generation procedure. First, the maximum number of avail-
able function symbols F , constants C, variables V , and rules
R establish the upper bound of the respective quantities of
symbols and rules. For each of F , C, and V , a value is ran-
domly selected between zero and the specified maximum, de-
termining the actual number of available symbols. The actual
number of rules is randomly chosen between one and R. Sec-
ond, we define a parameter M , used during the initialization

of function symbols. For each function symbol, an arity is
randomly chosen between one and M

Another important parameter is the probability of generat-
ing a left-linear TRS L, which is associated with the likeli-
hood of producing provably confluent TRSs. The majority of
contemporary techniques for proving confluence are merely
effective for left-linear TRSs. Without regulating the ratios
of left-linearity, randomly generated TRSs rarely exhibit left-
linearity, making it theoretically difficult to show confluence
for them. We also notice that, in practice, CSI can merely
prove confluence of very few generated TRSs if the ratios of
left-linearity are not controlled. By default, we force 60% of
generated TRSs to be left-linear.

Moreover, for a rule l → r, there is a parameter called
CT related to the probability of generating l and r that are
complex terms. We need it because we prefer complex terms,
whereas constants and variables are quite simple.

Algorithm 2 presents the generation procedure of a single
term. While choosing the root symbol, we first randomly
sample a value between zero and one and compare it with
comp to determine whether to only use funs as candidates
for the root symbol. Here, comp is a value randomly cho-
sen between zero and CT during the initialization stage of
the generation of a TRS. If the comp is larger than one, we
can only generate complex terms. Meanwhile, according to
the definition of rewrite rules in Section 2.1, the left term l in
l → r cannot be a variable. After choosing a root symbol for
the term t, we continuously choose new symbols for unde-
fined function arguments until all of them are defined. After
selecting a new variable, we need to remove it from the set
of available variables if we are generating a left-linear TRS.
The size of the terms generated by us is at most 15, where the
size of a term is defined as the number of symbols in it. We
choose 15 as the maximum value because the sizes of most
terms in ARI-COPS are smaller than 15.

To generate a rule l → r, we first execute Algorithm 2 to
generate l and then execute it again to generate r. We extract
all used variables in l and mark them as available variables for
the generation of r, thereby Var(r) ⊆ Var(l), as required by
the definition of rewrite rules in Section 2.1.

We repeatedly generate rewrite rules until they reach the
expected number and then return the newly generated TRS.

4.2 Dataset Generation
We utilize the program explained in this section to construct
a large dataset, facilitating the application of AI techniques
to confluence analysis. First, we randomly generate 100,000
TRSs with the parameters of the maximum number of avail-
able function symbols F = 12, constants C = 5, variables
V = 8, and rules R = 15. Other parameters include the max-
imum arity of function symbols M = 8, the probability of
generating left-linear TRSs L = 0.6, and the value related to
the possibility of generating complex terms CT = 1.6.

However, the randomly generated dataset can be imbal-
anced. First, there may be significant differences in the
number of confluent, non-confluent, and indeterminate TRSs.
Second, the number of TRSs mastered by different conflu-
ence analysis techniques may vary considerably.

Algorithm 2 Term Generation
Input: consts, vars, funs

comp, the likelihood of making a complex term
left , whether the term is on the rewrite rule’s left side
linear, whether to construct a linear term

Output: a term t

1: if random(0, 1) < comp then
2: root symbols← funs
3: else if left then
4: root symbols← funs + consts
5: else
6: root symbols← funs + consts+ vars
7: end if
8: t← random choose one(root symbols)
9: undefs ← undefined function arguments in t

10: while undefs is not empty do
11: for all undef ∈ undefs do
12: sym ← random choose one(funs + consts +

vars)
13: replace the undefined function argument corre-

sponding to undef in t with sym
14: if linear and is var(sym) and left then
15: remove sym from vars
16: end if
17: end for
18: undefs ← undefined function arguments of t
19: end while
20: return t

We develop a multi-step procedure to build a relatively bal-
anced dataset. First, we execute CSI’s competition strategy
on all generated TRSs for one minute using a single CPU. CSI
outputs NO, YES, and MAYBE for 69317, 25012, and 5671
TRSs, respectively.

Second, we randomly choose 5,000 problems from each
set of problems classified as NO, YES, and MAYBE by CSI.

Third, we execute the duplicate checker used in CoCo 2024
to remove the duplications in the 15,000 chosen TRSs and
566 ARI-COPS TRSs. It checks the equivalence of syntac-
tical structures between TRSs modulo renaming of variables
and a special renaming on function symbols of their signa-
tures. If TRSs of an equivalence class occur both in the
randomly generated dataset and ARI-COPS, we only remove
those randomly generated TRSs.

Fourth, we want to mitigate the imbalance in the number
of problems mastered by different confluence techniques. We
execute 26 strategies for all TRSs, aiming at labeling each
of them with the most effective strategy. The labeling strate-
gies contain all initial strategies for Grackle, which are ex-
plained in Section 3.1. The other two that are used to prove
confluence are extracted from two complicated initial strate-
gies, both consisting of many sub-strategies and integrated
with transformation techniques that potentially simplify the
search for proofs. Specifically, the two complicated initial
strategies parallelly execute two important confluence analy-
sis techniques, development closedness [Van Oostrom, 1997]
and decreasing diagrams [Van Oostrom, 1994], not used by
the other initial sub-strategies. If we do not use them for

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
0

50

100

150

200

250

300

Figure 1: The number of TRSs solved most quickly (y-axis) for each
labeling strategy (x-axis). Two labeling strategies that do not master
any problems are ignored in the x-axis.

labeling, we will not be able to understand whether a TRS
is mastered by one of the two important confluence analy-
sis techniques. The details of the two new labeling strate-
gies are explained in the technical appendix. The time limit
for using CSI’s competition strategy as a labeling strategy is
one minute. The time limit for other labeling strategies is
30 seconds, smaller than one minute because the execution
of decomposed sub-strategies is more efficient. We calculate
the number of problems most quickly solved by each label-
ing strategy. The details of labeling strategies are presented
in the technical appendix. The randomly generated dataset
is quite imbalanced, four strategies master more than 1,000
problems; however, 16 strategies master less than 250 prob-
lems. To address the imbalance, we randomly choose at most
300 problems for a strategy from its set of mastered problems.
We also randomly add 1,200 problems that cannot be solved
by any labeling strategy to the dataset.

Finally, we obtain a dataset of 5,267 TRSs. Within this
dataset, 1,647 TRSs are classified as confluent, 1,910 as non-
confluent, and 1,710 as indeterminate when evaluated by CSI
using a single CPU within a one-minute time limit.

Figure 1 shows the final distribution of the number of prob-
lems mastered by each labeling strategy. It is not perfectly
balanced; however, we consider it relatively balanced, given
that certain strategies can only master problems that satisfy
particular properties. Such properties can be uncommon in
randomly generated TRSs and practical applications.

There are infinitely many strategies that can be chosen as
labeling strategies, such as strategies obtained by changing
processor flags. We do not choose other labeling strategies as
we have already decomposed CSI’s competition strategy, en-
abling us to label problems with all categories of confluence
analysis techniques implemented in CSI. Further decomposi-
tion or modification of processor flags may allocate problems
to different labeling strategies that only slightly differ.

5 Experiments
We evaluate our strategy invention method on ARI-COPS
and a combination of the randomly generated TRSs and ARI-
COPS datasets. In both datasets, CSI with invented strategies
outperforms CSI with the competition strategy, the state-of-
the-art approach in confluence analysis for TRSs.

ARI-COPS augment
CPU 1 4 1 4
init 475 477 846 852
total 479 484 873 871
confs 73 93 92 104

both in final 6 2 22 12

Table 1: Statistics of Grackle’s training procedure. The rows init and
total denote the number of problems solved by Grackle’s initial strat-
egy and the number of problems solved by strategies in Grackle’s
final portfolio, respectively. The row confs denotes the number of
strategies that remains in Grackle’s final portfolio. The row both in
final represents the number of strategies in the final portfolio that
master both confluence and non-confluence of TRSs.

5.1 Experimental Settings
The ARI-COPS 2024 dataset comprises a total of 1,613 prob-
lems of which 566 are TRS problems. We focus on evaluat-
ing our approach on TRS problems since they are standard
term rewriting problems for confluence analysis and repre-
sent the major category in ARI-COPS. Another evaluation
dataset consists of data from both ARI-COPS and our ran-
domly generated datasets in Section 4.2. For training pur-
poses, we arbitrarily select 283 examples from ARI-COPS
and 800 examples from the randomly generated dataset. To
build the test dataset, we exclude the examples in the train-
ing dataset, subsequently randomly selecting 800 examples
from the randomly generated dataset and the remaining 283
examples from ARI-COPS.

The Grackle time limit for proving a TRS is 30 seconds,
employed both in the evaluation and the strategy special-
ization phases. During the specialization phase, Grackle
launches ParamILS for parameter tuning. The overall time
limit for one strategy specialization phase is 45 minutes. The
total execution time of Grackle is two days. Grackle performs
parallel execution in both the evaluation and specialization
phases; thus, we also limit the number of CPUs it can use.
For each dataset, we perform two Grackle runs, configuring
the numbers of available CPUs for a single strategy run to be
either one or four. When it is set to one and four, the total
number of available CPUs for Grackle is set to 52 and 66, re-
spectively. Here, a CPU denotes a core of the AMD EPYC
7513 32-core processor. Grackle’s portfolio stores at most
200 of the best strategies.

The use of four CPUs has been selected to match the results
of CSI’s competition strategy in CoCo 2024 on the competi-
tion setup. Given exactly the same problems solved by CSI
in our own setup described above with four CPUs and in the
CoCo competition in their Starexec [Stump et al., 2014] setup
we consider the further comparisons in the paper fair.

5.2 Experimental Results
Performance on ARI-COPS. Table 1 depicts the statis-
tics of Grackle’s training procedure. The value total shows
the number of solved TRSs after the training, while init is
the number solved by the initial strategies. When using four
CPUs, Grackle’s final portfolio contains more strategies than
those in the final portfolio generated using one CPU. A prob-
able reason is that executing with four CPUs can discover

comp total combine CoCoCPU 1 4 1 4 1 4
yes 266 272 271 277 271 276 272
no 203 205 208 207 207 207 205

solved 469 477 479 484 478 483 477

Table 2: Numbers of solved TRSs on ARI-COPS. The column comp
represents CSI’s competition strategy, total shows the total number
of problems proved by all invented strategies, and combine denotes
combining invented strategies as a single strategy. CoCo denotes the
results obtained by CSI in CoCo 2024.

never by CSI never in CoCo
CPU yes no solved yes no solved

1 2 3 5 1 3 4
4 4 2 6 1 2 3

1&4 6 3 9 2 3 5
1-CeTA 0 3 3 0 3 3
4-CeTA 1 0 1 0 0 0

1&4-CeTA 1 3 4 0 3 3

Table 3: Numbers of TRSs solved by all strategies in Grackle’s final
portfolio that have never been solved by all versions of CSI or any
tool in CoCo. The suffix CeTA denotes the proofs can be certified
by CeTA. The notion 1&4 means the union of all strategies invented
by employing one CPU and four CPUs per strategy execution.

some strategies that are only effective with enough computa-
tion resources. The final augmented portfolios contain more
strategies that master both confluence and non-confluence of
TRSs. The likely reason is that a larger dataset makes train-
ing slower, and it is more difficult for Grackle to find optimal
strategies for particular theoretical properties of TRSs.

Table 2 compares the invented strategies with CSI’s com-
petition strategy. With a single CPU per each strategy evalua-
tion, Grackle’s final portfolio proves ten more problems than
CSI’s competition strategy. With four CPUs, total proves
seven more problems than comp.

The invented strategies additionally (dis)prove several
TRSs that have never been proved by different versions of
CSI or all CoCo’s participants, as depicted in Table 3. In to-
tal, we show (non-)confluence for nine TRSs that could not
be solved by any versions of CSI. Five of the nine new proofs
have never been proven by all CoCo’s participants.

We combine the invented strategies as a single strategy to
compare it with CSI’s competition strategy. The number of
time splits and the exact time assigned for each invented strat-
egy are presented in the technical appendix. With single and
four CPUs, combine proves nine and six more problems than
the competition strategy, respectively.

When using one CPU, we gain more improvements over
CSI’s competition strategy compared to using four CPUs. A
likely reason is that our strategy invention approach is partic-
ularly good at generating efficient strategies. With four CPUs,
CSI can run several processors in parallelly, effectively reduc-
ing the runtime.

Certification. First, we check whether the answers found
by the invented strategies are consistent with the answers dis-
covered in CoCo. Second, we execute CeTA to verify the

comp combine
CPU 1 4 1 4
yes 403 412 412 418
no 399 442 450 449

solved 802 854 862 867

Table 4: Numbers of solved TRSs on the testing examples of the
augmented dataset.

proofs for the newly solved problems. Table 3 depicts the
number of newly solved problems certifiable by CeTA. If we
cannot certify the proofs due to the limitation of CeTA and
CSI as explained in Section 2.2, we analyze the related strate-
gies. We aim to understand what changes they perform to the
original strategy lead to the proofs. From the analysis, we
either slightly modify the sub-strategy defined in the compe-
tition strategy or directly use some existing sub-strategies to
produce the same answers as the invented strategies. These
modifications that lead to the answers are employed in the
corresponding invented strategies, which are small and sound
according to our knowledge of term rewriting. We also check
the certification errors output by CeTA to figure out whether
they are indeed errors or just caused by limitations of CSI and
CeTA. Third, for each strategy in Grackle’s final portfolio, we
run CSI on its mastered problems and apply CeTA to verify
the proofs. Only 234 and 226 proofs can be verified when
one and four CPUs are employed for strategy invention, re-
spectively. We manually check the proofs that cannot be ver-
ified by CeTA. The details of our certification procedures are
shown in the technical appendix.
Performance on the augmented dataset. Table 1 also
summarizes Grackle’s training procedure in the augmented
dataset. Compared to the training in ARI-COPS, Grackle’s
final portfolios consist of more strategies. The likely reason is
that the augmentation dataset comprises more examples, ne-
cessitating more diverse strategies to cover them. We notice
that with one CPU, the invented strategies prove more prob-
lems than those invented with four CPUs. This is probably
caused by the randomness in the strategy invention.

The results of the evaluation in the test dataset are pre-
sented in Table 4. With one and four CPUs, combine respec-
tively proves 60 and 13 more problems than comp. Notice
that here the training examples are disjoint from the testing
examples, whereas in the evaluation for ARI-COPS, they are
the same. From this, we can conclude that our invented strate-
gies generalize well to unseen data. With four CPUs, the uni-
fied strategy proves more problems than using one CPU. The
likely reason is that the invented strategies with four CPUs
can discover proofs more quickly, leading to a stronger uni-
fied strategy within the one-minute time limit.

6 Examples
Besides the example in Section 1, we present two more ex-
amples of the invented strategies that (dis)prove problems un-
provable by any participant in CoCo.

The core structure of the first example is AT. It proves con-
fluence for 794.ari in ARI-COPS (939.trs in COPS).
The sub-strategy AT, denoting Aoto-Toyama criteria [Aoto

and Toyama, 2012], is defined in CSI’s competition configu-
ration document. CSI’s competition strategy executes AT in
parallel with many other sub-strategies, reducing the compu-
tational resources allocated to it and failing to find a proof.

Another example is similar to that in Section 1, we dis-
cover that if CSI employs redundant -development
6 to generate redundant rules in the competition strategy, it
can disprove confluence for 852.ari (997.trs in COPS),
and the proof can be certified by CeTA.

7 Related Work
There have been several attempts to apply machine learning
to rewriting; however, none have been applied to automatic
confluence provers. While [Winkler and Moser, 2019] inves-
tigate feature characterization of term rewrite systems, they
do not build any learning models based on the features. There
are works analyzing the termination of programs using neu-
ral networks to learn from the execution traces of the pro-
gram [Giacobbe et al., 2022; Abate et al., 2021]. Neverthe-
less, they do not transform programs to term rewrite systems
and apply machine learning to guide automatic term rewriting
tools in termination analysis. MCTS-GEB [He et al., 2023]
applies reinforcement learning to build equivalence graphs
for E-graph rewriting, but it focuses on optimization prob-
lems, not on confluence.

There has been extensive research on parameter tuning and
strategy portfolio optimization in automated reasoning. Hy-
dra [Xu et al., 2010] employs a boosting algorithm [Fre-
und and Schapire, 1997] to select complementary strategies
for SAT solvers. [Ramı́rez et al., 2016] propose an evolu-
tionary algorithm for strategy generation in the SMT solver
Z3 [De Moura and Bjørner, 2008]. A comprehensive review
of these approaches is provided by [Kerschke et al., 2019].

8 Conclusion and Future Work
We have proposed an approach to automatically invent strate-
gies for the state-of-the-art confluence analysis prover CSI.
We have performed data augmentation by randomly gener-
ating a large number of term rewrite systems and mixing
these with the human-built dataset ARI-COPS. We have eval-
uated the invented combined strategy both on the original
ARI-COPS dataset and the augmented dataset. The invented
strategies discover significantly more proofs than CSI’s com-
petition strategy on both datasets. Notably, five of the human-
written problems have never been proved by any automatic
confluence provers in the annual confluence competitions.

Future work includes applying machine learning to indi-
vidual term-rewriting techniques, for example those that per-
form search in a large space. Prioritizing the more promising
parts of the search space could improve the individual tech-
niques. Our strategy invention approach could also be ex-
tended to other automatic term rewriting provers. It would
also be possible to apply neural networks to directly pre-
dict appropriate strategies for automatic term rewriting tools,
however, soundness of proofs generated using such an ap-
proach remains a major challenge.

Acknowledgements
This research was supported by the ERC PoC project Formal-
Web3 no. 101156734, the University of Innsbruck doctoral
scholarship promotion of young talent, the National Natural
Science Foundation of China 92370201, and the Czech Sci-
ence Foundation project no. 24-12759S.

References
[Abate et al., 2021] Alessandro Abate, Mirco Giacobbe, and

Diptarko Roy. Learning probabilistic termination proofs.
In Computer Aided Verification: 33rd International Con-
ference, CAV 2021, Virtual Event, July 20–23, 2021, Pro-
ceedings, Part II 33, pages 3–26. Springer, 2021.

[Aleksandrova et al., 2024] Kristina Aleksandrova, Jan
Jakubuv, and Cezary Kaliszyk. Prover9 unleashed:
Automated configuration for enhanced proof discovery. In
Proceedings of 25th Conference on Logic for Pro, volume
100, pages 360–369, 2024.

[Aoto and Toyama, 2012] Takahito Aoto and Yoshihito
Toyama. A reduction-preserving completion for proving
confluence of non-terminating term rewriting systems.
Logical Methods in Computer Science, 8, 2012.

[Baader and Nipkow, 1998] Franz Baader and Tobias Nip-
kow. Term rewriting and all that. Cambridge university
press, 1998.

[Bachmair and Ganzinger, 1994] Leo Bachmair and Harald
Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and
Computation, 4(3):217–247, 1994.

[Brown and Kaliszyk, 2022] Chad E Brown and Cezary
Kaliszyk. Lash 1.0 (system description). In International
Joint Conference on Automated Reasoning, pages 350–
358. Springer, 2022.

[De Moura and Bjørner, 2008] Leonardo De Moura and
Nikolaj Bjørner. Z3: An efficient smt solver. In In-
ternational conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340.
Springer, 2008.

[Freund and Schapire, 1997] Yoav Freund and Robert E
Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of com-
puter and system sciences, 55(1):119–139, 1997.

[Giacobbe et al., 2022] Mirco Giacobbe, Daniel Kroening,
and Julian Parsert. Neural termination analysis. In Pro-
ceedings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering, pages 633–645, 2022.

[Gramlich, 1996] Bernhard Gramlich. Confluence without
termination via parallel critical pairs. In Colloquium
on Trees in Algebra and Programming, pages 211–225.
Springer, 1996.

[He et al., 2023] Guoliang He, Zak Singh, and Eiko Yoneki.
Mcts-geb: Monte carlo tree search is a good e-graph
builder. In Proceedings of the 3rd Workshop on Machine
Learning and Systems, pages 26–33, 2023.

[Hůla and Jakubův, 2022] Jan Hůla and Jakubův. Targeted
configuration of an smt solver. In International Confer-
ence on Intelligent Computer Mathematics, pages 256–
271. Springer, 2022.

[Hutter et al., 2009] Frank Hutter, Holger H Hoos, Kevin
Leyton-Brown, and Thomas Stützle. Paramils: an auto-
matic algorithm configuration framework. Journal of arti-
ficial intelligence research, 36:267–306, 2009.

[Kerschke et al., 2019] Pascal Kerschke, Holger H Hoos,
Frank Neumann, and Heike Trautmann. Automated al-
gorithm selection: Survey and perspectives. Evolutionary
computation, 27(1):3–45, 2019.

[Lindauer et al., 2022] Marius Lindauer, Katharina
Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René
Sass, and Frank Hutter. Smac3: A versatile bayesian
optimization package for hyperparameter optimization.
Journal of Machine Learning Research, 23(54):1–9, 2022.

[McCune, 2005] W. McCune. Prover9 and Mace4. http:
//www.cs.unm.edu/∼mccune/prover9/, 2005. Accessed:
2025-05-21.

[Meseguer, 2003] José Meseguer. Software specification and
verification in rewriting logic. Nato Science Series Sub
Series III Computer and Systems Sciences, 191:133–194,
2003.

[Nagele et al., 2015] Julian Nagele, Bertram Felgenhauer,
and Aart Middeldorp. Improving automatic confluence
analysis of rewrite systems by redundant rules. In 26th In-
ternational Conference on Rewriting Techniques and Ap-
plications (RTA 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[Nagele et al., 2017] Julian Nagele, Bertram Felgenhauer,
and Aart Middeldorp. Csi: New evidence–a progress re-
port. In International Conference on Automated Deduc-
tion, pages 385–397. Springer, 2017.

[Ramı́rez et al., 2016] Nicolás Gálvez Ramı́rez, Youssef
Hamadi, Eric Monfroy, and Frédéric Saubion. Evolving
smt strategies. In 2016 IEEE 28th International Confer-
ence on Tools with Artificial Intelligence, 2016.

[Sternagel and Thiemann, 2014] Christian Sternagel and
René Thiemann. The certification problem format. arXiv
preprint arXiv:1410.8220, 2014.

[Stump et al., 2014] Aaron Stump, Geoff Sutcliffe, and Ce-
sare Tinelli. Starexec: A cross-community infrastructure
for logic solving. In International joint conference on au-
tomated reasoning, pages 367–373. Springer, 2014.

[Thiemann and Sternagel, 2009] René Thiemann and Chris-
tian Sternagel. Certification of termination proofs using
ceta. In International Conference on Theorem Proving in
Higher Order Logics, pages 452–468. Springer, 2009.

[Van Oostrom, 1994] Vincent Van Oostrom. Confluence
by decreasing diagrams. Theoretical computer science,
126(2):259–280, 1994.

http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

[Van Oostrom, 1997] Vincent Van Oostrom. Developing de-
velopments. Theoretical Computer Science, 175(1):159–
181, 1997.

[Willsey et al., 2021] Max Willsey, Chandrakana Nandi,
Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel
Panchekha. Egg: Fast and extensible equality saturation.
Proceedings of the ACM on Programming Languages,
5(POPL):1–29, 2021.

[Winkler and Moser, 2019] Sarah Winkler and Georg Moser.
Smarter features, simpler learning? In Proceedings of the
Second International Workshop on Automated Reasoning:
Challenges, Applications, Directions, Exemplary Achieve-
ments, 2019.

[Xu et al., 2010] Lin Xu, Holger Hoos, and Kevin Leyton-
Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 24, pages
210–216, 2010.

[Zantema, 2004] Hans Zantema. Relative termination in
term rewriting. In WST’04 7th International Workshop on
Termination, page 51, 2004.

Automated Strategy Invention for Confluence of Term Rewrite Systems
Technical Appendix

1 Term Rewriting1

We explain the essential concepts of term rewriting in this2

section.3

Various types of rewrite systems exist based on the formal-4

ization of objects, with the simplest being the abstract rewrite5

system (ARS).6

Definition 1. An ARS is a pair A = (A,→) of a set A and a7

binary relation→ on A.8

A (possibly infinite) rewrite sequence is a sequence a0 →9

a1 → · · · such that ai ∈ A. We write a →∗ b if there is a10

rewrite sequence a→ · · · → b.11

Definition 2. An ARS (A,→) is terminating if ∀a ∈ A, there12

are no infinite rewrite sequences starting from a.13

The notation a ↓ b denotes that a and b are joinable, mean-14

ing that there exists an element c ∈ A such that a →∗ c and15

b→∗ c.16

Definition 3. An ARS (A,→) is confluent if ∀a, b, c ∈ A17

with b←∗ a→∗ c, we have b ↓ c.18

Consider an abstract reduction system (ARS) E = (E,→),19

where E = {a, b, c, d} and→= {(a, b), (b, d), (c, b), (d, c)}.20

The ARS E is non-terminating as it admits an infinite rewrite21

sequence: c→ b→ d→ c→ · · · .22

Term rewrite systems (TRSs) extend ARS by incorporating23

first-order variables and employing first-order terms.24

We then define the notions of rewriting terms using con-25

texts and holes.26

Definition 4. A hole is defined as a special symbol □ /∈ F ,27

and a context C is a term that contains exactly one hole. The28

notion C[t] denotes the application of the term t to the context29

C, which is defined as follows:30

C[t] =

{
t if C = □
f(t1, . . . , C

′[t], . . . , tn) if C = f(t1, . . . , C
′, . . . , tn)

Definition 5. The set of variables in a term t is defined as31

Var(t) =


{t} if t is a variable
∅ if t is a constant
n⋃

i=1

V ar(ti) if t = f(t1, . . . , tn)

Definition 6. A rewrite rule for terms l and r is written as 32

l → r where l /∈ V and V ar(r) ⊆ V ar(l). A term rewrite 33

systemR consists of a set of rewrite rules. Consider the TRS 34

R, we write the rewrite relation t →R u for terms t, u if 35

there exists a rewrite rule l → r ∈ R, a context C, and a 36

substitution σ such that t = C[lσ] and u = C[rσ]. 37

We write →∗
R to denote the transitive-reflexive closure of 38

→R. Similar to ARSs, we obtain the definitions of rewrite 39

sequences and ↓R for TRSs. We drop the subscriptR for the 40

relations on terms in the subsequent sections if it is contextu- 41

ally inferrable. 42

Definition 7. A TRSR is terminating if ∀t ∈ T (F ,V), there 43

is not any infinite rewrite sequence t → t1 → · · · starting 44

from t. 45

The TRS A = {f(x)→ g(f(x)), g(y)→ f(g(y))} is not 46

terminating, as it allows the infinite rewrite sequence f(x)→ 47

g(f(x)) → f(g(f(x))) → · · · . This sequence is infinite 48

because the term f(x) within g(f(x)) can be rewritten back 49

to g(f(x)), resulting in an infinite loop. 50

Definition 8 (confluence). A TRS R is confluent if and only 51

if ∀s, t, u ∈ T (F ,V), s→∗
R t ∧ s→∗

R u⇒ t ↓R u. 52

The TRS B = {f(x, x) → a, f(x, g(x)) → b, c → g(c)} 53

is not confluent, as it permits the following rewrite sequences: 54

a← f(c, c)→ f(c, g(c))→ b. Since no rules can be applied 55

to a and b, convergence between them is not achievable. 56

A term is called linear if no variable multiply occurs in it. 57

A rewrite rule l→ r is called left-linear if l is linear. A TRS is 58

called left-linear if all its rules are left-linear. Left-linearity is 59

crucial for confluence analysis since most existing confluence 60

analysis techniques depend on it to determine the confluence 61

of TRSs. In this paper, a term is called compositional if it is 62

neither a variable nor a constant. 63

We will also explain some rewriting concepts that are im- 64

portant for the understanding of the parameter space in Sec- 65

tion 4. However, our parameter involves an extensive number 66

of rewriting techniques. Explaining all basic rewriting con- 67

cepts requires extremely large amount of work, which is be- 68

yond the scope of our paper. Moreover, a lot of definitions 69

or theorems rely on previous definitions and theorems. Pre- 70

senting all the dependent also necessiate too much work for 71

us. 72

We recommend readers to read some textbooks [Baader 73

and Nipkow, 1998; Bezem et al., 2003] for the concepts that 74

they cannot understand.75

You may skip the following definitons and theorems if you76

can get a feeling of our parameter space.77

1.1 Basic Termination Techniques78

To prove termination, many techniques try to discover a well-79

founded monotone algebra that is compatible with the given80

TRS. The crucial part is the discovery of interpretations. De-81

pending on their formats, there are integer interpretations,82

polynomial interpretations, matrix interpretations, etc.83

Definition 9 (interpretation). Let F be a signature. An F-84

algebra A is a set A equipped with operations fA : An → A85

for every n-ary function symbol f ∈ F . The underlying set86

A is called the carrier ofA and fA is called the interpretation87

of f .88

Definition 10. Let A be an arbitrary algebra. We inductively89

define a mapping [·]A from the set of ground terms to A as90

follows: [f(t1, ..., tn)]A = fA([t1]A, . . . , [tn]A). In particu-91

lar, if t is a constant then [t]A = tA .92

Definition 11 (well-founed relation). Let R be a relation on93

a set A. A relation R is called well-founded if there are no94

infinite descending sequences a1Ra2Ra3R · · · of elements95

of A.96

Definition 12 (monotone algebra). A monotone F-algebra97

(A, >) consists of a non-empty F-algebra A and a proper98

order > on the carrier A of A such that every algebra op-99

eration is strictly monotone in all its coordinates, i.e., if100

f ∈ F has arity n ≥ 1 then fA(a1, . . . , ai, . . . , an) >101

fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈102

1, . . . , n with ai > b. We call a monotone F-algebra (A, >)103

well-founded if > is well-founded.104

Theorem 1. A TRS is terminating if and only if it is compat-105

ible with a well-founded monotone algebra.106

Example 1. Consider the TRS R1 consisting of the single107

rewrite rule f(f(x, y), z) → f(x, f(y, z)) Let (A, >) =108

(N, >N), the set of natural numbers equipped with the usual109

order, and define fA(x, y) = 2x + y + 1 for all x, y ∈ N.110

The operation fA is strictly monotone in both coordinates: if111

x >N x′ and y >N y′ then 2x+y+1 >N 2x′+y+1 and 2x+112

y+1 >N 2x+y′+1. We have fA(fA(x, y), z) = 4x+2y+113

z+3 > N2x+2y+z+2 = fA(x, fA(y, z)) for all x, y, z ∈114

N. Hence [α]A(f(f(x, y), z)) >N [α]A(f(x, f(y, z))) for115

every assignment α, yielding the termination ofR1116

1.2 Basic Confluence Techniques117

One typical way of proving confluence is first proving termi-118

nation and then proving local confluence.119

Definition 13 (local confluence). Let R be a TRS. An ele-120

ment a ∈ T is locally confluent if for all elements b, c ∈ T121

with b → a → c we have b ↓ c. The TRS T is locally122

confluent if all its elements are locally confluent.123

Theorem 2 (Newman’s Lemma). Every terminating and lo-124

cally confluent TRS is confluent.125

1.3 Basic Non-confluence Techniques 126

We want to introduce critical pairs since they are crucial for 127

non-confluence analysis. 128

Definition 14 (substitution). A substitution is a mapping σ 129

from V to T (F ,V). The application of the substitution σ to 130

the term t is defined as: 131

tσ =

{
σ(t) if t ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

Definition 15 (unifiability). Two terms s and t are unifiable 132

if there exists a substitution σ such that σs = σt. 133

Definition 16 (variant). A variable substitution is a substitu- 134

tion from V to V . A renaming is a bijective variable substi- 135

tution. A term s is a variant of a term t if s = tσ for some 136

renaming σ. 137

Definition 17 (Position).

Pos(t) =


{ϵ} if t is a variable
{ϵ} ∪ {ip|1 ≤ i ≤ n and p ∈ Pos(ti)}

if t = f(t1, . . . , tn)

Let p ∈ Pos(t). The subterm of t at position p is denoted 138

by t|p , i.e., 139

t|p =

{
t if p = ϵ

ti|q if t = f(t1, . . . , tn) and p = iq

The symbol t(p) at position p in t is defined as t(p) = 140

root(t|p). We partition the set Pos(t) into PosV(t) = {p ∈ 141

Pos(t)|t|p ∈ V} and PosF (t) = Pos(t) \ PosV(t). 142

PosV(t) denotes the positions of variables in the term t. 143

PosF (t) denotes the positions of function symbols in the 144

term t. 145

Definition 18 (Overlap). An overlap of a TRS (F ,R) is a 146

triple ⟨l1 → r1, p, l2 → r2⟩ satisfying the following proper- 147

ties: 148

1. l1 → r1 and l2 → r2 are variants of rewrite rules of R 149

without common variables, 150

2. p ∈ PosF(l2) 151

3. l1 and l2|p are unifiable, 152

4. if p = ϵ then l1 → r1 and l2 → r2 are not variants. 153

Definition 19 (Critical Pair). Suppose ⟨l1 → r1, p, l2 → r2⟩ 154

is an overlap of a TRSR. Let σ be a most general unifier of l1 155

and l2|p . The term l2σ[l1σ]p = l2σ can be rewritten in two 156

different ways: l2σ[r1σ]p
l1→r1←−−−−

p
l2σ[l1σ]p = l2σ

l2→r2−−−−→
ϵ

157

r2σ We call the quadruple (l2σ[r1σ]p, p, l2σ, r2σ) a critical 158

peak and the equation l2σ[r1σ]p ≈ r2σ a critical pair of R, 159

obtained from the overlap ⟨l1 → r1, p, l2 → r2⟩. 160

Example 2. Let the TRS R have two rules f(a, g(x)) → 161

f(x, x) and g(b) → c. We have an overlap ⟨g(b) → 162

c, 2, f(a, g(x)) → f(x, x)⟩. It gives rise to the critical 163

peak f(a, c)
2←− f(a, g(b))

ε−→ f(b, b) and the critical pair 164

f(a, c) ≈ f(b, b). 165

To disprove confluence of a TRS R, we consider peaks of
the form

t←≤m t1 ← s→ u1 →≤n u

such that t1 = s[r1σ]p ← s[t1σ]p = s = s[t2σ]q →166

s[r2σ]q = u1 with t1 → r1, t2 → r2 ∈ R, q ≤ p, and167

p ∈ Pos(s[t2]q). The basic idea is to show non-joinability168

of t and u. In order to test non-joinability of t and u we con-169

sider ground instances of t and u. Here, ground instances170

mean substituting all variables with constants. Let cx be a171

fresh constant for every variable x and let t̂ denote the result172

of replacing every variable in a term t with the corresponding173

constant. Since for terms s and w we have s →R w if and174

only if ŝ →R ŵ, it follows that terms t and u are joinable if175

and only if t̂ and û are joinable. To test non-joinability of t̂176

and û we overapproximate the sets of reducts for t̂ and û and177

check if the intersection of these sets is empty.178

2 CSI Strategy Language179

Besides the technical appendix, [Nagele et al., 2017] also ex-180

plains CSI’s strategy language.181

Overall Grammar A strategy is defined by the grammar182

s ::= m | (s) | c | i | e183

e ::= s% | s! | s[f] | {s}o184

i ::= s? | s* | s+ | sn* | s[f]*185

c ::= s;s | s|s | s||s186

| if p then s else s187

where s expresses the possible strategies of CSI, m denotes188

the name of any available processor, p denotes the name of189

any available predicate, and c, i, and e define the available190

combinators, iterators, and specifiers. Here combinators are191

used to combine two strategies whereas iterators are used to192

repeat a given strategy a designated number of times. In con-193

trast, specifiers are used to control the behavior of strategies.194

A strategy works on a confluence problem. Whenever CSI195

executes a strategy, internally, a so-called proof object is con-196

structed which represents the actual proof. Depending on the197

shape of the resulting proof object after applying a strategy s,198

we say that s succeeded or s failed. This should not be con-199

fused with the possible answers of the prover: YES, NO, and200

MAYBE. Here YES means that confluence could be proved,201

NO indicates a successful non-confluence proof, and MAYBE202

refers to the case when confluence could neither be proved203

nor disproved. On the success of a strategy s, it depends on204

the internal proof object whether the final answer is YES or205

NO. On failure, the answer is always MAYBE. Based on the206

two possibilities success or failure, the semantics of the strat-207

egy operators is as follows.208

Combinators209

• s;s’: First applies s to the given problem. If this fails,210

then s;s’ fails. Otherwise s’ is applied to the resulting211

problems.212

• s|s’: Applies s to the given problem. If this succeeds,213

its result is returned. Otherwise s’ is applied to the214

given problem.215

• s||s’: Runs s and s’ in parallel on the given prob- 216

lem. As soon as at least one of s and s’ succeeds, the 217

resulting problem is returned. 218

• if p then s else s’: Applies s to the given 219

problem if p is satisfied by the underlying problem. Oth- 220

erwise s’ is applied. 221

Iterators 222

• s?: Applies s to the given problem. On success, its 223

result is returned. Otherwise, the original problem is re- 224

turned and unmodified. 225

• s*: Applies s recursively to the given problem until it 226

cannot be modified anymore. Note that s* is always 227

successful. 228

• s+: Applies s recursively to the given problem until 229

it cannot be modified anymore. I.e., s+ is successful 230

if it can prove or disprove termination or confluence of 231

the given problem. Otherwise, it fails. Note that s+ = 232

s*;s but s+ is not equivalent to s;s*. 233

• sn*: Applies s recursively to the given problem until 234

it cannot be modified anymore or s has been applied n 235

times. Note that sn* is always successful. 236

• s[f]*: Applies s recursively to the given problem until 237

it cannot be modified anymore or f seconds are elapsed. 238

Note that s[f]* is always successful. 239

Specifiers 240

• s%: Applies s to the given problem. If s fails, the com- 241

putation is aborted and s% fails. Otherwise, it succeeds. 242

• s!: Applies s to the given problem. If s proves or dis- 243

proves termination or confluence of the given problem, 244

s! is successful. Otherwise, it fails. 245

• s[f]: Tries to modify a given problem via s for at most 246

f seconds. If s does not succeed or fail within f sec- 247

onds, s[f] fails. Otherwise s[f] returns the resulting 248

problem. Hence it succeeds (fails) if s succeeds (fails). 249

• {s}o: Applies s to the given problem. If s fails, {s}o 250

fails. Otherwise, the modifier o is applied to the result- 251

ing problems. 252

Configuration File Since strategies can get quite complex, 253

CSI provides the possibility to specify a config file. A config 254

file consists of a sequence of abbreviations of the form N = 255

s where N defines its name and s the strategy (in principle 256

arbitrary text) it should expand to. The convention is to use 257

all capital names for abbreviations. Each abbreviation has 258

to be put on a separate line. You can spread a strategy over 259

several lines by terminating each line with a \. Last but not 260

least, you can add comments to config files by putting a # in 261

front of each line. 262

3 Default Strategy 263

This section explains the workflows of CSI’s default com- 264

petition strategy. In the CoCo competition, CSI’s execution 265

command is roughly csi -C CR -s AUTO -c x.trs. 266

Here, -C CR denotes to prove (non-)confluence for a TRS. 267

CSI is based on the termination tool TTT2 [Korp et al., 2009] 268

since some confluence techniques need to first prove termi-269

nation. There are also other flags for -C to prove different270

properties of TRSs. The flag -s AUTO means that CSI ex-271

ecutes the AUTO strategy below in the default configuration272

document. Finally, x.trs means to prove (non-)confluence273

for the TRS x. In ARI-COPS, the TRSs are represented by274

the .ari format. However, CSI cannot receive .ari docu-275

ments currently. We need to first execute a tool [James and276

Fabian, 2023] to convert .ari documents to the correspond-277

ing .trs documents.278

AUTO = (if trs then (\
sorted -order*;(AUTO_INNER \

|| (NOTCR | REDUNDANT_FC)3*!) \
) else fail)

279

AUTO works as below:280

1. Check whether the given problem is a TRS problem.281

There are many different rewrite systems that can be in-282

put to CSI like higher-order rewrite systems, etc. CSI283

fails if it is not a TRS problem.284

2. If it is, the default strategy uses ordered sorted decom-285

position [Felgenhauer et al., 2015] to try to decompose286

the given TRS problem to a set of sub-problems. The287

original TRS is confluent if and only if all decomposed288

problems are confluent [Felgenhauer et al., 2015].289

3. AUTO INNER and (NOTCR |290

REDUNDANT FC)3*! are parallelly executed.291

AUTO INNER mainly focuses on proving conflu-292

ence, while (NOTCR | REDUNDANT FC)3*!293

focuses on disproving confluence. (NOTCR |294

REDUNDANT FC)3*! first uses NOTCR to determine295

whether the given problem is nonconfluence, if it can296

be determined, the answer will be returned. Otherwise,297

it applies REDUNDANT FC which executes the redun-298

dant rule technique [Nagele et al., 2015] to transform299

the given TRS. (NOTCR | REDUNDANT FC) is300

repeatedly applied for at most three times to discover301

an answer. The specifier ! is crucial since the trans-302

formation of REDUNDANT FC may be successful, but303

it does not discover a nonconfluence proof. According304

to the explanation in Section 2, CSI will return YES in305

this case if we do not use !. The details of NOTCR and306

REDUNDANT FC are explained in Section 4.307

AUTO_INNER = \
(AUTO_INNER0[30] | CPCS[5]2*)! | \
({AUTO_INNER0[30]}nono \

| CPCS[5]2*)2*!
308

The definition of AUTO INNER is shown above. It309

first tries to discover a proof using AUTO INNER0. If310

it cannot discover a proof, the critical pair closing system311

(CPCS) [Oyamaguchi and Hirokawa, 2014] transformation is312

applied. Then AUTO INNER0 is executed again. Notice that313

the second AUTO INNER0[30]nono uses nono to ignore314

the proof for nonconfluence produced by AUTO INNER0315

because after the CPCS transformation, we cannot produce 316

sound proofs for nonconfluence [Oyamaguchi and Hirokawa, 317

2014]. 318

AUTO_INNER0 = (GROUND || KB || AC ||\
(REDUNDANT_DEL?;(CLOSED || DD \

|| SIMPLE || KB || AC \
|| {GROUND}nono))3*! \

|| (((CLOSED || DD) \
| REDUNDANT_RHS)3*! \

|| (CLOSED || DD) \
| REDUNDANT_JS)3*! || KH \

|| AT || SIMPLE || CPCS2 || \
fail)

319

The above code explains the details of AUTO INNER0. 320

It parallelly executes various techniques. The details of all 321

techniques are explained in Section 4. 322

4 Parameter Space 323

4.1 Overall Patterns 324

The name of a parameter often follows one of the patterns: 325

• abbreviation such as PRETRS. It is a boolean-execution 326

controlling parameter. When it is set to no, we set 327

PRETRS = fail in the generated configuration doc- 328

ument. The fail processor fails immediately. CSI will 329

not do any modification and discover any proof. 330

• abbreviation processor such as PRETRS matrix. It 331

is a boolean-execution controlling parameter. We use 332

such names when a strategy contains several parallelly 333

or sequentially executed processors. When it is set to 334

no, we ignore the corresponding processor in the strat- 335

egy. 336

• abbreviation processor flag. It belongs to pro- 337

cessor flags, e.g., PRETRS matrix ib. It 338

chooses the flags for the processor. For instance, 339

PRETRS matrix ib chooses the value for the ib 340

flag. If PRETRS matrix ib chooses the value 6, we 341

may obtain matrix -ib 6. 342

• name time or name loop. It belongs to iteration pa- 343

rameters. They are used to control the execution time or 344

the number of repeated application times of a strategy. 345

They control the values of the specifiers. For instance, 346

if PRETRS time is set to 2, we generate the strategy 347

PRETRS = content of PRETRS[2]. 348

4.2 Details of Patameters 349

In this Section, we explain the strategies in CSI’s competition 350

strategy document, following its structure sequentially from 351

the beginning to the end. The explanations of a flag and its 352

soundness will be ignored if we have explained them in the 353

previous strategy definitions. After searching for the parame- 354

ters, we convert the parameters into a configuration document 355

which is used by CSI. The structures of strategies generally 356

remain the same to confirm soundness, meaning that besides 357

the newly discovered parameters, we do not change the pro-358

cessors and the order of their applications. We give examples359

to explain how to keep the structures in this section later via360

examples.361

We ignore the processor flags not searched by us since the362

number of them is indeed intensive, and presenting all expla-363

nations is too verbose. We recommend executing CSI’s help364

function to understand the details.365

PRETRS = ((\
matrix -dim 1 -ib 3 -ob 5 | \
matrix -dim 2 -ib 2 -ob 3 | \
matrix -dim 3 -ib 1 -ob 1 | \
matrix -dim 3 -ib 1 -ob 3)[2]*)

366

It preprocesses the TRS before trying to discover a termi-367

nation proof. The preprocess tries to reduce the size of the368

original TRS by removing some rules from it. The parameter369

space for PRETRS is presented below.370

• PRETRS {yes, no}. PRETRS can be chosen as yes371

or no. When it is set as no, we replace its defini-372

tion with fail, i.e. PRETRS = fail. The proces-373

sor fail means the processor simply fails. Replacing374

it with fail is sound since it is only used in SN. It is375

(PRETRS;(...). According to the definition of ;,376

replacing it with fail only makes the strategy for ter-377

mination fail immediately.378

• PRETRS time {1, 2, 3, 4, 5}. It is used to control the379

execution time of PRETRS. The default execution time380

is 2 seconds, controlled by [2] as in the definition. We381

set the execution time to be chosen from {1, 2, 3,382

4, 5} seconds.383

• PRETRS matrix dim {1, 2, 3, 4, 5, 6,384

7, 8, 10, 12, 16}. The matrix processor385

means applying matrix interpretations [Endrullis et386

al., 2008]. The parameter PRETRS matrix dim387

specifies the dimension of the matrices. Each matrix388

processor has several processor flags and associative389

values to choose from as below. Since there are several390

matrix processors in PRETRS, we actually associate391

each matrix processor with a set of parameters to search392

from. For simplicity, we only show the parameter space393

of a single matrix processor. The values {yes, no}394

indicate whether to use such flags. For instance, when395

matrix real is set to yes, we add the real flag to396

matrix and obtain matrix -real. In comparison,397

when it is set to no, we do not append the real flag398

and simply use matrix. The other flag values indicate399

the values of the flags. For instance, when matrix ib400

is set to 3, we obtain a processor of matrix -ib 3.401

• PRETRS matrix ib {1, 2, 3, 4, 5, 6}.402

Defines the number of bits that can be used to represent403

the smallest number that appears in the intermediate404

results405

• PRETRS matrix ob {1, 2, 3, 4, 5, 6,406

7, 8, 9, 10, 12, max}. Defines the number of407

bits that can be used to represent the largest number that 408

appears in the intermediate results. Actually max is not 409

a valid value to the ob flag. However, Grackle has the 410

mechanism to ignore a parameter if it equals the default 411

value. We set max as PRETRS matrix ob’s default 412

value. Moreover, by default, CSI uses the largest 64-bit 413

integers for ob. Hence, max reasonably represents the 414

maximal value of ob. 415

• PRETRS matrix rat {1, 2, 3, 4}. Sets the 416

denominator of integers. It makes integers become ra- 417

tional numbers. The soundness of non-negative ratio- 418

nal numbers for matrix interpretation is explained in 419

in [Gebhardt et al., 2007; Zankl and Middeldorp, 2010]. 420

The matrix processor also has a flag neg, which is 421

set to false by default. Since we do not use neg in 422

our parameter space, the interpretations are always non- 423

negative and therefore sound. 424

• PRETRS matrix db {1, 2, 3, 4, max}. 425

Specifies the bits after the decimal point. The reason for 426

soundness is the same as PRETRS matrix rat 427

• PRETRS matrix real {yes, no}. The sound- 428

ness of non-negative real numbers for matrix interpre- 429

tation is explained in Lemma 23, Definition 24, and 430

Lemma 25 in [Zankl and Middeldorp, 2010]. Matrix in- 431

terpretation over real numbers is unsound because nega- 432

tive numbers break the monotone constraints [Endrullis 433

et al., 2008]. However, matrix also has a flag neg, 434

which is set to false by default. Since we do not use 435

neg in our parameter space, the real number interpreta- 436

tions are always non-negative and therefore sound. 437

• PRETRS matrix triangle {yes, no}. Use 438

triangular matrices. It is sound since it only constrains 439

the shape of the matrix. It is less expressive than the tra- 440

ditional matrix interpretation. Originally, it is invented 441

for complexity analysis [Moser et al., 2008]. 442

The structure of PRETRS is kept although we search for 443

other parameters. This means the matrix processors are 444

still connected by | instead of ||. We may generate some- 445

thing like the strategy below. 446

PRETRS = ((\
matrix -dim 1 -ib 4 -ob 5 | \
matrix -dim 3 -ib 3 -ob 3 | \
matrix -dim 3 -ib 3 -ob 7 | \
matrix -dim 3 -ib 1 -ob 3)[4]*)

447

Next, we explain the parameter space for DIRECTTRS. 448

DIRECTTRS = ((\
kbo || (lpo | (ref;lpo) \
|| (bounds -rfc -qc))*[7])!

449

• DIRECTTRS {yes, no}. DIRECTTRS and 450

DIRECTTRS time works similar as PRETRS and 451

PRETRS time. Hence, we ignore such explanations 452

here and for the following sub-strategy definitions. It 453

is sound as DIRECTTRS is only parallelly with other454

strategies in SN. It makes one technique fail and does455

not affect other parallel executions.456

• DIRECTTRS time {1, 3, 5, 7, 9, 11}457

• DIRECTTRS kbo {yes, no}. The kbo proces-458

sor means the application of the Knuth-Bendix order459

(KBO) [Baader and Nipkow, 1998].460

• DIRECTTRS kbo ep {yes, no}. Demands an461

empty precedence (only for ‘-pbc’). According462

to the function pbc aux in csi/src/processors/src/463

termination/orderings/kbo.ml, it is only used when the464

PBC prover is invoked. As explained in Definition 1465

in [Zankl et al., 2009], KBO has a set of precedences466

and a set of weight functions. An empty set of prece-467

dences makes KBO weaker in discovering termination468

proofs. Empty precedences have also been used in Ex-469

ample 3 in the paper. Section 9 in [Zankl et al., 2009]470

shows empty precedences are sometimes useful for the471

PBC backend.472

• DIRECTTRS kbo ib {1, 2, 3, 4, 5, 6}.473

Defines the number of bits that can be used to represent474

the smallest number that appears in the intermediate475

results476

• DIRECTTRS kbo minp {yes, no}. Minimizes477

the precedence comparisons (only for ‘-pbc’). Accord-478

ing to the function solve2 in csi/src/logic/src/solver.479

ml and the function context in csi/src/processors/480

src/termination/orderings/kbo.ml, it is only used when481

the PBC prover is invoked. According to the func-482

tion solve in csi/src/logic/src/miniSatP.ml, the usage483

of -pbc is sound without -minp or -minw. Accord-484

ing to Section 9 in [Zankl et al., 2009], it is sound and is485

helpful for generating human-readable proofs. KBO has486

a set of precedence and a set of weight functions. This487

flag tries to discover a termination proof with a small set488

of precedence.489

• DIRECTTRS kbo minw {yes, no}. Minimize490

the sum of weights (only for ‘-pbc’). According491

to the function solve2 in csi/src/logic/src/solver.ml492

and the function context in csi/src/processors/src/493

termination/orderings/kbo.ml, it is only used when the494

PBC prover is invoked. According to the function495

solve in csi/src/logic/src/miniSatP.ml, the usage of496

-pbc is sound without -minp or -minw. According to497

Section 9 in [Zankl et al., 2009], it is sound and is helpful498

for generating human-readable proofs. Small weights499

are more readable. KBO has a set of precedence and a500

set of weight functions. This flag tries to discover a ter-501

mination proof with weight functions that map symbols502

to small weights.503

• DIRECTTRS kbo ob {1, 2, 3, 4, 5, 6,504

7, 8, 9, 10, 12, max}. Defines the number of505

bits that can be used to represent the largest number that506

appears in the intermediate results.507

• DIRECTTRS kbo pbc {yes, no}. Uses PBC508

backend. PBC, SAT, or SMT are just solvers to search509

for interpretations. The choice does not affect the sound- 510

ness. 511

• DIRECTTRS kbo quasi {yes, no}. Allows 512

quasi-precedences. It is sound according to Definition 513

3.1 in [Sternagel and Thiemann, 2013]. 514

• DIRECTTRS kbo rat {1, 2, 3, 4}. Sets the 515

denumerator (only in combination with ‘-sat’ or ‘-smt’). 516

• DIRECTTRS kbo sat {yes, no}. Uses SAT 517

backend (default). 518

• DIRECTTRS kbo smt {yes, no}. Uses SMT 519

backend. 520

• DIRECTTRS lpo {yes, no}. Applies Lexico- 521

graphic Path Order [Baader and Nipkow, 1998]. There 522

are two lpo processors in DIRECTTRS. We employ the 523

same parameters for them to reduce the size of the pa- 524

rameter space. Since lpo are weak techniques for prov- 525

ing termination, assigning different parameters to two 526

lpo processors should only have little influence on the 527

performance of proving termination. 528

• DIRECTTRS lpo direct {yes, no}. Try to 529

finish the termination proof. The lpo processor can 530

each time prove the termination of a single rule of a TRS 531

and remove the rule from the TRS. Afterwards, it can be 532

repeatedly applied to prove the termination of another 533

rule in the smaller TRS. It shows the termination of the 534

entire TRS by proving the termination of all rules. No- 535

tice that *[7] in the definition means repeatedly apply- 536

ing lpo and lpo as much as possible in seven seconds. 537

Using direct, it tries to show termination for all rules; 538

thus, it only makes the searching difficult. 539

• DIRECTTRS lpo quasi {yes, no}. Allows 540

quasi-precedences (currently not supported together 541

with -dp flag). The proofs of the soundness are presented 542

in Theorem 2.37 and Theorem 2.26 in Chapter 2 Prelim- 543

inaries in [Hirokawa, 2006]. 544

• DIRECTTRS lpo sat {yes, no}. 545

• DIRECTTRS lpo smt {yes, no} 546

• DIRECTTRS bounds {yes, no}. This processor 547

proves termination of a given problem by using the 548

match-bound technique [Korp and Middeldorp, 2009]. 549

• DIRECTTRS bounds qc {yes, no}. Computes 550

quasi-compatible tree automata instead of compati- 551

ble tree automata. Different values of the parameter 552

are sound according to [Korp and Middeldorp, 2009]. 553

Moreover, it is used in DIRECTTRS. 554

• DIRECTTRS bounds rc {explicit, 555

implicit}. Defines the algorithm that is used 556

to construct raise-consistent tree automata. Possible val- 557

ues are explicit and implicit where. Per default 558

implicit is used. Different values of the parameter 559

are sound according to [Korp and Middeldorp, 2009]. 560

• DIRECTTRS bounds rfc {yes, no}. Uses 561

right-hand sides of forward closures. Different values 562

of the parameter are sound according to [Korp and Mid- 563

deldorp, 2009]. Moreover, it is used in DIRECTTRS. 564

csi/src/processors/src/termination/orderings/kbo.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/logic/src/solver.ml
csi/src/logic/src/solver.ml
csi/src/logic/src/solver.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/logic/src/miniSatP.ml
csi/src/logic/src/solver.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/processors/src/termination/orderings/kbo.ml
csi/src/logic/src/miniSatP.ml

• DIRECTTRS bounds steps {-1, 1, 2,565

3, 4, 5, 6, 7, 8, 10, 12, 16, 32}.566

Specifies the maximum number of compatibility567

violations that should be solved. This guarantees568

that the procedure always terminates. Otherwise it569

might happen that the graph approximation does not570

terminate. The match-bound technique tries to build571

a tree automata using the tree automata completion572

technique. The tree automata completion tries to solve573

all compatibility violations. However, sometimes574

there are infinite violations. Meanwhile solving all575

violations may take too much time. According to576

csi/src/processors/src/termination/bounds/bounds.ml,577

CSI uses -1 by default, meaning to solve all violations.578

Other values make the match-bound technique fail579

earlier. This flag only controls the size of the search580

space and therefore sound.581

ARCTICTRS = arctic -dp -ur \
-dim 2 -ib 2 -ob 2[2]

ARCTICBZTRS = arctic -bz -dp -ur \
-dim 2 -ib 2 -ob 2[2]

582

Use arctic interpretation [Koprowski and Waldmann,583

2008]. The parameter space for ARCTICTRS and584

ARCTICBZTRS is presented below.585

• ARCTICTRS {yes, no}. Notice that ARCTICTRS586

and ARCTICBZTRS use the flag ur because they are587

employed in MAINTRS, which first applies the transfor-588

mation using the ur processor. The ur processor re-589

moves all rules of the given dependency pair (DP) prob-590

lem which are not usable [Suzuki et al., 2011]. The -ur591

flag for arctic uses usable rules with respect to inter-592

pretation. If we remove -ur here, we will produce un-593

soundness. Therefore, we always choose to use the -ur594

flag for arcitc and only search for other parameters.595

It is sound as ARCTICTRS is only parallelly executed596

with other strategies in MAINTRS. It makes one tech-597

nique fail and does not affect other parallel executions.598

• ARCTICTRS time {1, 2, 3, 4}599

• ARCTICTRS arctic dim {1, 2, 3, 4, 5,600

6, 7, 8, 10, 12, 16}. The reasons for the601

soundness of dim, ib, ob, direct, rat,602

real have been explained for the previous strategy603

definitions.604

• ARCTICTRS arctic ib {1, 2, 4, 8, 16}.605

• ARCTICTRS arctic ob {1, 2, 4, 8,606

max}. Defines the number of bits that can be607

used to represent the largest number that appears in the608

intermediate results.609

• ARCTICTRS arctic bz {yes, no}. Since both610

yes and no are empolyed in ARCTICTRS and611

ARCTICBZTRS, and they are used in the same strat-612

egy definition MAINTRS, we conclude either the choice613

of yes or no is sound. Moreover, its soundness is ex-614

plained in Section 7 [Koprowski and Waldmann, 2008].615

• ARCTICTRS arctic direct {yes, no} 616

• ARCTICTRS arctic dp {yes, no}. Allows 617

non-monotone interpretations, i.e., ‘0’ as a coefficient. 618

In the original definition of ARCTICTRS, -dp is used; 619

hence, yes is sound. Choosing no merely makes the 620

interpretation monotone. Basically, termination tech- 621

niques require monotone interpretations. The -dp flag 622

is an exception since it works in the dependency pair 623

(DP) frameworks [Giesl et al., 2005a]. The soundness 624

of non-monotone interpretations is explained in Section 625

6 [Koprowski and Waldmann, 2008]. 626

• ARCTICTRS arctic rat {1, 2, 3, 4}. Use 627

rational numbers for arctic interpretations. The sound- 628

ness is explained in Section 5 [Sternagel and Thiemann, 629

2014]. 630

• ARCTICTRS arctic real {yes, no}. Use 631

real numbers for arctic interpretations. The soundness is 632

explained in Section 6 [Sternagel and Thiemann, 2014]. 633

• ARCTICBZTRS {yes, no}. The parameter 634

space for ARCTICBZTRS is the same as that for 635

ARCTICTRS; hence, we ignore it here. It is sound as 636

ARCTICBZTRS is only parallelly executed with other 637

strategies in MAINTRS. It makes one technique fail and 638

does not affect other parallel executions. 639

BOUNDS = (bounds -dp -rfc -qc \
|| bounds -dp -all -rfc -qc \
|| bounds -rfc -qc)

640

• BOUNDS {yes, no}. Prove termination of a given 641

problem by using the match-bound technique [Korp and 642

Middeldorp, 2009]. It is sound as ARCTICBZTRS 643

is only parallelly executed with other strategies in 644

MAINTRS. It makes one technique fail and does not af- 645

fect other parallel executions. 646

• BOUNDS bounds {yes, no}. There are three 647

bounds, we only explain the parameter space for one 648

for simplicity. 649

• BOUNDS bounds all {yes, no}. This flag is 650

only effective if a DP, critical pair, or relative termina- 651

tion problem is given. In that case, all rewrite rules 652

are proved to be finite (relative terminating) instead of 653

a single rewrite rule. It is sound since it works like 654

the -direct flag that proves a certain property for all 655

rewrite rules at the same time. Moreover, both yes and 656

no are used for bounds in BOUNDS. 657

• BOUNDS bounds dp {yes, no}. Uses the en- 658

richments match-DP and top-DP instead of match 659

and top if a DP problem is given. Make sure that as en- 660

richment either top or match has been chosen because 661

the soundness of roof-DP is unknown. The enrich- 662

ments are determined by the flag -e. Since we do not 663

search for -e here, it uses the default value match and 664

hence is sound. 665

• BOUNDS bounds qc {yes, no}, 666

BOUNDS bounds rc {explicit, 667

csi/src/processors/src/termination/bounds/bounds.ml

implicit}, BOUNDS bounds rfc {yes,668

no}, BOUNDS bounds steps {-1, 1, 2, 4,669

8, 16, 32}. Their soundness has been explained for670

DIRECTTRS671

MAINTRS = (dp;edg[0.5]?;(sccs | \
(sc || sct || \
{ur?;(\
(matrix -dp -ur -dim 1 \

-ib 3 -ob 5 | \
matrix -dp -ur -dim 2 \
-ib 2 -ob 3 | \

matrix -dp -ur -dim 3 \
-ib 1 -ob 1 | \

matrix -dp -ur -dim 3 \
-ib 1 -ob 3) || \

(kbo -ur -af | lpo -ur -af) || \
ARCTICTRS || \
ARCTICBZTRS) \

}restore || \
BOUNDS[1]
))*[6])!

672

The MAINTRS is the main strategy for proving termina-673

tion. It first transforms TRS problems into dependency pair674

(DP) problems using the dp processor. Next, the edg pro-675

cessor reduces the sizes of the DP problems. Afterwards, the676

sccs processors tries to decompose each DP problems into677

several smaller DP problems. Finally, many processors are678

executed to solve the DP problems. In particular, the ur pro-679

cessor removes all rules of the given DP Problem which are680

not usable. Note that this processor is not sound if the given681

DP problem is duplicating. To confirm the soundness, the682

termination processors after the application of the transfor-683

mation processor ur must use the flag -ur. The processor684

restore remains unchanged to confirm soundness. It re-685

stores the original TRS within the given DP problem. In CSI,686

TRS rules and DP rules are stored in different data structures.687

Each execution of processors like matrix in MAINTRSmay688

remove TRS rules or DP rules, but the TRS rule will be re-689

stored afterward. The details of the parameter space are pre-690

sented below.691

• MAINTRS {yes, no}. The main technique to prove692

termination. It is sound as MAINTRS is only parallelly693

executed with other strategies in SN. It makes one tech-694

nique fail and does not affect other parallel executions.695

• MAINTRS time {2, 4, 6, 8}696

• MAINTRS edg time {0.2, 0.5, 1}. The edg697

processor [Giesl et al., 2005b] removes all edges from698

the current dependency graph (DG) that are not con-699

tained in the EDG (approximation of DG based on re-700

cursive unification and symmetry). Here, the parameter701

controls its execution time.702

• MAINTRS edg gtcap {yes, no}. Use a general703

tcap-like non-reachability analysis. Sound as explained704

in Theorem 13 of [Giesl et al., 2005b].705

• MAINTRS edg nl {yes, no}. Try to exploit non- 706

linearity for -gtcap. Non-linear order is more expres- 707

sive than linear order. The soundness is explained in 708

Section 3 in [Giesl et al., 2005b]. 709

• MAINTRS BOUNDS time {0.5, 1, 2, 3} 710

• MAINTRS sc {yes, no}. Applies the subterm cri- 711

terion processor [Sternagel, 2016]. 712

• MAINTRS sc sat {yes, no}. Uses SAT back- 713

end (default). 714

• MAINTRS sc smt {yes, no}. Uses Yices back- 715

end (default). 716

• MAINTRS sc rec {yes, no}. Allow recursive 717

simple projections. It is sound because in [Sternagel, 718

2016], it is explained below Definition 5 and is used in 719

the proving termination as shown in Table 1. 720

• MAINTRS sc mulex {yes, no}. Allow projec- 721

tions to multisets of terms. It is sound because in [Ster- 722

nagel, 2016], it is explained in Definition 5 and is used 723

in the proving termination as shown in Table 1. 724

• MAINTRS sc defs {yes, no}. Allow projec- 725

tion of defined symbols (only relevant for -rec and 726

-mulex; default false). It is sound according to the 727

explanation below Definition 5 in [Sternagel, 2016]. 728

• MAINTRS sc mbits {1, 2, 3, 4, 5}. Bits 729

used for multiplicity of terms in multisets corresponding 730

to left- and right-hand sides (default 2). The soundness 731

is explained in Section 3 [Sternagel, 2016]. 732

• MAINTRS sc wbits {1, 2, 3, 4, 5}. Bits 733

used for multiplicity (weight) of arguments in projec- 734

tions (default 2). The soundness is explained in Section 735

3 [Sternagel, 2016]. 736

• MAINTRS sc nsteps {0, 1, 2, 3, 4}. 737

Number of rewrite steps before checking for subterms 738

(default 0). It only uses the rules to rewrite the TRS. 739

The properties of the original TRS remain the same. 740

• MAINTRS sct {yes, no}. Applies the size- 741

change termination processor to a DP problem. 742

• MAINTRS matrix. The parameter space for the four 743

matrix processors is similar to that for PRETRS. 744

Hence, we ignore its details here. The only difference 745

is that we always use flags -ur and -dp for every 746

matrix processor here. The usage -ur is for sound- 747

ness, while the usage of -dp aims at making the matrix 748

interpretation stronger in discovering termination. 749

• MAINTRS kbo {yes, no}. Applies Knuth-Bendix 750

order [Baader and Nipkow, 1998]. Always use the -ur 751

-af flags. 752

• MAINTRS kbo ib {1, 2, 3, 4, 5, 6}. De- 753

fines the number of bits that can be used to represent the 754

smallest number that appears in the intermediate results 755

• MAINTRS kbo ob {1, 2, 3, 4, 5, 6, 7, 756

8, 9, 10, 12, max}. Defines the number of bits 757

that can be used to represent the largest number that 758

appears in the intermediate results. Actually max is not 759

a valid value to the ob flag. However, Grackle has the760

mechanism to ignore a parameter if it equals the default761

value. We set max as MAINTRS kbo ob’s default762

value. Moreover, by default, CSI uses the largest 64-bit763

integers for ob. Hence, max reasonably represents the764

maximal value of ob.765

• MAINTRS kbo quasi {yes, no}. Allow quasi-766

precedences. It is sound as explained in [Sternagel and767

Thiemann, 2013]768

• MAINTRS lpo {yes, no}. The soundness has769

been explained previously. Always use the -ur -af770

flags.771

• MAINTRS lpo sat {yes, no}.772

• MAINTRS lpo smt {yes, no}.773

• MAINTRS lpo direct {yes, no}.774

The structures are also kept unchanged, meaning that we775

first execute dp and then edg, etc. We may probably gen-776

erate a strategy like below. The flags to matrix processors777

and the time limit of edg are changed. However, the over-778

all structure remains the same, and all termination processors779

always employ the -ur and -dp flags.780

MAINTRS = (dp;edg[1]?;(sccs | \
(sct || \
{ur?;(\
(matrix -dp -ur -dim 2 \

-ib 4 -ob 5 | \
matrix -dp -ur -dim 2 \

-ib 2 -ob 3 | \
matrix -dp -ur -dim 4 \

-ib 2 -ob 2 | \
matrix -dp -ur -dim 3 \

-ib 1 -ob 3) || \
(kbo -ur -af | lpo -ur -af) || \
ARCTICTRS || \
ARCTICBZTRS) \

}restore || \
BOUNDS[2]
))*[8])!

781

We will subsequently explain the parameter space for SN.782

It is a sub-strategy for proving termination, which is also783

called strong normalization.784

SN = (PRETRS;(MAINTRS \
|| DIRECTTRS || \
(rev;(MAINTRS || DIRECTTRS))))

785

The only parameter is SN rev {yes, no}. If it is no,786

(rev;(MAINTRS || DIRECTTRS)) is not used in SN.787

Otherwise, it remains in SN. It is sound as SN rev is only788

parallelly executed with other strategies in SN. It makes one789

technique fail and does not affect other parallel executions.790

SNRELATIVE_STEP = (\
lpo -quasi || \
(matrix -dim 1 -ib 3 -ob 4 | \
matrix -dim 2 -ib 2 -ob 2 | \
matrix -dim 3 -ib 1 -ob 2 | \
arctic -dim 2 -ib 2 -ob 2) || \

(if duplicating then fail else
(bounds -rt || \
bounds -rt -qc))[1] || \

poly -ib 2 -ob 4 -nl2 -heuristic 1)

SNRELATIVE = (SNRELATIVE_STEP[5]*)
791

SNRELATIVE STEP tries to prove the relative ter- 792

mination of a rule. SNRELATIVE repeatedly apply 793

SNRELATIVE STEP in five seconds until all rules are 794

proven to be relatively terminated. 795

• SNRELATIVE STEP time {1, 2, 3, 4, 796

5, 6, 7, 8}. Assign an execution time for 797

SNRELATIVE STEP. Notice that CSI’s default 798

strategy assigns five seconds. 799

• SNRELATIVE lpo {yes, no}. The parameters of 800

lpo are the same as those of lpo in DIRECTTRS. 801

• SNRELATIVE matrix {yes, no}. The parame- 802

ters of matrix are the same as those of matrix in 803

PRETRS. 804

• SNRELATIVE arctic {yes, no}. The parame- 805

ters of arctic are ib, ob, direct, rat, real. 806

Their soundness have been explained for ARCTICTRS. 807

• SNRELATIVE poly {yes, no}. Applies polyno- 808

mial interpretations. 809

• SNRELATIVE poly dim {1, 2, 3, 4, 5, 810

6, 7, 8, 10, 12, 16}. Specifies the dimension 811

of the matrices. 812

• SNRELATIVE poly direct {yes, no}. Try to 813

finish the termination proof. 814

• SNRELATIVE poly ib {1, 2, 3, 4, 5, 815

6}. Defines the number of bits that can be used to repre- 816

sent the minimal weight that appears in the intermediate 817

results. 818

• SNRELATIVE poly neg {yes, no}. Allow 819

negative numbers (only for non-linear interpretations) 820

for some coefficients. It is sound for non-linear in- 821

terpretation according to Corollary 3.9 in [Neurauter, 822

2012]. The combination of neg flag and the default 823

linear interpretation may cause unsoundenss. We avoid 824

it by using Grackle’s forbidden mechanism that dis- 825

allows the combination of the neg flag and the de- 826

fault linear interpretation as shown in Section 4.3. The 827

combination of neg, the nonlinear interpretation (nl 828

or nl2), and the real number interpretation (real or 829

rat > 1) is also unsound. But CSI can detect it 830

and forbade such combinations according to the func- 831

tion context in csi/src/processors/src/termination/ 832

interpretations/polynomialInterpretation.ml. 833

csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml

• SNRELATIVE poly ob {1, 2, 3, 4, 5, 6,834

7, 8, 9, 10, 12, max} Defines the number of835

bits that can be used to represent the largest number that836

appears in the intermediate results.837

• SNRELATIVE poly rat {1, 2, 3, 4}. Sets838

the denumerators for rational numbers. The soundness839

is explained in Section 2.1.2 [Neurauter, 2012].840

• SNRELATIVE poly real {yes, no}. Uses re-841

als. The soundness is explained in Section 2.1.2 [Neu-842

rauter, 2012].843

• SNRELATIVE poly nl {yes, no}. Allow x2 +844

y2. By default, linear interpretation is used, which de-845

notes the format of f(x1, ..., xn) = a0 + a1x1 + · · · +846

anxn where xi ≥ 0. The -nl flag enables the inter-847

pretation in the format of f(x1, ..., xn) = a0 + a1x1 +848

· · ·+ anxn + a′1x
2
1 + · · ·+ a′nx

2
n where xi ≥ 0 accord-849

ing to Section 3.2.2 in [Neurauter, 2012] and the func-850

tion quadratic in csi/src/processors/src/termination/851

interpretations/polynomialInterpretation.ml. It is sound852

according to [Neurauter, 2012].853

• SNRELATIVE poly nl2 {yes, no}. Allow854

x2 + x ∗ y + y2. The -nl2 flag enables the interpre-855

tation in the format of856

f(x1, ..., xn) = a0 +

n∑
j=1

ajxj +

n∑
1≤j≤k≤n

ajkxjxk

where xi ≥ 0 according to Section 3.2.2 in [Neu-857

rauter, 2012] and the function quadratic in858

csi/src/processors/src/termination/interpretations/859

polynomialInterpretation.ml. It is sound according860

to [Neurauter, 2012].861

• SNRELATIVE poly heuristic {-1, 0, 1,862

2, 3, 4}. -1 → all symbols (default); 0 → no863

symbols ; 1 → symbols appearing at most once in864

each left-hand side (lhs)/ right-hand side (rhs); 2 →865

symbols appearing at most twice in each lhs/rhs; 3 →866

symbols appearing at parallel positions in each lhs/rhs;867

4→ defined symbols. It decides which symbols should868

be interpreted by non-linear polynomials and is sound869

according to Section 5 in [Neurauter et al., 2010].870

MATRIXSTAR=((\
matrix -dim 1 -ib 2 \

-ob 2 -strict_empty -lstar | \
matrix -dim 2 -ib 2 -ob 2 \

-strict_empty -lstar)[2])
871

• MATRIXSTAR time {1, 2, 3, 4}872

• The parameter space for each matrix processor is873

the same as that for a matrix processor in PRETRS.874

Notice that both processors matrix here employ the875

flags -strict empty -lstar. We fix the usage of876

matrix -strict empty -lstar and search for877

the other parameters.878

MATRIXREDEX=((\
matrix -dim 1 -ib 2 -ob 2 \
-strict_empty -lredex)[2])

879

• MATRIXREDEX time {1, 2, 3, 4, 5} 880

• The parameter space for each matrix processor is the 881

same as that for a matrix processor in PRETRS. No- 882

tice that both processors matrix here employ the flags 883

-strict empty -lredex. We fix the usage of 884

-strict empty -lredex and search for the other 885

parameters. 886

LDH = (shift -dd;SNRELATIVE; \
shift -ldh -force)

LDHF = (shift -dd -force; \
SNRELATIVE;shift -ldh -force)

SSTAR = (cr M -star;MATRIXSTAR*; \
shift -sstar)

DUP = (cr M -dup;SNRELATIVE; \
shift -lstar)

REDEX = (cr M -redex;MATRIXREDEX*; \
shift -lstar)

887

The strategies in the above code block are very compli- 888

cated, and we cannot understand them. Therefore, we keep 889

them unchanged and do not search for the parameters. We 890

only have a parameter REDEX {yes, no}. It is sound as 891

it is only used in COR3 = (REDEX; ...)!, and COR3 is 892

parallelly executed with other techniques in DD. It only makes 893

COR3 immediately fail. 894

GROUND = (if ground \
then uncurry -curry?; \
groundcr else fail)

895

The decision procedure for ground systems [Felgenhauer, 896

2012]. We only have GROUND {yes, no}. It is sound as 897

it is only parallel executed with other confluence techniques. 898

csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml
csi/src/processors/src/termination/interpretations/polynomialInterpretation.ml

NOTCR = (\
(nonconfluence -steps 0 \

-tcap -fun | \
nonconfluence -steps 2 \
-tcap -fun | \
nonconfluence -steps 25 \
-width 1 -tcap -fun | \
nonconfluence -steps 2 \
-idem -fun) || \

(nonconfluence -steps 2 \
-tcap -var | \
nonconfluence -steps 25 \

-width 1 -tcap -var) || \
(nonconfluence -steps 0 \

-tree -fun | \
nonconfluence -steps 0 \

-tree -var | \
nonconfluence -steps 1 \

-tree -fun | \
nonconfluence -steps 1 \

-tree -var | \
nonconfluence -steps 2 \

-tree -fun | \
nonconfluence -steps 2 \

-tree -var | \
nonconfluence -steps 25 \

-width 1 -tree -fun | \
nonconfluence -steps 25 \

-width 1 -tree -var) \
)[10]

899

The NOTCR strategy is used to disprove confluence. It900

uses the || combinator to parallelly execute three groups901

of nonconfluence techinuqes. Each group contains several902

nonconfluence processors employed with different pa-903

rameters. These parameters determine the search space of904

the nonconfluence processors. To improve the execution905

speed, the processors using smaller search spaces are invoked906

before those using larger search spaces in each group. We907

only define the parameter space for one nonconfluence908

processor due to the following reasons. First, although the909

sorted decomposition technique may decompose a TRS to910

several sub-TRSs, we only need to disprove confluence for911

a sub-TRS to disprove confluence for the original TRS [Fel-912

genhauer et al., 2015]. CSI’s solution in CoCo for a non-913

confluence problem also shows that we only need to prove914

nonconfluence for a sub-TRS to disprove confluence for the915

original TRS. Second, we want to invent a set of complemen-916

tary strategies and then combine them in the approach ex-917

plained in Section Strategy Combination in our paper. CSI’s918

default strategy combines sequential and parallel execution919

to try various nonconfluence techniques and increase the920

execution speed. In contrast, our goal of defining a pa-921

rameter space is simply to invent a technique suitable for922

a set of problems. The combination of invented strategies923

will be considered later. Therefore, our parameter space924

will produce a strategy like NOTCR = nonconfluence925

-steps 0 -tcap -fun[10] where the execution time926

of nonconfluence and its flags are decided by Grackle. 927

• NOTCR {yes, no}. Disprove confluence. It is sound 928

because if we set it to fail, the strategy simply mainly 929

tries to discover confluence proofs. It will not cause un- 930

expected transformations. 931

• nonconfluence time {1, 2, 4, 6, 8, 932

10, 12, 14, 16, 18, 20, 25, 30} 933

• nonconfluence steps {0, 1, 2, 3, 4, 934

5, 6, 7, 8, 9, 10, 11, 12, 16, 25, 935

32}. Number of rewrite steps that are performed from 936

critical pairs to test terms nonconfluent [default: 2]. 937

Critical pairs are explained in Section 1. It is sound as it 938

only changes the size of the search space. 939

• nonconfluence width {-1, 1, 2, 3, 4, 940

5, 6, 7, 8, 9, 10, 11, 12, 16}. Width of 941

search tree for rewrite sequences; -1 means unbounded 942

[default: -1]. It is sound as it only changes the size of 943

the search space. 944

• nonconfluence fun {yes, no}. Use overlaps 945

at function positions only. As explained in Section 1, an 946

overlap roughly means that at a certain position, a sub- 947

term can be applied with two rewrite rules [Baader and 948

Nipkow, 1998]. As explained in Section 1, the basic idea 949

for disproving confluence is to discover an overlap, dis- 950

cover a critical pair from the overlap, and check the non- 951

joinability of the pair. This flag only determines where 952

to find such an overlap and thereby is sound. 953

• nonconfluence var {yes, no}. Use overlaps 954

at variable positions only. As explained in the last flag, 955

this flag only determines where to find such an overlap 956

and thereby is sound. 957

• nonconfluence iter {-1, 1, 2, 3, 4, 958

5, 6, 7, 8, 9, 10, 11, 12, 16}. Specifies 959

the maximum number of compatibility violations that 960

should be solved. This guarantees that the procedure 961

always terminates. Otherwise, it might happen that 962

non-confluence check does not terminate. It is only used 963

for tree automata technique. According to Theorem 4 964

in [Nagele et al., 2017], for a critical pair (s, t), it first 965

tries to respectively construct compatible tree automates 966

A1 and A2. Then, it checks the non-joinability of 967

term reachable from A1 and A2. The flag uses the tree 968

automata completion technique [Korp and Middeldorp, 969

2009] to build tree automata, which solves compatibility 970

violations during the constructions. If it cannot solve all 971

compatibility violations, the flag fails and cannot dis- 972

prove confluence. According to the filter function 973

in csi/src/processors/src/confluence/nonconfluence.ml, 974

when -iter is -1, it tries to solve all compatibility 975

violations. However, the construction process may not 976

terminate and fail. Other values only make the tree 977

automate completion fails earlier. 978

• nonconfluence tcap {yes, no}. Show non- 979

confluence by tcap (default on). It is sound as it is one of 980

the nonconfluence techniques. It is explained in Lemma 981

1 of [Zankl et al., 2011]. 982

https://cops.uibk.ac.at/results/2023-full-run/TRS/CSI/695.trs/615708971.txt
csi/src/processors/src/confluence/nonconfluence.ml

• nonconfluence tree {yes, no}. Show non-983

confluence by tree automata (default off). It is sound as it984

is one of the nonconfluence techniques used in NOTCR..985

It is explained in Theorem 4 of [Zankl et al., 2011]986

• nonconfluence idem {yes, no}. Show non-987

confluence by idem (default off). It is sound as it is988

one of the nonconfluence techniques. Meanwhile, ac-989

cording to the function idem in csi/src/processors/src/990

confluence/nonconfluence.ml, it simply checks the non-991

joinability of the reducts of the two terms in a critical992

pair. The nonjoinability is approximated via defined993

symbols. Moreover, it is used in the original NOTCR.994

• nonconfluence nf {yes, no}. Show no995

unique normal forms exist by finding distinct normal996

forms (default off). No unique normal forms imply997

nonconfluence [Baader and Nipkow, 1998]; hence, the998

flag is sound.999

KB = (cr -kb;SN)!
RL = (rule_labeling \

| rule_labeling -left)
DECPAR = ((shift -par; \

decreasing -par)| \
(shift -par -m 2; decreasing -par))

DECWLL = ((rule_labeling -left \
-persist;decreasing)|DECPAR)

DDLAB = (LDH;(decreasing | \
RL?;decreasing))!

1000

• KB {yes, no}. Denote the Knuth-Bendix crite-1001

rion [Knuth and Bendix, 1983]. It is sound because it1002

is only a technique parallelly executed with other tech-1003

niques.1004

• DECPAR {yes, no}. One technique in decreasing1005

diagrams [Aoto et al., 2014]. We cannot entirely un-1006

derstand it. Thus, there is only one boolean execution-1007

controlling parameter. It is sound because DECPAR is1008

simply used at the end of DECWLL. DECWLL is only1009

used at the end of DD. DD is only a technique paral-1010

lelly executed with other techniques. Setting DECPAR1011

to fail only makes the strategy weaker in discovering1012

proofs.1013

• DECPAR shift m {0, 1, 2, 4, 6}. Search1014

for (minimal+m)-length joins. It changes the value of1015

-m of the second shift in DECPAR. If m < 0, it does1016

not search for joins. Otherwise, it first searches for the1017

minimal-length of joins. After that, according to the1018

value of -m, it searches for joins of length minimal+m.1019

It is sound as it only changes the size of the search space.1020

Meanwhile, different values of -m are used in DECPAR.1021

• DDLAB {yes, no}. One technique in decreasing di-1022

agrams. We cannot entirely understand it. Thus, there is1023

only one boolean execution-controlling parameter.1024

COR1 = (DUP;DDLAB)!
COR2 = (SSTAR;DDLAB)!
COR3 = (REDEX;LDH;(decreasing \
| rule_labeling?;decreasing))!

DDWLL = (LDHF;RL?;DECWLL)!
DD = (if left-linear then \

(COR1 || COR2 || COR3 || \
(cr -force;DDWLL)!) else fail)!

1025

• COR1 {yes, no}. One technique in decreasing dia- 1026

grams [Aoto et al., 2014]. We cannot entirely under- 1027

stand it. Thus, there is only one boolean execution- 1028

controlling parameter. 1029

• COR2 {yes, no}. One technique in decreasing dia- 1030

grams [Aoto et al., 2014]. We cannot entirely under- 1031

stand it. Thus, there is only one boolean execution- 1032

controlling parameter. 1033

• COR3 {yes, no}. One technique in decreasing dia- 1034

grams [Aoto et al., 2014]. We cannot entirely under- 1035

stand it. Thus, there is only one boolean execution- 1036

controlling parameter. 1037

• DD {yes, no}. Techniques in decreasing dia- 1038

grams [Aoto et al., 2014]. 1039

CLOSED_LINEAR = (if linear \
then cr -closed -redundant -m -1; \
(closed -feeble \
| closed -strongly 7) \

else fail)
CLOSED_LEFT = (if left-linear \
then ((cr -closed -redundant -m -1;\

(closed -feeble \
| closed -development \
| closed -upside \
| closed -outside)) \
| cr -okui) else fail)

CLOSED = (CLOSED_LINEAR || \
CLOSED_LEFT)!

1040

• CLOSED {yes, no}. Test whether the critical pairs 1041

of a TRS are strongly or development closed [Huet, 1042

1980; Nagele and Middeldorp, 2016]. 1043

• CLOSED LINEAR {yes, no} 1044

• CLOSED LINEAR strongly {-1, 1, 3, 5, 1045

7, 9, 11}. Check critical pairs strongly closed 1046

(in ≤ n steps). It is sound since it only changes the 1047

number of rewrite steps before checking whether critical 1048

pairs are strongly closed. It determines the value of 1049

-strongly 7 in CLOSED LINEAR. 1050

• CLOSED LEFT {yes, no}. Test whether the crit- 1051

ical pairs of a left-linear system are development 1052

closed [Van Oostrom, 1997]. 1053

• CLOSED LEFT closed strongly {-1, 1, 1054

3, 5, 7, 9, 11}. There are four closed proces- 1055

sors with this flag in CLOSED LEFT, we only explain 1056

one. 1057

csi/src/processors/src/confluence/nonconfluence.ml
csi/src/processors/src/confluence/nonconfluence.ml
csi/src/processors/src/confluence/nonconfluence.ml

CR_AUX = (sorted -order | \
(KB || ((((CLOSED \

|| DD) | add)2*)!)))*
KH = (cr -rt;SNRELATIVE; \

kh -mace;CR_AUX)!
1058

• CR AUX loop {1, 2, 3, 4, 5}. It determines1059

the times of the application of CR AUX.1060

• KH {yes, no}. Perform the confluence test for asso-1061

ciative communicative (AC) problems by using the theo-1062

rem of Klein and Hirokawa [Klein and Hirokawa, 2012].1063

• KH mace {yes, no}. Use mace4 theorem prover if1064

available. The yes value is sound since kh -mace1065

is used in the default configuration. According to1066

the csi/src/processors/src/confluence/kleinHirokawa.ml1067

in CSI’s source code, when it is set to no, no theorem1068

prover will be invoked. According to the paper [Klein1069

and Hirokawa, 2012], when no theorem prover is in-1070

voked, the method merely becomes weaker in construct-1071

ing confluence proofs.1072

AT1 = (at -theorem 1; SN)!
AT2 = (at -theorem 2; SN)!
AT3 = (at -theorem 3; SN)!
AT = (AT2 || AT3)

1073

• AT {yes, no}. The confluence test for associative-1074

communicative (AC) problems by using the theorems of1075

Aoto and Toyama [2012].1076

• AT2 {yes, no}1077

• AT2 theorem {1, 2, 3} Indicates which of the1078

three theorems is used. By default, theorem 3 will be1079

used. The three theorems are explained in [Aoto and1080

Toyama, 2012] and are all sound. The value 1, 2, and 31081

respectively correspond to Theorem 3.8, Theorem 3.18,1082

and Theorem 3.28 in [Aoto and Toyama, 2012],1083

• AT2 bound {1, 2, 4, 8, 12, 14, 16,1084

24}. Indicates an upper bound for the number of1085

rewrite rules. If the number of rewrite rules is >= b,1086

then the processor ends and fails. By default, b = 121087

will be used. It is sound as it only changes the size of1088

the search space.1089

• AT3 {yes, no}1090

• AT3 theorem {1, 2, 3}1091

• AT3 bound {1, 2, 4, 8, 12, 14, 16,1092

24}1093

CPCS = (cr -cpcs; SNRELATIVE; \
shift -lstar)

CPCS2 = (cr -cpcs2; SN)!
1094

• CPCS {yes, no}. The processor cr -cpcs com-1095

putes the critical pair closing system by Theorem 2.41096

in [Oyamaguchi and Hirokawa, 2014]. It is sound since1097

if it is set to fail, it simply does not transform the prob- 1098

lem in AUTO INNER. 1099

• CPCS2 {yes, no}. The processor cr -cpcs2 1100

computes the critical pair closing system by Theorem 1101

2.11 in [Oyamaguchi and Hirokawa, 2014]. It is sound 1102

since it is parallelly executed with other techniques in 1103

AUTO INNER0. 1104

REDUNDANT_JS = ((\
cr -force -redundant); \
(redundant))

REDUNDANT_RHS = (\
(cr -m -1 -force -redundant); \
(redundant -rhs))

REDUNDANT_DEL = ((cr -m -1 -force); \
(redundant -remove 4))

1105

A group of redundant rule techniques. REDUNDANT FC 1106

is used in nonconfluence analysis, while the other three are 1107

mainly used for confluence analysis. 1108

• REDUNDANT JS cr m {-1, 0, 1, 2, 1109

3, 4, 5}. Search for (minimal+m)-length 1110

joins. For a critical pair (s, t), According to 1111

csi/src/processors/src/transformation/redundant.ml and 1112

csi/src/rewriting/src/rewrite.ml, When m = −1, only 1113

critical pairs are returned, and no joins will be found. 1114

When m = 0, it tries to discover the minimal number 1115

M of rewrite steps, such that ∃u, s →M u ∧ t →M u. 1116

Then joins reachable from M steps are returned. When 1117

m > 0, joins reachable from M +m steps are returned. 1118

Some redundant rule techniques use joins of critical 1119

pairs to generate redundant rules [Nagele et al., 2015]. 1120

This parameter is sound since it only controls the length 1121

of joins to be generated. 1122

• REDUNDANT JS redundant size {-1, 1, 1123

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1124

16, 32}. Only add rules whose size is less than 1125

n (default: -1, i.e., unrestricted). It is sound since 1126

values other than the default merely limit the number of 1127

redundant rules to generate. 1128

• REDUNDANT RHS cr m {-1, 0, 1, 2, 3, 1129

4, 5} 1130

• REDUNDANT RHS redundant size {-1, 1, 1131

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1132

16, 32} 1133

• REDUNDANT DEL cr m {-1, 0, 1, 2, 3, 1134

4, 5} 1135

• REDUNDANT DEL redundant js {yes, no}. 1136

Add joining sequences of critical peaks as rules. It is 1137

sound as explained in Collary 6 and Section 5 in [Nagele 1138

et al., 2015]. 1139

• REDUNDANT DEL redundant development 1140

{-1, 1, 2, 3, 4, 5, 6}. Add rules to make 1141

critical peaks development closed. It is sound as 1142

explained in Collary 6 and Section 5 in [Nagele et al., 1143

2015]. 1144

csi/src/processors/src/confluence/kleinHirokawa.ml
csi/src/processors/src/transformation/redundant.ml
csi/src/rewriting/src/rewrite.ml

• REDUNDANT DEL redundant rhs {yes,1145

no}. Add rules by rewriting right-hand sides 1 step.1146

It is sound as explained in Collary 6 and Section 5 in1147

[Nagele et al., 2015].1148

• REDUNDANT DEL redundant remove {-1,1149

1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Remove1150

rules whose left- and right-hand sides are joinable in n1151

steps. By default, it is -1, meaning no limitations on1152

the number of rewrite steps. The parameter is sound as1153

other values are weaker than the default in removing1154

rules.1155

• REDUNDANT DEL redundant reverse {-1,1156

1, 2, 3, 4, 5, 6}. Add reversible rules. It1157

is sound as explained in Collary 6 and Section 5 in1158

[Nagele et al., 2015].1159

• REDUNDANT DEL redundant size {-1, 1,1160

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,1161

16, 32}1162

REDUNDANT_FC = ((cr -m -1 -force); \
(redundant -narrowfwd \
-narrowbwd -size 7))

1163

• REDUNDANT FC {yes, no}. It is sound because if1164

it is set to fail, it simply does not do the redundant1165

rule transformation for non-confluence analysis.1166

• REDUNDANT FC cr m {-1, 0, 1, 2, 3,1167

4, 5}. The soundness has been explained before.1168

• REDUNDANT FC redundant js {yes, no}.1169

The soundness has been explained before.1170

• REDUNDANT FC redundant development1171

{-1, 1, 2, 3, 4, 5, 6}. The soundness has1172

been explained before.1173

• REDUNDANT FC redundant rhs {yes, no}.1174

The soundness has been explained before.1175

• REDUNDANT FC redundant narrowfwd1176

{yes, no}. Use narrowing forwards to generate1177

new rules. It is sound since it is in the original1178

REDUNDANT FC.1179

• REDUNDANT FC redundant narrowbwd1180

{yes, no}. Use narrowing backwards to gener-1181

ate new rules. It is sound since it is in the original1182

REDUNDANT FC.1183

• REDUNDANT FC redundant size {-1, 1,1184

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,1185

16, 32}. The soundness has been explained before.1186

SIMPLE = FULL(\
(if right-linear \
then if left-linear -ie \
then if strongly-non-overlapping
then succ -reason \
ToyamaOyamaguchi95Cor22

else fail else fail else fail)|\
(if collapsing then fail else
if shallow -ws then
if strongly-non-overlapping then
succ -reason \
SakaiOyamaguchiOgawa14

else fail else fail) | \
fail)

1187

Simple criteria for proving confluence [Sakai et al., 2015; 1188

Toyama and Oyamaguchi, 1994]. The FULL keyword is a 1189

trick in the competition strategy for easily taking part in dif- 1190

ferent categories of competitions in CoCo. For us, it means 1191

nothing and can be ignored. The only parameter is SIMPLE 1192

{yes, no}. 1193

AC_SN = ((acrpo \
|| ackbo -ib 3 -ob 5 -q -nt -sc \
|| ackbo -ib 3 -ob 5 -kv2)*[10])

AC = (cr -ac;AC_SN)!
1194

• AC {yes, no}. Main techniques for proving conflu- 1195

ence for AC problems. 1196

• AC time {1, 2, 4, 6, 8, 10, 15} 1197

• AC acrpo {yes, no}. Applies AC-Recursive Path 1198

Order [Yamada et al., 2016]. 1199

• AC acrpo direct {yes, no} 1200

• AC acrpo sat {yes, no} 1201

• AC acrpo smt {yes, no} 1202

• AC ackbo {yes, no}. Apply standard, Korov- 1203

in/Voronkov’s, and Steinbachs AC-KBO [Yamada et al., 1204

2016]. There are two ackbo processors in AC SN, we 1205

only explain the parameter for one for simplification. 1206

The flags -kv, kv2, and st respectively correspond to 1207

Korovin &Voronkov, KV’, and Steinbach methods in Ta- 1208

ble 1 of [Yamada et al., 2016]. When none of -kv, kv2, 1209

and st is used, by default, ackbo uses the AC-KBO 1210

method in Table 1. 1211

• AC ackbo ac0 {yes, no}. In case of Steinbach’s 1212

order, give AC symbols weight 0. Its soundness is ex- 1213

plained in Theorem 3.3 [Yamada et al., 2016] and the 1214

related footnote. 1215

• AC ackbo direct {yes, no}. Try to finish the 1216

termination proof. 1217

• AC ackbo ib {1, 2, 3, 4, 5, 6}. Defines 1218

the number of bits that can be used to represent the 1219

smallest number that appears in the intermediate results. 1220

• AC ackbo kv2 {yes, no}. Use corrected Ko-1221

rovin and Voronkov’s ordering. The paper [Yamada1222

et al., 2016] finds a bug in the original Korovin and1223

Voronkov’s ordering and has corrected it.1224

• AC ackbo ob {1, 2, 3, 4, 5, 6, 7, 8,1225

9, 10, 12, max}. Defines the number of bits that1226

can be used to represent the largest number that appears1227

in the intermediate results.1228

• AC ackbo q {yes, no}. Uses quasi-precedences.1229

According to the annotation of the function1230

quasi adm in csi/src/processors/src/termination/1231

orderings/ackbo.ml in CSI’s source code, here, quasi-1232

precedences mean that AC-symbols never equal to1233

non-AC symbols. Using the flag only makes the order1234

more strict and thereby is sound. Moreover, the ackbo1235

processors have both use and do not use -q in AC SN.1236

• AC ackbo sat {yes, no}. Uses SAT backend1237

(default).1238

• AC ackbo sc {yes, no}. Uses subterm coeffi-1239

cients. It is sound since ackbo both employs it and ig-1240

nores it in AC SN. Moreover, its soundness is explained1241

in Theorem 8.2 in [Yamada et al., 2016].1242

• AC ackbo smt {yes, no}. Uses SMT backend.1243

• AC ackbo st {yes, no}. Use Steinbach’s order-1244

ing. Its soundness is explained in Theorem 3.3 in [Ya-1245

mada et al., 2016].1246

• AC ackbo nt {yes, no}. Allow non-total prece-1247

dences (not compatible with -kv). Precedences are de-1248

fined between function symbols or constants. It is essen-1249

tial as explained in Example 5.11, sometimes we need1250

to make two function symbols incomparable to obtain a1251

working order. We use Grackle’s forbidden mechanism1252

to forbidde both -kv and -nt are employed by ackbo.1253

According to AC SN, the combination of -nt and AC-1254

KBO is sound. According to Definition 4.1 and Example1255

5.11, the combination of -nt and kv2 is sound. Ac-1256

cording to Definition 3.1, the combination of -nt and1257

st is sound.1258

AUTO_INNER0_DEL = (REDUNDANT_DEL?; \
(CLOSED || DD || SIMPLE || KB \
|| AC || {GROUND}nono))3*!

AUTO_INNER0_CLOSED_DD_REDUNDANT =
(((CLOSED || DD) \

| REDUNDANT_RHS)3*! || \
(CLOSED || DD) \
| REDUNDANT_JS)3*!

AUTO_INNER0 = (GROUND || KB || AC || \
AUTO_INNER0_DEL || \
AUTO_INNER0_CLOSED_DD_REDUNDANT || \
KH || AT || SIMPLE || CPCS2)

1259

As explained in Section 4, AUTO INNER0 parallelly ex-1260

ecutes a set of techniques. When searching for param-1261

eters, we group some techniques in AUTO INNER0 into 1262

AUTO INNER0 DEL and AUTO INNER0 CLOSED - 1263

DD REDUNDANT. We perform this modification since tech- 1264

niques inside the two groups have two common features that 1265

not exist in the other techniques in AUTO INNER0. Group- 1266

ing them is helpful for using a boolean execution-controlling 1267

flag to determine whether to execute the two groups of tech- 1268

niques. The first distinct feature is that both groups utilize 1269

redundant rule techniques. Moreover, both groups consist of 1270

multiple techniques which follow a specific invocation proce- 1271

dure. 1272

• AUTO INNER0 {yes, no}. 1273

• AUTO INNER0 time {2, 4, 6, 8, 12, 1274

16, 30, 60}. Control the running time of 1275

AUTO INNER0. 1276

• AUTO INNER0 DEL {yes, no}. 1277

• AUTO INNER0 DEL loop {1, 2, 3, 4, 5, 1278

6, 7} 1279

• AUTO INNER0 GROUND {yes, no}. Control 1280

whether to execute GROUND in AUTO INNER0. 1281

• AUTO INNER0 KB {yes, no}. Control whether 1282

to execute KB in AUTO INNER0. 1283

• AUTO INNER0 AC {yes, no}. Control whether 1284

to execute AC in AUTO INNER0. 1285

• AUTO INNER0 CLOSED DD REDUNDANT 1286

{yes, no} 1287

• AUTO INNER0 CLOSED DD REDUNDANT loop 1288

{1, 2, 3, 4, 5, 6, 7}. Control the re- 1289

peated application times of ((CLOSED || DD) | 1290

REDUNDANT RHS)3*! || (CLOSED || DD) 1291

| REDUNDANT JS). 1292

• AUTO INNER0 CLOSED DD REDUNDANT inner 1293

loop {1, 2, 3, 4, 5, 6, 7}. Control the 1294

repeated application times of (CLOSED || DD) | 1295

REDUNDANT RHS. 1296

• AUTO INNER0 KH {yes, no}. Control whether 1297

to execute KH in AUTO INNER0. 1298

• AUTO INNER0 AT {yes, no}. Control whether 1299

to execute AT in AUTO INNER0. 1300

• AUTO INNER0 SIMPLE {yes, no}. Control 1301

whether to execute SIMPLE in AUTO INNER0. 1302

• AUTO INNER0 CPCS2 {yes, no}. Control 1303

whether to execute CPCS2 in AUTO INNER0. 1304

AUTO_INNER = (AUTO_INNER0[30] \
| CPCS[5]2*)! \
| ({AUTO_INNER0[30]}nono \
| CPCS[5]2*)2*!

1305

• AUTO INNER {yes, no} 1306

• AUTO INNER CPCS time1 {1, 2, 3, 4, 1307

5, 6, 7, 8, 9}. Control the running time of the 1308

first CPCS. 1309

csi/src/processors/src/termination/orderings/ackbo.ml
csi/src/processors/src/termination/orderings/ackbo.ml
csi/src/processors/src/termination/orderings/ackbo.ml

• AUTO INNER CPCS time2 {1, 2, 3, 4,1310

5, 6, 7, 8, 9} Control the running time of the1311

second CPCS.1312

• AUTO INNER CPCS loop1 {1, 2, 3, 4,1313

5, 6, 7}. Control the number of repeated application1314

times of the first CPCS.1315

• AUTO INNER CPCS loop2 {1, 2, 3, 4,1316

5, 6, 7}. Control the number of repeated application1317

times of the second CPCS.1318

• AUTO INNER loop {1, 2, 3, 4, 5, 6,1319

7}. Control the number of repeated application times1320

of the compound processor (AUTO INNER0[30] |1321

CPCS[5]2*)! | (AUTO INNER0[30]nono |1322

CPCS[5]2*).1323

AUTO = (if trs then (\
sorted -order*;(AUTO_INNER \
|| (NOTCR | REDUNDANT_FC)3*!) \
) else fail)

1324

• AUTO sorted order {yes, no}. Decompose a1325

problem due to sorted information [Felgenhauer et al.,1326

2015]. The flag -order tries order-sorted decomposi-1327

tion.1328

• AUTO sorted ms {yes, no}. Try many-sorted1329

decomposition. It is weaker than -order in decom-1330

posing TRSs [Felgenhauer et al., 2015].1331

• NOTCR loop {1, 2, 3, 4, 5, 6, 7, 8,1332

9, 10}. Control the number of repeated applications1333

of (NOTCR | REDUNDANT FC)3*!, default 3.1334

4.3 Forbidden Parameters1335

Grackle can forbid the occurrence of certain parameters. We1336

have listed the parameters we forbid below. We forbid them1337

either to confirm soundness or to reduce the size of the pa-1338

rameter search space.1339

{AC_ackbo1_nt=yes, AC_ackbo1_kv=yes}
{AC_ackbo2_nt=yes, AC_ackbo2_kv=yes}
{MAINTRS_edg_nl=yes,

MAINTRS_edg_gtcap=no}
{AUTO_INNER_sorted_order=no,

AUTO_INNER_sorted_ms=no}
{DIRECTTRS_kbo_pbc=no,

DIRECTTRS_kbo_eq=yes}
{DIRECTTRS_kbo_pbc=no,

DIRECTTRS_kbo_minp=yes}
{DIRECTTRS_kbo_pbc=no,

DIRECTTRS_kbo_minw=yes}
{DIRECTTRS_kbo_sat=no,

DIRECTTRS_kbo_smt=no,
DIRECTTRS_kbo_rat=2}

{DIRECTTRS_kbo_sat=no,
DIRECTTRS_kbo_smt=no,
DIRECTTRS_kbo_rat=3}

{DIRECTTRS_kbo_sat=no,
DIRECTTRS_kbo_smt=no,
DIRECTTRS_kbo_rat=4}

{MAINTRS_kbo_sat=no,
MAINTRS_kbo_smt=no,
MAINTRS_kbo_rat=2}

{MAINTRS_kbo_sat=no,
MAINTRS_kbo_smt=no,
MAINTRS_kbo_rat=3}

{MAINTRS_kbo_sat=no,
MAINTRS_kbo_smt=no,
MAINTRS_kbo_rat=4}

{SNRELATIVE_poly_neg=yes,
SNRELATIVE_poly_nl=no,
SNRELATIVE_poly_nl2=no}

1340

5 Examples of Invented Strategy 1341

Figure 1 presents the invented strategy csi- 1342

0d232dbb588232c4fa2a8db3585ab8b2d0c28c44bdbcfb555- 1343

98ae901. It follows the basic structure of the original 1344

competition strategy. Boolean-execution controlling flags 1345

disable some sub-strategies be replacing their definitions to 1346

fail. In SNRELATIVE STEP, the values of -ib, -ob, 1347

and -dim are chosen by Grackle, which differs from those 1348

in the original SNRELATIVE STEP in Seciton 3. 1349

6 Grackle’s Initial Strategies 1350

As explained in Section 3, AUTO INNER0 parallelly exe- 1351

cutes a set of strategies mainly for confluence. We separate 1352

each of them as an initial strategy. This means we use the 1353

default competition strategy except that we change NOTCR to 1354

fail and REDUNDANT FC to fail via parameters defined 1355

in Section 4. Moreover, we respectively change the definition 1356

of AUTO INNER0 to one of the items below and obtain nine 1357

initial strategies. 1358

• AUTO INNER0 = GROUND 1359

• AUTO INNER0 = KB 1360

• AUTO INNER0 = AC 1361

Figure 1: The invented strategy csi-0d232dbb588232c4fa2a8db3585ab8b2d0c28c44bdbcfb55598ae901

AUTO = (if trs then (sorted -order*; \
(AUTO_INNER || (NOTCR | REDUNDANT_FC)3*!)) else fail)

AUTO_INNER = (AUTO_INNER0[30] | CPCS[5]2*)! \
| ({AUTO_INNER0[30]}nono | CPCS[5]2*)2*!

AUTO_INNER0 = (AUTO_INNER0_GROUND || AUTO_INNER0_KB || AUTO_INNER0_AC \
|| AUTO_INNER0_DEL || AUTO_INNER0_CLOSED_DD_REDUNDANT || AUTO_INNER0_KH \
|| AUTO_INNER0_AT || AUTO_INNER0_SIMPLE || AUTO_INNER0_CPCS2 || fail)

AUTO_INNER0_AC = fail

AUTO_INNER0_AT = fail

AUTO_INNER0_CLOSED_DD_REDUNDANT = fail

AUTO_INNER0_CPCS2 = fail

AUTO_INNER0_DEL = fail

AUTO_INNER0_GROUND = fail

AUTO_INNER0_KB = fail

AUTO_INNER0_KH = fail

AUTO_INNER0_SIMPLE = SIMPLE

CPCS = (cr -cpcs; SNRELATIVE; shift -lstar)

NOTCR = fail

REDUNDANT_FC = fail

SIMPLE = FULL((if right-linear then if left-linear -ie then \
if strongly-non-overlapping then succ -reason ToyamaOyamaguchi95Cor22 \

else fail else fail else fail)
| (if collapsing then fail else if shallow -ws then \

if strongly-non-overlapping then succ -reason SakaiOyamaguchiOgawa14 \
else fail else fail) | fail)

SNRELATIVE = (SNRELATIVE_STEP[5]*)

SNRELATIVE_STEP = (lpo -quasi \
|| (matrix -ib 6 -ob 6 | matrix -dim 2 -ib 2 -ob 2 \

| matrix -dim 3 -ob 2 | arctic -dim 2 -ib 2 -ob 8) \
|| (if duplicating then fail else \

(bounds -rt || bounds -rt -qc))[1] \
|| poly -heuristic 1 -ib 2 -nl2 -ob 4)

• AUTO INNER0 = AUTO INNER0 DEL1362

• AUTO INNER0 = AUTO INNER0 CLOSED -1363

DD REDUNDANT1364

• AUTO INNER0 = KH1365

• AUTO INNER0 = AT1366

• AUTO INNER0 = SIMPLE1367

• AUTO INNER0 = CPCS21368

We also separate each strategy in the nonconfluence anal-1369

ysis strategy NOTCR as an initial strategy. This means we1370

use the default competition strategy except that we change1371

AUTO INNER to fail using parameters defined in Sec-1372

tion 4. Meanwhile, we respectively change the definition of1373

NOTCR to one of the items below and obtain 14 initial strate-1374

gies.1375

• NOTCR = nonconfluence -steps 0 -tcap1376

-fun[10]1377

• NOTCR = nonconfluence -steps 2 -tcap1378

-fun[10]1379

• NOTCR = nonconfluence -steps 251380

-width 1 -tcap -fun[10]1381

• NOTCR = nonconfluence -steps 2 -idem1382

-fun[10]1383

• NOTCR = nonconfluence -steps 2 -tcap1384

-var[10]1385

• NOTCR = nonconfluence -steps 251386

-width 1 -tcap -var[10]1387

• NOTCR = nonconfluence -steps 0 -tree1388

-fun[10]1389

• NOTCR = nonconfluence -steps 0 -tree1390

-var[10]1391

• NOTCR = nonconfluence -steps 1 -tree1392

-fun[10]1393

• NOTCR = nonconfluence -steps 1 -tree1394

-var[10]1395

• NOTCR = nonconfluence -steps 2 -tree1396

-fun[10]1397

• NOTCR = nonconfluence -steps 2 -tree1398

-var[10]1399

• NOTCR = nonconfluence -steps 251400

-width 1 -tree -fun[10]1401

• NOTCR = nonconfluence -steps 251402

-width 1 -tree -var[10]1403

To generate the dataset, we further add two other strategies1404

besides the initial strategies. This means we use the default1405

competition strategy except that we change NOTCR to fail1406

and REDUNDANT FC to fail. Moreover, we respectively1407

change the definition of AUTO INNER0 to one of the items1408

below and obtain two strategies.1409

• AUTO INNER0 = CLOSED1410

• AUTO INNER0 = DD1411

We particularly extract them since CLOSED 1412

and DD are combined with redundant rule 1413

techniques in AUTO INNER0 DEL and 1414

AUTO INNER0 CLOSED DD REDUNDANT among 1415

the initial strategies. Moreover, AUTO INNER0 DEL and 1416

AUTO INNER0 CLOSED DD REDUNDANT parallelly 1417

execute CLOSED and DD. If we do not use them for labeling, 1418

we will not be able to understand whether a TRS is mastered 1419

only by CLOSED or DD. 1420

In the augmented dataset, we notice eight initial strategies 1421

can only prove confluence, and 14 initial strategies can only 1422

prove non-confluence. One can prove both. 1423

7 Strategy Combination 1424

To combine several strategies, we first assign a time limit for 1425

each using the method in Section 3.2. Each strategy is writ- 1426

ten into a document. We use a Python program to invoke 1427

CSI with each strategy document within the assigned time 1428

limit. The advantage of writing each strategy into a docu- 1429

ment is avoiding naming conflict since our strategy invention 1430

does not change the name of strategies. We only change the 1431

parameters. Every strategy document is still invoked from the 1432

definition AUTO via Python. 1433

When we choose a strategy, we make sure this strategy can 1434

solve the largest number of problems in the training data un- 1435

solvable by previously chosen strategies. 1436

When we run experiments on the ARI-COPS database and 1437

use four CPUs for each CSI execution, the assigning time 1438

limit for each strategy is presented below in the format of 1439

strategy, time by seconds. 1440

• csi-0ccc287f955294ea83afdc800030b453a8e37b1ee371- 1441

57d83dcf04eb, 0.5 1442

• csi-9f19c01a538808477a8980f80d3d2face7303ce6f058- 1443

f8b6170f9461, 0.5 1444

• csi-224dc655e2c823145f6a545fa78601d91e647dcfeffb- 1445

317d8f57b340 0.5 1446

• csi-2ebf247f07a5706eaf7a7a399dcd47bb52bbb40694af- 1447

808ec8624cf1, 0.5 1448

• csi-5deb4704be2267c6724151a6417770ceb5ffc4799560-1449

7bbf3a169c28, 1 1450

• csi-c3e1c6423a6b61ebf5d3b3c3999fca2d098d4461b23a4-1451

b50d77171b3, 2 1452

• csi-af40c043b23e299af5c85347534fe62d2c963a8f7d6b0-1453

dac873b8846, 3 1454

• csi-5deb4704be2267c6724151a6417770ceb5ffc47995607-1455

bbf3a169c28, 3 1456

• csi-a4390ec528e4f6c2616765939087c14c1ca0bd47cf1dd-1457

d3b6d055ba0, 3 1458

• csi-112ecf2d9f970dad13f1bb4e09c25c2b51385f7324062-1459

deb49084b46, 5 1460

• csi-5c115df06bbafa913b50c0fd62a28f53e6739d1358646-1461

b7f3cea19bf, 6 1462

• csi-14c86024498e9a3ce1b4b79795e5ab8f6c49a19f5df8c-1463

924ce82f577, 6 1464

• csi-ec0fb3f8ce9f2d586b23f5cd9c4a399845157f2854ef5-1465

f8e2f9d3f3a, 61466

• csi-af40c043b23e299af5c85347534fe62d2c963a8f7d6b0-1467

dac873b8846, 71468

• csi-3f5a5b338144451e2d7e22bcc184940e796a74510ec87-1469

4966c88b93d, 81470

• csi-fc9509efa9ad65cb01f89548200a9ae5480ef616e48df-1471

fb3e0d790a2, 81472

When using one CPU, the time splits are presented below1473

• csi-1789a05ac5304d685e89b710f75edd8a273fc474526-1474

6a3c7faadba34, 0.5,1475

• csi-c3e1c6423a6b61ebf5d3b3c3999fca2d098d4461b23-1476

a4b50d77171b3, 0.5,1477

• csi-075d10c4a77649791eac301cda263f977e1a66186e7-1478

20906f67a2c34, 0.5,1479

• csi-ddc25446660daf33870ef6991406ec360404a5af909-1480

928d5ea21794f, 0.5,1481

• csi-6c8b5e7b4af3c2970275389b01434b25395a13d8f72-1482

4e4a8aba48e24, 0.5,1483

• csi-b3ab9764cd4f0717a3037a5849e47d41c56af511e84-1484

d4a72659e0829, 0.5,1485

• csi-0ccc287f955294ea83afdc800030b453a8e37b1ee37-1486

157d83dcf04eb, 0.5,1487

• csi-224dc655e2c823145f6a545fa78601d91e647dcfeff-1488

b317d8f57b340, 0.5,1489

• csi-a8f7d2a391815f9c401550acbb694bae346f443a43a-1490

098c5e072aae9, 0.5,1491

• csi-e2877b030e4118e870207e14ef1a44e240c33e16a0e-1492

79c8f57adaacd, 0.5,1493

• csi-ddc25446660daf33870ef6991406ec360404a5af909-1494

928d5ea21794f, 1,1495

• csi-af40c043b23e299af5c85347534fe62d2c963a8f7d6-1496

b0dac873b8846, 4,1497

• csi-d56e502247dfc3854f0a5360649b5be5357e2b60693-1498

fdfdc40dc5527, 8,1499

• csi-0e7e3ba5c042fabdf8151556dc8b26717d98bcd49c2-1500

3193ec7f29d33, 9,1501

• csi-36920a8f429f37ae80839d40e3cd805ef096f1aafbb-1502

2dd6d7b845531, 10,1503

• csi-5deb4704be2267c6724151a6417770ceb5ffc479956-1504

07bbf3a169c28, 11,1505

• csi-33d868984681a7cc4455c15daaa16bf675ba3056c6f-1506

f1f186057216e, 121507

When using one CPU for the augmented dataset, the time1508

splits are presented below1509

• csi-04117237bacc588c78fade8bc184e29c2f22ce95f0f-1510

3d8fc051128e4, 0.51511

• csi-a4390ec528e4f6c2616765939087c14c1ca0bd47cf1-1512

ddd3b6d055ba0, 0.51513

• csi-379e7f8304b587a34081a91ae8a1624f0fb9a83ef83-1514

2090b72713d9f, 0.51515

• csi-931e7ced256711e95501f485d5b130953464871eebe- 1516

6e41dd72957e9, 0.5 1517

• csi-c3e1c6423a6b61ebf5d3b3c3999fca2d098d4461b23- 1518

a4b50d77171b3, 0.5 1519

• csi-af40c043b23e299af5c85347534fe62d2c963a8f7d6- 1520

b0dac873b8846, 0.5 1521

• csi-224dc655e2c823145f6a545fa78601d91e647dcfeff- 1522

b317d8f57b340, 0.5 1523

• csi-5d8720a14f25d32a3a4cecd80b5cc818cfafce6f753- 1524

b2acd33280292, 0.5 1525

• csi-aecfb984dbfbfe0cb3ba80326dcc23b15a9c2f0a01c- 1526

1e9620916c9e4, 0.5 1527

• csi-0ccc287f955294ea83afdc800030b453a8e37b1ee37- 1528

157d83dcf04eb, 0.5 1529

• csi-f660fd4bbdf8ee1f7e501b27bc2a8223d96e0f47cda- 1530

55d550d72973c, 0.5 1531

• csi-f660fd4bbdf8ee1f7e501b27bc2a8223d96e0f47cda- 1532

55d550d72973c, 0.5 1533

• csi-f660fd4bbdf8ee1f7e501b27bc2a8223d96e0f47cda- 1534

55d550d72973c, 0.5 1535

• csi-f660fd4bbdf8ee1f7e501b27bc2a8223d96e0f47cda- 1536

55d550d72973c, 0.5 1537

• csi-aa24b5e64bf83e78a707b01ad35bc3b6e22e06f9402- 1538

a758631eee1bb, 1 1539

• csi-af40c043b23e299af5c85347534fe62d2c963a8f7d6- 1540

b0dac873b8846, 6 1541

• csi-f1d55b73677f250ea72db5a2658ffe0f92fc0197ea7- 1542

9717d372870d1, 7 1543

• csi-1bccc2cf890e2f92f021b591ec34371ebdd2a68741d- 1544

08de7fff0924e, 8 1545

• csi-5deb4704be2267c6724151a6417770ceb5ffc479956- 1546

07bbf3a169c28, 9 1547

• csi-a4390ec528e4f6c2616765939087c14c1ca0bd47cf1- 1548

ddd3b6d055ba0, 10 1549

• csi-36920a8f429f37ae80839d40e3cd805ef096f1aafbb- 1550

2dd6d7b845531, 12 1551

When using four CPU for the augmented dataset, the time 1552

splits are presented below 1553

• (csi-1f0dd05ed5c19b06c8c11b6dda27bd743c3b691c8f- 1554

f22150acb2c5e3, 0.5), 1555

• (csi-95e8deb6c1089354822fc19425ea6cab098fff49ea- 1556

9ec5afb65da9da, 0.5), 1557

• (csi-f660fd4bbdf8ee1f7e501b27bc2a8223d96e0f47cd- 1558

a55d550d72973c, 0.5), 1559

• (csi-36920a8f429f37ae80839d40e3cd805ef096f1aafb- 1560

b2dd6d7b845531, 0.5), 1561

• (csi-042b74efcc92c96a15db35030eea542a97329bf422- 1562

cced8e7fc07453, 0.5), 1563

• (csi-224dc655e2c823145f6a545fa78601d91e647dcfef- 1564

fb317d8f57b340, 0.5), 1565

• (csi-a8f7d2a391815f9c401550acbb694bae346f443a43-1566

a098c5e072aae9, 0.5),1567

• (csi-4c4f985d3c24d4e988879b93a20ba27aef4d1b5e43-1568

1cff21ed9c304f, 0.5),1569

• (csi-007a111242d4e9cc17cbb487d338934ef25edfe677-1570

bec379b08b5002, 0.5),1571

• (csi-007a111242d4e9cc17cbb487d338934ef25edfe677-1572

bec379b08b5002, 0.5),1573

• (csi-042b74efcc92c96a15db35030eea542a97329bf422-1574

cced8e7fc07453, 1),1575

• (csi-5704ae7a7f958a112c4ab6707b5b6708c839a7a23a-1576

8927ff774d5a38, 1),1577

• (csi-af40c043b23e299af5c85347534fe62d2c963a8f7d-1578

6b0dac873b8846, 4),1579

• (csi-535aa6a8940b19cbf86cda227104df4ff1f3c76e36-1580

eb17aa89585b91, 4),1581

• (csi-5deb4704be2267c6724151a6417770ceb5ffc47995-1582

607bbf3a169c28, 8),1583

• (csi-a4390ec528e4f6c2616765939087c14c1ca0bd47cf-1584

1ddd3b6d055ba0, 9),1585

• (csi-3f5a5b338144451e2d7e22bcc184940e796a74510e-1586

c874966c88b93d, 12),1587

• (csi-953d891df68f6a2fd85d53da81602b86b0f04a395d-1588

a9aa547b02a4a3, 16),1589

8 Certification1590

Besides carefully designing the parameter space of Grackle,1591

we also perform various verification procedures to ensure the1592

soundness of the invented strategies.1593

8.1 Proof Consistence Checking1594

One typical way to verify the correctness of proofs in CoCo1595

is to check whether the proofs of a prover are consistent1596

with other provers. Here, the consistency means that we1597

do not prove confluence (non-confluence) for a problem for1598

which other provers prove its non-confluence (confluence).1599

We check whether the proofs found by invented strategies1600

are consistent with all provers in CoCo. The proofs found1601

by Grackle are depicted in the final portfolio grackle.flee.1602

The check is done by stats/dif coco grackle.py, which com-1603

pares the difference between results in grackle.flee and the1604

results obtained by CSI in CoCo2024. For proofs found1605

in grackle.flee but not by CSI in CoCo 2024, we manually1606

check the consistency between them and proofs of all provers1607

in the previous CoCo competitions. We also confirm that1608

the proofs obtained by the unified strategies are consistent1609

with all provers in all CoCo competitions. This is done by1610

stats/consistency.py in our code.1611

8.2 Certifying Newly Found Proofs1612

We run CeTA for each problem solved by invented strategies1613

but not by CSI in CoCo. If it can be certified by CeTA, we1614

trust the results. Otherwise, we manually look at the error1615

information to see whether it is really an error and try to re-1616

produce the proof and the certification error using the strategy1617

defined in CSI’s competition strategy. We aim to understand 1618

what changes they perform to the original strategy lead to the 1619

proofs. From the analysis, we either slightly modify the sub- 1620

strategy defined in the competition strategy or directly use 1621

some existing sub-strategies to produce the same answers as 1622

the invented strategies. These modifications that lead to the 1623

answers are employed in the corresponding invented strate- 1624

gies, which are small and sound according to our knowledge 1625

of term rewriting. We also check the certification errors out- 1626

put by CeTA to figure out whether they are indeed errors or 1627

just caused by limitations of CSI and CeTA. The statistics of 1628

the certifications are shown in Table 2 of the paper. 1629

When we use four CPUs per CSI execution on ARI-COPS, 1630

we prove the following problems that are unprovable by CSI 1631

in CoCo. We analyze each of them. The format is (strategy, 1632

newly proved problems in ARI-COPS, corresponding prob- 1633

lems in COPS). The results CERTIFIED means the proof is 1634

certified by CeTA. 1635

• (csi-e5535657f8e54081f79c2291ebad9d81992f6e7248- 1636

49f0fa92a83cc9, YES, 1499.ari, 1652.trs). The output 1637

is CERTIFIED. 1638

• (csi-9f19c01a538808477a8980f80d3d2face7303ce6f0- 1639

58f8b6170f9461, YES, 879.ari, 1024.trs. The output 1640

is ./csi: XML output is not supported 1641

for this method. The reason why CeTA fails 1642

to certify is CeTA does not support the certification 1643

of Aoto-Toyama criteria. It can be proved by (at 1644

-bound 16; SN)!. The strategy only changes the 1645

value of the -bound flag for AT3, which has been 1646

used in the original competition strategy. Using (at 1647

-bound 16; SN)! leads to the same certification 1648

error as the invented strategy. 1649

• (csi-9f6172de97a8148d22ba4b910ba8b16dccd0196c276-1650

c568d9ab2c0b5, NO, 852.ari (997.trs), 846.ari 1651

(991.trs)) CeTA cannot support the verification of 1652

nonconfluence -idem. However, the essen- 1653

tial for solving such two problems is the usage of 1654

redundant -development 6, which is discov- 1655

ered by Grackle. Two problems can be solved if we 1656

change redundant -narrowfwd -narrowbwd 1657

-size 7 in REDUNDANT FC to redundant 1658

-development 6 -size 7. Moreover, they are 1659

certifiable. 1660

• csi-beb87b539aa3911f6c65d5e2a97ef40cb45898dfafc- 1661

7283f152a217a, YES, 794.ari, 939.trs, UNSUP- 1662

PORTED. CeTA cannot certify AoTo-Toyama criteria. 1663

We can use AT defined in the competition strategy to 1664

prove it. Using AT leads to the same certification error 1665

as the invented strategy. 1666

• csi-ec0fb3f8ce9f2d586b23f5cd9c4a399845157f2854e- 1667

f5f8e2f9d3f3a, YES, 167.ari, 170.trs. 1668

UNSUPPORTED Fatal: parse 1669

error on <acRuleRemoval> at 1670

[trsTerminationProof, wcrAndSN, 1671

crProof, redundantRules, crProof, 1672

proof, certificationProblem]. CeTA 1673

does not support AC confluence proving techniques; 1674

stats/dif_coco_grackle.py
stats/consistency.py

however, they are used in CSI’s original competition1675

strategy. From the invented strategy, we learn that it can1676

be proven with two modifications to the original com-1677

petition strategy. First, increase the number of repeated1678

applications from two to five in AUTO INNER. It1679

leads to AUTO INNER = (AUTO INNER0[30] |1680

CPCS[5]2*)! | (AUTO INNER0[30]nono |1681

CPCS[5]2*)5*!. Second, only run a subset of tech-1682

niques in AUTO INNER0. It leads to AUTO INNER01683

= (REDUNDANT DEL?;(CLOSED || DD ||1684

SIMPLE || KB || AC || GROUNDnono))3*!1685

If we only change AUTO INNER0 and AUTO INNER1686

as mentioned above, CeTA can produce the same1687

certification error as the invented strategy.1688

• (csi-b994d65167954d35cdd2b7a70646a4f8d550ec9e0de-1689

bc650285a0d90, YES, 158.ari, 160.trs). Ackbo: no1690

XML output for SCFs. CSI cannot output a1691

certificate for the ackbo processor with the flag -sc.1692

The soundness of it has been explained in Section 4.1693

Moreover, CSI cannot produce a certificate for the1694

CPCS transformation. We can prove it by changing the1695

definition of AUTO INNER0 to AUTO INNER0 =1696

(REDUNDANT DEL?;(AC))3*!, which is used in1697

the original AUTO INNER0. The new definition does1698

not parallelly execute all techniques in AUTO INNER01699

and makes the execution faster. Using AUTO INNER01700

= (REDUNDANT DEL?;(AC))3*! leads to the1701

same certification error as the invented strategy. It is not1702

solved by CSI in CoCo 2024 but was solved by CSI in1703

the previous CoCo competitions.1704

• csi-b3ab9764cd4f0717a3037a5849e47d41c56af511e84-1705

d4a72659e0829, YES, 1500.ari, 1653.trs. CPCS cannot1706

be certified by CeTA. It can be proven by CPCS*.1707

CPCS is defined in the competition strategy and the1708

soundness is guaranteed. Using CPCS* leads to the1709

same certification error as the invented strategy. It is not1710

solved by CSI in CoCo 2024 but was solved by CSI in1711

the previous CoCo competitions.1712

When we use one CPU per CSI execution on ARI-COPS,1713

we prove the following problems that are unprovable by CSI1714

in CoCo.1715

• csi-0d382fd14a431f6befe533e561bbaf68c777bf48b92-1716

ccbbea5fd4346, NO, 449.ari, 540.trs, CERTIFIED.1717

• csi-9e016d5ab9730720dcd426c5368545f09f0f5b9b464-1718

9cd6af41284ad, YES, 463.ari, 554.trs. the1719

critical pair g(h(f(f(b, b), b)))1720

<- . -> g(h(h(f(f(h(k(k(b, b), b)),1721

h(k(k(b, b), b))), h(k(k(b, b),1722

b)))))) is not (almost) parallel1723

closed within None steps. hence1724

the following TRS is not (almost)1725

parallel closed. CeTA cannot certify the1726

cr -okui technique. We can prove it if we1727

change AUTO INNER0 to AUTO INNER0 =1728

(REDUNDANT DEL?;(CLOSED))3*! ||1729

((CLOSED | REDUNDANT RHS)3*! ||1730

(CLOSED) | REDUNDANT JS)3*!, which is1731

used in the original definition of AUTO INNER0. The 1732

modified definition causes the same certification error 1733

as the invented strategy. 1734

• csi-0e7e3ba5c042fabdf8151556dc8b26717d98bcd49c2- 1735

3193ec7f29d33, YES, 166.ari, 169.trs. ./csi: 1736

XML output is not supported for this 1737

method. CSI cannot output certificates for Aoto- 1738

Toyama criteria. It can be proven by (at -bound 1739

16 -theorem 2; SN)! where SN is defined in the 1740

original competition strategy. We only change -bound 1741

16 to increase the search space as explained in Sec- 1742

tion 4. The strategy (at -bound 16 -theorem 1743

2; SN)! causes the same certification error as the 1744

invented strategy. 1745

• csi-aabfb22bdd5b365b18568e462dd644b3a94146e63d2- 1746

c44ff35c98a2c, NO, 846.ari(991.trs), 852.ari(997.trs), 1747

CERTIFIED. 1748

• (csi-d42ec2e614b9f4287137c1772a4a13176783da5195- 1749

2c630b016bc7c4, YES, 158.ari, 160.trs). Ackbo: 1750

no XML output for SCFs. CSI cannot output a 1751

certificate for the ackbo processor with the flag -sc. 1752

The soundness of it has been explained in Section 4. 1753

Moreover, CSI cannot produce a certificate for the 1754

CPCS transformation. We can prove it by changing the 1755

definition of AUTO INNER0 to AUTO INNER0 = 1756

(REDUNDANT DEL?;(AC))3*!, which is used in 1757

the original AUTO INNER0. The new definition does 1758

not parallelly execute all techniques in AUTO INNER0 1759

and makes the execution faster. It is not solved by CSI 1760

in CoCo 2024 but was solved by CSI in the previous 1761

CoCo competitions. The strategy AUTO INNER0 = 1762

(REDUNDANT DEL?;(AC))3*! causes the same 1763

certification error as the invented strategy. 1764

• csi-b3ab9764cd4f0717a3037a5849e47d41c56af511e84- 1765

d4a72659e0829, YES, 1500.ari, 1653.trs. CPCS cannot 1766

be certified by CeTA. It can be proven by CPCS*. 1767

CPCS is defined in the competition strategy and the 1768

soundness is guaranteed. It is not solved by CSI in 1769

CoCo 2024 but was solved by CSI in the previous CoCo 1770

competition. CPCS* causes the same certification error 1771

as the invented strategy. 1772

8.3 Certifying Strategies on Mastered Problems 1773

For every invented strategy in the ARI-COPS dataset, we run 1774

it on the problems it matsered and try to certify the proofs. 1775

The problems mastered by each strategy is calculated by 1776

Grackle. Since the outputs of CeTA on such problems are 1777

indeed lengthy, we do not present them in the technical ap- 1778

pendix. The outputs exist in the attached code. We refer 1779

readers to read such logs for details. As explained in the 1780

main paper, CeTA may fail to certify the proofs due to several 1781

reasons. We manually check whether the outputs indeed de- 1782

note errors. We have not found any unsoundness. The typical 1783

reasons why CeTA’s rejection information does not indicate 1784

unsoundness are shown below. 1785

• Fatal: parse error on <ac> 1786

at [statusPrecedenceEntry, 1787

statusPrecedence, pathOrder,1788

redPair, orderingConstraintProof,1789

ruleRemoval, trsTerminationProof,1790

wcrAndSN, crProof, proof,1791

certificationProblem]. CeTA cannot verify1792

AC processors.1793

• Fatal: parse error1794

on <acRuleRemoval> at1795

[trsTerminationProof, wcrAndSN,1796

crProof, redundantRules, crProof,1797

proof, certificationProblem]. CeTA does1798

not support AC confluence proving techniques1799

• Error in checking parallel closedness1800

for the rewrite system ... The1801

critical pair XXX is not (almost)1802

parallel closed within None steps.1803

hence the following TRS is not1804

(almost) parallel closed. CSI outputs1805

an empty certificate for the CPCS transformation1806

and Church Rosser Transformation Processor (okui),1807

confusing CeTA there are no proof steps.1808

• Fatal: parse error on1809

<unknownAssumption> at [proof,1810

certificationProblem]. CSI uses a theo-1811

rem that is not supported by CeTA.1812

• ./csi: order-sorted decomposition:1813

xml proof not supported. CeTA does not1814

support order-sorted decomposition.1815

• Fatal: parse error on text element1816

"-1" at [stronglyClosed, crProof,1817

redundantRules, crProof, proof,1818

certificationProblem]. CSI implements1819

some development closedness techniques that cannot be1820

verified by CeTA.1821

• Fatal: parse error on <uncurry> at1822

[proof, certificationProblem]. Uncurry is1823

not supported by CeTA.1824

• Could not infer that X and Y are1825

not joinable, could not ensure1826

closure under rewriting for first1827

automaton, problem when ensuring1828

(state-)compatibility of TRS with1829

TA. The processor nonconfluence -tree cannot1830

be verified. Need to use nonconfluence -tree1831

-cert.1832

• Fatal: parse error on <magic> at1833

[nonJoinableFork, crDisproof, proof,1834

certificationProblem]. The technique1835

nonconfluence -idem is not supported by CeTA.1836

• Error when closing critical pairs of1837

rules, C not a subsystem of R, hence1838

the following TRS is not critical1839

pair closing rewrite system. The tech-1840

nique cr -cpcs2 is not certifiable. It should be1841

changed to cr -cpcs2 -cpcscert for certi-1842

fication. But cr -cpcs2 is used in the original 1843

competition strategy. 1844

• Error below strong normalization + 1845

wcr; R is not empty in the following 1846

termination-problem. The usage of AC proces- 1847

sors makes CSI output an empty proof; thus, confusing 1848

CeTA. 1849

• ./csi: MatrixInterpretation.fprintfx: 1850

XML output not supported expecting 1851

"<", but found: ’’ CPCS is not supported, 1852

and sometimes outputs entire empty certificates. 1853

• ./csi: XML output is not supported 1854

for this method. CSI does not implement the 1855

functions to output the certificates for some processors. 1856

• parser error : Excessive depth in 1857

document. The certificate is too large for CeTA to 1858

parse. 1859

• Ackbo: no XML output for SCFs CSI can- 1860

not output a certificate for ackbo -sc. However it is 1861

used in the original competition strategy, and its sound- 1862

ness has been explained in Section 4. 1863

• ./csi: not an integer. CSI cannot generate a 1864

certificate if kbo uses rational weights. The soundness 1865

of rational weights is explained in Section 4 1866

• could not apply the reduction 1867

pair processor with the following 1868

polynomial interpretation over 1869

polynomial interpretation. CeTA can- 1870

not certify the flag -heuristic 1 for the poly 1871

processor. But poly -heuristic 1 is used in the 1872

original competition strategy, and its soundness has 1873

been explained in Section 4. From the proofs, we know 1874

we can use DD to prove the problems, which are defined 1875

in the competition strategy. We can also reproduce the 1876

certification error if we only use DD and CeTA. 1877

References 1878

[Aoto and Toyama, 2012] Takahito Aoto and Yoshihito 1879

Toyama. A reduction-preserving completion for proving 1880

confluence of non-terminating term rewriting systems. 1881

Logical Methods in Computer Science, 8, 2012. 1882

[Aoto et al., 2014] Takahito Aoto, Yoshihito Toyama, and 1883

Kazumasa Uchida. Proving confluence of term rewrit- 1884

ing systems via persistency and decreasing diagrams. In 1885

Rewriting and Typed Lambda Calculi: Joint International 1886

Conference, RTA-TLCA 2014, Held as Part of the Vienna 1887

Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 1888

2014. Proceedings 25, pages 46–60. Springer, 2014. 1889

[Baader and Nipkow, 1998] Franz Baader and Tobias Nip- 1890

kow. Term rewriting and all that. Cambridge university 1891

press, 1998. 1892

[Bezem et al., 2003] Marc Bezem, Jan Willem Klop, and 1893

Roel de Vrijer. Term rewriting systems. Cambridge Uni- 1894

versity Press, 2003. 1895

[Endrullis et al., 2008] Jörg Endrullis, Johannes Waldmann,1896

and Hans Zantema. Matrix interpretations for proving ter-1897

mination of term rewriting. Journal of Automated Reason-1898

ing, 40:195–220, 2008.1899

[Felgenhauer et al., 2015] Bertram Felgenhauer, Aart Mid-1900

deldorp, Harald Zankl, and Vincent Van Oostrom. Layer1901

systems for proving confluence. ACM Transactions on1902

Computational Logic (TOCL), 16(2):1–32, 2015.1903

[Felgenhauer, 2012] Bertram Felgenhauer. Deciding conflu-1904

ence of ground term rewrite systems in cubic time. In 23rd1905

International Conference on Rewriting Techniques and1906

Applications (RTA’12)(2012). Schloss-Dagstuhl-Leibniz1907

Zentrum für Informatik, 2012.1908

[Gebhardt et al., 2007] Andreas Gebhardt, Dieter Hofbauer,1909

and Johannes Waldmann. Matrix evolutions. In Proc.1910

Workshop on Termination, Paris, 2007.1911

[Giesl et al., 2005a] Jürgen Giesl, René Thiemann, and Peter1912

Schneider-Kamp. The dependency pair framework: Com-1913

bining techniques for automated termination proofs. In In-1914

ternational Conference on Logic for Programming Artifi-1915

cial Intelligence and Reasoning, pages 301–331. Springer,1916

2005.1917

[Giesl et al., 2005b] Jürgen Giesl, René Thiemann, and Pe-1918

ter Schneider-Kamp. Proving and disproving termination1919

of higher-order functions. In International Workshop on1920

Frontiers of Combining Systems, pages 216–231. Springer,1921

2005.1922

[Hirokawa, 2006] Nao Hirokawa. Automated termination1923

analysis for term rewriting. Citeseer, 2006.1924

[Huet, 1980] Gérard Huet. Confluent reductions: Abstract1925

properties and applications to term rewriting systems: Ab-1926

stract properties and applications to term rewriting sys-1927

tems. Journal of the ACM (JACM), 27(4):797–821, 1980.1928

[James and Fabian, 2023] Fox James and Mitterwallner1929

Fabian, 2023.1930

[Klein and Hirokawa, 2012] Dominik Klein and Nao Hi-1931

rokawa. Confluence of non-left-linear trss via relative1932

termination. In International Conference on Logic for1933

Programming Artificial Intelligence and Reasoning, pages1934

258–273. Springer, 2012.1935

[Knuth and Bendix, 1983] Donald E Knuth and Peter B1936

Bendix. Simple word problems in universal algebras. Au-1937

tomation of Reasoning: 2: Classical Papers on Computa-1938

tional Logic 1967–1970, pages 342–376, 1983.1939

[Koprowski and Waldmann, 2008] Adam Koprowski and Jo-1940

hannes Waldmann. Arctic termination... below zero. In In-1941

ternational Conference on Rewriting Techniques and Ap-1942

plications, pages 202–216. Springer, 2008.1943

[Korp and Middeldorp, 2009] Martin Korp and Aart Middel-1944

dorp. Match-bounds revisited. Information and Computa-1945

tion, 207(11):1259–1283, 2009.1946

[Korp et al., 2009] Martin Korp, Christian Sternagel, Harald1947

Zankl, and Aart Middeldorp. Tyrolean termination tool 2.1948

In Rewriting Techniques and Applications: 20th Interna- 1949

tional Conference, RTA 2009 Brası́lia, Brazil, June 29-July 1950

1, 2009 Proceedings 20, pages 295–304. Springer, 2009. 1951

[Moser et al., 2008] Georg Moser, Andreas Schnabl, and Jo- 1952

hannes Waldmann. Complexity analysis of term rewrit- 1953

ing based on matrix and context dependent interpreta- 1954

tions. In IARCS Annual Conference on Foundations of 1955

Software Technology and Theoretical Computer Science 1956

(2008). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 1957

2008. 1958

[Nagele and Middeldorp, 2016] Julian Nagele and Aart Mid- 1959

deldorp. Certification of classical confluence results for 1960

left-linear term rewrite systems. In International Con- 1961

ference on Interactive Theorem Proving, pages 290–306. 1962

Springer, 2016. 1963

[Nagele et al., 2015] Julian Nagele, Bertram Felgenhauer, 1964

and Aart Middeldorp. Improving automatic confluence 1965

analysis of rewrite systems by redundant rules. In 26th In- 1966

ternational Conference on Rewriting Techniques and Ap- 1967

plications (RTA 2015). Schloss Dagstuhl-Leibniz-Zentrum 1968

fuer Informatik, 2015. 1969

[Nagele et al., 2017] Julian Nagele, Bertram Felgenhauer, 1970

and Aart Middeldorp. Csi: New evidence–a progress re- 1971

port. In International Conference on Automated Deduc- 1972

tion, pages 385–397. Springer, 2017. 1973

[Neurauter et al., 2010] Friedrich Neurauter, Aart Middel- 1974

dorp, and Harald Zankl. Monotonicity criteria for polyno- 1975

mial interpretations over the naturals. In Automated Rea- 1976

soning: 5th International Joint Conference, IJCAR 2010, 1977

Edinburgh, UK, July 16-19, 2010. Proceedings 5, pages 1978

502–517. Springer, 2010. 1979

[Neurauter, 2012] Friedrich Neurauter. Termination analysis 1980

of term rewriting by polynomial interpretations and matrix 1981

interpretations. na, 2012. 1982

[Oyamaguchi and Hirokawa, 2014] Michio Oyamaguchi 1983

and Nao Hirokawa. Confluence and critical-pair-closing 1984

systems. Proc. 3rd IWC, pages 29–33, 2014. 1985

[Sakai et al., 2015] Masahiko Sakai, Michio Oyamaguchi, 1986

and Mizuhito Ogawa. Non-e-overlapping, weakly shal- 1987

low, and non-collapsing trss are confluent. In Automated 1988

Deduction-CADE-25: 25th International Conference on 1989

Automated Deduction, Berlin, Germany, August 1-7, 2015, 1990

Proceedings 25, pages 111–126. Springer, 2015. 1991

[Sternagel and Thiemann, 2013] Christian Sternagel and 1992

René Thiemann. Formalizing knuth-bendix orders and 1993

knuth-bendix completion. In 24th International Con- 1994

ference on Rewriting Techniques and Applications (RTA 1995

2013). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 1996

2013. 1997

[Sternagel and Thiemann, 2014] Christian Sternagel and 1998

René Thiemann. Formalizing monotone algebras for 1999

certification of termination and complexity proofs. In 2000

International Conference on Rewriting Techniques and 2001

Applications, pages 441–455. Springer, 2014. 2002

[Sternagel, 2016] Christian Sternagel. The generalized sub-2003

term criterion in ttt2. arXiv preprint arXiv:1609.03432,2004

2016.2005

[Suzuki et al., 2011] Sho Suzuki, Keiichirou Kusakari, and2006

Frédéric Blanqui. Argument filterings and usable rules in2007

higher-order rewrite systems. IPSJ Online Transactions,2008

4:114–125, 2011.2009

[Toyama and Oyamaguchi, 1994] Yoshihito Toyama and2010

Michio Oyamaguchi. Church-rosser property and unique2011

normal form property of non-duplicating term rewriting2012

systems. In International Workshop on Conditional Term2013

Rewriting Systems, pages 316–331. Springer, 1994.2014

[Van Oostrom, 1997] Vincent Van Oostrom. Developing de-2015

velopments. Theoretical Computer Science, 175(1):159–2016

181, 1997.2017

[Yamada et al., 2016] Akihisa Yamada, Sarah Winkler, Nao2018

Hirokawa, and Aart Middeldorp. Ac-kbo revisited. The-2019

ory and Practice of Logic Programming, 16(2):163–188,2020

2016.2021

[Zankl and Middeldorp, 2010] Harald Zankl and Aart Mid-2022

deldorp. Satisfiability of non-linear (ir) rational arith-2023

metic. In Logic for Programming, Artificial Intelligence,2024

and Reasoning: 16th International Conference, LPAR-16,2025

Dakar, Senegal, April 25–May 1, 2010, Revised Selected2026

Papers 16, pages 481–500. Springer, 2010.2027

[Zankl et al., 2009] Harald Zankl, Nao Hirokawa, and Aart2028

Middeldorp. Kbo orientability. Journal of Automated Rea-2029

soning, 43(2):173–201, 2009.2030

[Zankl et al., 2011] Harald Zankl, Bertram Felgenhauer, and2031

Aart Middeldorp. Csi–a confluence tool. In Automated2032

Deduction–CADE-23: 23rd International Conference on2033

Automated Deduction, Wrocław, Poland, July 31-August2034

5, 2011. Proceedings 23, pages 499–505. Springer, 2011.2035

	Introduction
	Background
	Term Rewriting
	CSI
	Grackle

	Strategy Invention and Combination
	Strategy Invention
	Strategy Combination

	Dataset Augmentation
	TRS Generation Procedure
	Dataset Generation

	Experiments
	Experimental Settings
	Experimental Results

	Examples
	Related Work
	Conclusion and Future Work
	Term Rewriting
	Basic Termination Techniques
	Basic Confluence Techniques
	Basic Non-confluence Techniques

	CSI Strategy Language
	Default Strategy
	Parameter Space
	Overall Patterns
	Details of Patameters
	Forbidden Parameters

	Examples of Invented Strategy
	Grackle's Initial Strategies
	Strategy Combination
	Certification
	Proof Consistence Checking
	Certifying Newly Found Proofs
	Certifying Strategies on Mastered Problems

