
The Dependently Typed Higher-Order Form
for the TPTP World

Daniel Ranalter1[0009−0006−2861−548X], Cezary Kaliszyk2,1[0000−0002−8273−6059],
Florian Rabe3[0000−0003−3040−3655], and Geoff Sutcliffe4[0000−0001−9120−3927]

1 University of Innsbruck, Computational Logic, Austria
d.ranalter@gmail.com

2 University of Melbourne, School of Computing, Australia
ckaliszyk@unimelb.edu.au

3 University of Erlangen-Nuremberg, Computer Science, Germany
florian.rabe@fau.de

4 University of Miami, Department of Computer Science, USA
geoff@cs.miami.edu

Abstract. Much of the current research and development in the field of
automated reasoning builds on the infrastructure provided by the TPTP
World. The TPTP language for logical formulae is central to the far-
reaching adoption of the TPTP World. This paper introduces the De-
pendently Typed higher-order Form (DHF) of the TPTP language. It
takes advantage of already established binders in the syntax, and is thus
a minimally intrusive extension to the Typed Higher-order Form (THF).
A starting set of over 100 problems is provided to exhibit the usefulness
and incite interest in DHF. Some tools that are already able to reason
about problems in the DHF language are discussed.

Keywords: Automated Theorem Proving · Dependent Types · Higher-
Order Logic.

1 Introduction

The TPTP World [31] is a well-established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems.
The TPTP language [27] is one of the keys to the success of the TPTP World.
It has variants that support uniform expression of logical formulae across a wide
range of logics. The TPTP language is used for writing both problems and
solutions, which enables convenient communication between ATP systems and
tools. The majority of modern ATP systems accept input in TPTP syntax. The
TPTP language variants that form the basis for this work are the monomorphic
and polymorphic typed higher-order forms (TH0 and TH1) [32,8] (see Section 2.1
for the background and further variants).

All the existing typed TPTP language variants are simply typed. However,
there is a steady increase of interest in dependently typed systems, such as

2 D. Ranalter et al.

Agda [3], Rocq [1,37], and Lean [9]. This interest extends to the SMT commu-
nity, where the proposed version 3.0 of SMT-LIB is to include dependent types5.
Dependent types allow for the elegant formulation of complex data structures,
possibly even a direct encoding of correctness properties. This paper introduces
the Dependently Typed higher-order Form (DHF) of the TPTP language.

While dependent types are frequently used in interactive theorem proving,
Automated Theorem Proving (ATP) has yet to embrace dependent types. Roth-
gang et al. made first steps towards bringing ATP and dependent types together,
by introducing dependently typed higher-order logic (DHOL) [17,18]. With only
two minor extensions to the familiar syntax of Church-style HOL [6], DHOL
makes dependent types easily accessible: HOL base types are extended into de-
pendent base types that can take term arguments, and the function type A → B
is changed into a dependent function type Πx : A.B. Originally DHOL did not
allow quantifying over types or stating the equality of types, but a polymorphic
version is in development.

As in FOL and HOL, DHOL allows arbitrary axioms that may constrain
equality of terms in undecidable ways, and consequently DHOL’s type checking
is undecidable (see Section 3.2). To manage this complication Rothgang et al.
provide an algorithm that reduces the well-formedness of a statement to a set of
proof obligations. Thus theorem proving is needed to check the well-formedness
of a problem’s formulae, not just to prove the conjecture. Happily, typically
that does not make it harder to prove the conjecture. To increase ATP support
for DHOL, Rothgang et al. define a translation from well-typed DHOL to HOL
that preserves provability in both directions, thereby making DHOL available for
regular HOL ATP systems, albeit without leveraging DHOL’s dependent types
for more efficient proving. Furthermore, the translation introduces additional
axioms capturing the constraints of the dependent types, thereby potentially
complicating proof search. Several interactive theorem provers had previously
employed the same idea, sacrificing decidable typing to gain the expressivity of
dependent types, while keeping the general feel of the language simple. Most
importantly, PVS [12] essentially contains DHOL as a fragment, but extends
it beyond the capabilities of current automated provers. Mizar [38], using soft
typing on top of first-order set theory, can also capture DHOL-like features.

A detail missing from the original formulation of DHOL was the choice opera-
tor. Ranalter et al. investigated the effects of losing the non-emptiness constraint
in DHOL on Hilbert’s choice in [16]. To this end, they extended the – to the
authors knowledge – first native implementation of DHOL into the ATP system
Lash, by Niederhauser et al. [11]. Their experiments strongly suggest that native
reasoning in DHOL significantly outperforms reasoning on translated problems.

This work describes how DHOL is being integrated into the TPTP World, in
a new TPTP language variant “Dependently Typed higher-order Form” (DHF),
with monomorphic and polymorphic subvariants (DT0 and DT1). DHF requires
only very minor changes to the familiar TPTP language syntax, mostly using ex-
isting notions for binders and application operators, thereby providing the ATP

5 smt-lib.org/version3

https://smt-lib.org/version3.shtml

DHF: The TPTP DHOL Form 3

community with the necessary foundations on which research into dependently
typed automated reasoning can thrive. A set of over 100 problems in DHF, taken
from several different sources, has been curated as an initial contribution to the
TPTP problem library. The problems provide a spread of interesting formula-
tions focusing on a variety of difficulty levels in proving the conjecture as well
as in type checking.

Section 2 reviews the TPTP World and establishes the necessary background
for DHOL, slightly generalizing the original DHOL definition to make it more
suitable for TPTP. Section 3 introduces the new DHF form. Section 4 gives a
short overview of the starting set of problems, and Section 5 introduces tools
that already support the new form. Finally, Section 6 concludes and gives an
outlook over future work.

2 Preliminaries

2.1 The TPTP World and Infrastructure

The TPTP World infrastructure includes the TPTP language [28], the TPTP
problem library [25], the TSTP solution library [26], the SZS ontologies [24],
the Specialist Problem Classes (SPCs) and problem difficulty ratings [29], Sys-
temOnTPTP [23] and StarExec [22], and the CADE ATP System Competition
(CASC) [30]. The problem library is a large collection of Thousands of Problems
for Theorem Proving – hence the name. The problem library release v9.1.0 con-
tains over 26000 problems from over 50 different domains, written in the TPTP
language. The problems are categorized into Specialist Problem Classes accord-
ing to their syntactic and logical status. The TSTP solution library is the result
of running numerous ATP systems on the problems in that library and collecting
their output. The TPTP and TSTP libraries provide the basis for assigning a
difficulty rating to each problem, according to which ATP systems are able to
solve the problem.

The most salient feature of the TPTP World for this work is the TPTP lan-
guage. Originally the TPTP language supported only first-order clause normal
form (CNF) [35]. Over time, more complex logics were added, starting with first-
order form (FOF) in TPTP release v2.0.0 [25]. Releases v3.0.0 and v4.0.0 added
monomorphic typed higher-order (TH0) [32] and monomorphic typed first-order
(TF0) [34] forms to the mix respectively. These got extended to their polymor-
phic variants TF1 and TH1 in releases v5.0.0 [2] and v6.0.0 [8]. Release v7.0.0
of the TPTP started to include extended typed first-order form (TXF) [33]
which extends the typed first-order form with conditionals, let expressions, and
boolean terms. All the listed extensions to the TPTP are classical in nature.
This changed with the addition of non-classical typed first-order form (NTF) in
release v9.0.0 [21]. A general principle of the TPTP language is: “We provide the
syntax, you provide the semantics”. As such, there is no a priori commitment to
any semantics for each of the language forms, although in almost all cases the
intended logic and semantics are well known.

Problems and solutions are built from annotated formulae of the form

4 D. Ranalter et al.

language(name, role, formula, source, useful_info)

The languages supported are cnf (clause normal form), fof (first-order form),
tff (typed first-order form), and thf (typed higher-order form). The role, e.g.,
axiom, lemma, conjecture, defines the use of the formula. In a formula, terms
and atoms follow Prolog conventions – functions and predicates start with a
lowercase letter or are ’single quoted’, and variables start with an uppercase
letter. The language also supports interpreted symbols that either start with a
$, e.g., the truth constants $true and $false, or are composed of non-alphabetic
characters, e.g., integer/rational/real numbers such as 27, 43/92, -99.66. The
logical connectives in the TPTP language are !>, ?*, @+, @-, !, ?, ~, |, &, =>,
<=, <=>, and <~>, for the mathematical connectives Π, Σ, choice (indefinite
description), definite description, ∀, ∃, ¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Equality and inequality are expressed as the infix operators = and !=. The source
and useful_info are optional.

2.2 Dependently Typed Higher-Order Logic

Dependently typed higher-order logic (DHOL) is an extension of Church’s higher-
order logic (HOL) [6] introduced by Rothgang et al. [17]. It takes the widely
supported HOL and equips it with dependent types, i.e., types that take term
arguments. As such, it is a classical and extensional type theory, as opposed to
the theory used in Rocq [1,37], Lean [9], or others [3,13] that rely on an inten-
sional type theory. Notable exceptions to this trend are PVS [19], NuPRL [7],
and F* [36].

The extensionality of DHOL comes at the cost of making type checking unde-
cidable because it must consider term equality, which may be subject to arbitrary
axioms. Essentially, typing becomes undecidable if a type depends on a type for
which equality is undecidable. This is because type checking t against type a n
must be done by inferring the type of t, say a m, and then checking a m = a n,
and thus m = n. If all dependent type symbols depend only on types for which
equality is decidable (e.g., the examples below where we only use natural num-
bers with Presburger arithmetic), type checking is decidable. Otherwise, e.g.,
when using types depending on natural numbers with Peano arithmetic, type
checking is undecidable.

The gain of having judgmental and provable equality coincide is significant: It
positions DHOL much closer to how mathematics is usually done in the context
of ATP. The availability of dependent types allows the elegant definition of data
structures such as lists of fixed-length, intervals of numbers, or vector spaces over
some field. It also allows encoding constraints in the types, which can remove the
need for lengthy and error-prone guards in programming and track invariants
useful for theorem proving. The cost – which might seem steep at first glance
– is mitigated by the ever-increasing performance of ATP systems, and the fact
that in many cases the proof obligations resulting from type checking are much
simpler than the original proving problem.

DHF: The TPTP DHOL Form 5

The changes to the TPTP syntax to accommodate DHF are small: the defini-
tion of the simple base type is changed to a type that can accept term arguments,
and the simple function type A → B is changed to Πx : A.B. This makes it
possible to let the result type of the function depend on the specific term of the
argument.

Figure 1 gives the grammar of DHOL. A dependent base type a with arity
n is written a : Πx1 : A1, · · · , xn : An.type, and it is a simple base type if
n = 0. Declarations of this form are part of the theory against which the type
checking procedure is performed. In addition to base type declarations, theories
may declare constant symbols c and axioms ▷ F . A context specifies typed vari-
ables and assumptions. Contexts are superficially similar to theories, but denote
local declarations, and as such, do not contain type declarations. ◦ and • denote
the empty theory and context respectively. The order in a theory or context
matters because the well-typedness of declarations might depend on preceding
axioms. Types, as they appear in statements and typing judgements, are either
fully applied base types, (dependent) function types, or classical booleans o.
Terms are built from variables/constants, lambda abstraction, application, and
the usual connectives and quantifiers. Regular HOL can be recovered by omit-
ting the highlighted elements – this is exactly the case when the arity of all
base types is 0.

T,U ::= ◦ | T, a : (Πx : A.)∗type | T, c : A | T, ▷ F theories
Γ,∆ ::= • | Γ, x : A | Γ, ▷ F context
A,B ::= a t1 · · · tn | Πx :A.B | o types
t, u, F,G ::= x | c | λx : A.t | t u | ∀x : A.F | ∃x : A.F | F ⇒ G

| F ∧G | F ∨G | ⊥ | ⊤ | ¬F | t =A u terms (incl. formulae F,G)

Fig. 1. The grammar of DHOL

The following example encodes the familiar notion of fixed-length lists. As
prerequisites, we give the usual notion of natural numbers in a simple type nat

and a simple type char of characters for the elements of the lists:

nat : type 0 : nat suc : nat → nat + : nat → nat → nat

▷ ∀n : nat.+ 0 n =nat n ▷ ∀n,m : nat.+ (suc n) m =nat suc (+ n m)

char : type a : char b : char ...

Then vecn encodes the type of fixed-length lists of characters of length n:

vec : Πn : nat.type nil : vec 0 cons : Πx : nat.char → vec n → vec (suc n)

++ : Πn,m : nat.vec n → vec m → vec (+ n m)

Dependent Connectives In DHOL it is desirable to make the binary connectives
conjunction, implication, and disjunction dependent in the sense that the well-
formedness of the second argument may assume the truth (for conjunction and

6 D. Ranalter et al.

implication) or the falsity (for disjunction) of the first argument. Consider the
statement a =A b ⇒ f a =B(a) f b. The well-formedness of the right-hand
side requires the left-hand side as a premise. More precisely, Γ ⊢ F : o resp.
Γ ⊢ F expresses that F is a well-formed resp. provable formula in context Γ .
The definition of well-formed formulae is:

Γ ⊢ F ⇒ G if Γ ⊢ F and Γ, ▷ F ⊢ G
Γ ⊢ F ∧G if Γ ⊢ F and Γ, ▷ F ⊢ G
Γ ⊢ F ∨G if Γ ⊢ F and Γ, ▷ ¬F ⊢ G

where the marked parts make the connectives dependent. The usual natural
deduction proof rules of implication and conjunction are the same as for the
non-dependent versions. The proof rules for disjunction are adjusted as follows:

Γ ⊢ F Γ, ▷ ¬F ⊢ G : o

Γ ⊢ F ∨G

Γ, ▷ ¬F ⊢ G

Γ ⊢ F ∨G

Γ, ▷ F ⊢ C Γ, ▷ ¬F , ▷ G ⊢ C

Γ, ▷ F ∨G ⊢ C

As usual, it is possible to choose some connectives as primitives, from which
the others are defined. Rothgang et al. choose equality and implication. Contrary
to HOL, they included implication because they could not define the dependent
binary connectives solely from equality. For the TPTP World, it is better not
to choose primitive connectives – that choice should be left to the ATP system
developers. Therefore DHF extends the work by Rothgang et al. to make all
connectives primitive. ATP systems can choose which connectives to treat as
abbreviations, but in doing so must take the dependent nature of the connec-
tives into account. Note that dependent connectives break the commutativity of
conjunction and disjunction. While seemingly disruptive, sacrificing commuta-
tivity in this way is common practice, e.g., for short-circuit evaluation of Boolean
terms in programming languages. To clarify the impact on theorem proving, Ta-
ble 1 summarizes typical proof rules for FOL and their status in DHOL. Roughly
speaking, all rules that do not affect the order of subformulae remain sound, while
the rest of the rules require the additional check to ensure the result remains
well-formed. In particular, all rules needed to perform CNF or clause normal
form transformations remain available.

Developing advanced calculi for DHOL is beyond the scope of this paper.
However, for example, one way to generalize resolution is to store clauses as lists
[L1, . . . , Ln] where the well-formedness of each Li may depend on ¬Lj for j < i.
Resolving [A, L⃗] and [¬A, M⃗] to [L⃗, M⃗] is sound if the resolvent is well-formed,
i.e., if the well-formedness of the Li resp. Mi does not depend on ¬A resp. A.

Polymorphic DHOL. DHOL as presented in the previous section and [17] is
monomorphic. ATP for polymorphic DHOL, as well as proofs of properties for
such an extension of the calculus, is ongoing parallel work. Polymorphic logics
are already available in the TPTP language, so it is natural to offer polymor-
phic DHF. All the polymorphic example problems considered so far use only
shallow/rank-1 polymorphism in line with the existing polymorphic first- and
higher-order forms for TPTP.

DHF: The TPTP DHOL Form 7

Table 1. Typical proof rules for FOL and their status in DHOL

Rule Holds in DHOL
For disjunction and conjunction

associativity ✓
commutativity Only if both sides are well-formed
idempotence, e.g., A ∧X ∧A ⇔ A ∧X ✓(Drop the second occurrence)
de Morgan laws ✓
distributivity of one over the other ✓
absorption, e.g., A ∧ (A ∨B) ⇔ A ✓

For implication
A ⇒ B ⇔ ¬A ∨B ✓
¬(A ⇒ B) ⇔ A ∧ ¬B ✓
¬(A ⇒ B) ⇔ ¬B ⇒ ¬A Only if both sides are well-formed

For quantifiers and equality
all rules ✓

Common calculus rules
classical reasoning ✓
weakening ✓
contraction ✓(Drop the second occurrence)
exchange Only if still well-formed
cut ✓
resolution Only if the clauses remain well-formed

Choice. Hilbert’s choice operator has been part of HOL since its inception by
Church [6]. As such, it is natural to include it in DHOL. This introduces some
complications: Due to the usual non-emptiness constraint on types, the semantics
of choice are clear in HOL. However, DHOL no longer abides by this constraint,
requiring a design decision that affects well-typedness and provability. Exper-
iments done in [16] suggest that the variant of choice dubbed “strong choice”
results in more efficient automated reasoning. The eponymous characteristic of
strong choice is the requirement that ∃x : A.t needs to be true for (εx : A.t) : A
to be well-typed. Such a requirement for typing fits well with DHOL in gen-
eral, and as ATP is the main concern this is the variant of choice, as it were.
The problem set described in Section 4 includes some examples supporting this
variant.

Translation. In order to take advantage of the ATP systems available for regu-
lar HOL, Rothgang et al. define a dependency-erasure [17], and thereby a trans-
lation from DHOL into regular HOL. They also prove that this translation is
sound and complete for well-typed DHOL problems. Due to this result, and the
implementation of the translation into the preprocessor of the Leo-III theorem
prover [20], there existed reasoning support for DHOL even before native DHOL
reasoning was implemented in the Lash ATP system by Niederhauser et al. [11].
Information lost due to the erasure of term dependencies is captured in Partial
Equivalence Relations (PERs) – symmetric and transitive relations on pairs of

8 D. Ranalter et al.

terms – with the idea that the relation is reflexive exactly for those terms that
were previously of the same dependent type. The translation is shown in Fig-
ure 2. The translation t of a term t is defined inductively on the structure of the
terms. The erasure of one type declaration results in three erased declarations:
the erased type, the PER constant and an axioms stating it’s properties. The
definition of the erasure on ∀- and ∃-quantified terms is notable as it uses a PER
as guard on the argument. To see why, note that, e.g., ∀x : A.t can be defined in
terms of equality as λx : A.t =A→o λx : A.⊤. The erasure creates a PER from
this typed equality with the guarded input in the premise, and the erased term
in the consequence of the implication as seen in the erasure of ∀.

theories contexts
◦ = ◦ • = •

T,D = T ,D Γ,D = Γ ,D

c : A = c : A, ▷ A∗ c c x : A = x : A, ▷ A∗ x x

▷ F = ▷ F ▷ F = ▷ F

a : Πx1 : A1. · · · Πxn : An. type =

a type

a∗ : A1 → · · · → An → a → a → o

▷ ∀x1 : A1. · · · ∀xn : An. ∀u, v : a. a∗ x1 · · · xn u v ⇒ u =a v

terms and types
c = c x = x

o = o a t1 . . . tn = a

Πx : A.B = A → B λx : A.t = λx : A. t

¬t = ¬t t u = t u

t ⇒ u = t ⇒ u t =A u = A∗ t u

t ∧ u = t ∧ u t ∨ u = t ∨ u

⊥ = ⊥ ⊤ = ⊤

∀x : A.t = ∀x : A. A∗ x x ⇒ t ∃x : A.t = ∃x : A. A∗ x x ∧ t

PER for each type

o∗ t u = t =o u

(a t1 . . . tn)
∗ u v = a∗ t1 · · · tn u v

(Πx : A.B)∗ t u = ∀x, y : A. A∗ x y ⇒ B∗(t x)(u y)

Fig. 2. The translation from DHOL to HOL

DHF: The TPTP DHOL Form 9

As an example of erasure, consider the list of chars [a, b], represented by a
term cons 1 a (cons 0 b nil) of type vec 2, where 0, suc 0, suc (suc 0), ... is
abbreviated as 0, 1, 2, Applying the erasure gives cons a (cons b nil) of type
vec. A predicate would be generated, establishing that this particular list is in
the PER of vectors of length 2: vec∗ 2 t t where t stands for cons a (cons b nil).
While one might think that unary predicates would be sufficient as a type guard,
PERs becomes necessary to express the typing and equality of higher-order func-
tions: functions are well-typed if they map well-typed inputs to well-typed out-
puts, and they are equal if they agree on well-typed inputs.

3 DHF

After establishing the theoretic background, this section presents the realization
of DHOL in the TPTP language. Syntax and semantics are given, as well as an
exposition to the problem of type checking.

3.1 Syntax

The syntax of DHF requires almost no change to the existing TPTP syntax.
The TPTP language already defines the !> binder for types. In the typed TPTP
language variants it is currently used for only polymorphism, e.g.,

cons : !>[A: $tType]: (A > (list @ A) > (list @ A))

is a type declaration for a polymorphic cons. The TPTP syntax does not forbid
listing terms in the types of such variable lists. This fact is used to unobtru-
sively extend TPTP by dependent types. A dependent type symbol declaration
is written with m terms of n types as

a : !>[x1 : A1, ..., xm : An]:$tType

or alternatively

a : A1 > ... > An > $tType.

Such types use the application operator @, to instantiate the terms to the de-
pendent type:

a @ t1 @ ... @ tm.

In polymorphic problems, the variable list is prepended with the type variables,
which may appear in the same binder. An example of a problem in DHF is shown
in Figure 3.

10 D. Ranalter et al.

thf(elem_type,type, elem: $tType).
thf(nat_type,type, nat: $tType).
thf(zero_type,type, zero: nat).
thf(suc_type,type, suc: nat > nat).
thf(plus_type,type, plus: nat > nat > nat).
thf(list_type,type, list: nat > $tType).
thf(nil_type,type, nil: list @ zero).
thf(cons_type,type, cons:

!>[N: nat] : (elem > (list @ N) > (list @ (suc @ N)))).
thf(app_type,type, app:

!>[N: nat,M: nat] : ((list @ N) > (list @ M) >
(list @ (plus @ N @ M)))).

thf(ax1,axiom,
! [N: nat] : ((plus @ zero @ N) = N)).

thf(ax2,axiom,
! [N: nat,X: list @ N] : ((app @ zero @ N @ nil @ X) = X)).

thf(plus_assoc,axiom,
! [M1: nat,M2: nat,M3: nat] :

((plus @ M1 @ (plus @ M2 @ M3))
= (plus @ (plus @ M1 @ M2) @ M3))).

thf(list_app_assoc_base,conjecture,
! [M2: nat,L2: list @ M2,M3: nat,L3: list @ M3] :

((app @ zero @ (plus @ M2 @ M3) @ nil @
(app @ M2 @ M3 @ L2 @ L3))

= (app @ (plus @ zero @ M2) @ M3 @
(app @ zero @ M2 @ nil @ L2) @ L3))).

Fig. 3. The base case of associativity of append on fixed-length lists.

3.2 Type Checking

Due to equality reflection, type checking for DHOL is, in general, undecidable.
Nevertheless, problems need to be well-typed, otherwise the translation outlined
in Section 2.2 might not be sound. Type checking in DHF thus takes on a larger
role than in other logics in the TPTP World.

While performing the usual type checking procedure in DHOL, obligations
of the form a t1 · · · tn ≡ a u1 · · · un, are generated. These establish equality of
the dependent base types applied to arguments t1 · · · tn, u1 · · ·un of appropriate
types. The type equality holds if all pairs ti, ui are equal, which depends on the
available axioms. This can create interesting situations where a problem must
include axioms that are not necessary for proving the conjecture itself, but are
necessary for type checking it. The common example of fixed-length lists is one
such example: the statement of the associativity of append is well-typed only if

DHF: The TPTP DHOL Form 11

addition on nat is associative, and thus requires including the defining equations
of addition. To prove the problem only the defining equations of appending lists
are needed.

The undecidability of type checking can lead to compromises. One such com-
promise is “shallow type checking”. When a problem file is shallowly checked, only
the simply typed skeleton of the problem is considered, i.e., term arguments to
types as well as dependent functions are ignored. This collapses to type checking
as is done on non-dependently typed problems, and is decidable. This form of
type checking is sufficient to catch many careless mistakes in the formulation
of problems, and provides a basic check of issues often found in human-written
DHOL problems. Examples are: mismatches in the number of arguments of a
base type or function, and egregious type mismatches. Shallow type checking
provides a valuable sanity check for users, especially considering the complexity
that problems in DHOL forms can reach.

3.3 Semantics

As for HOL, there are two kinds of semantics for DHOL: standard models are
intuitive and are the ones that are usually used; non-standard (Henkin) models
are a generalization that is needed for completeness. A full account is given in
the forthcoming [15], which is summarized below. The rules of DHOL, as given
by Rothgang et al., already define which formulae are theorems.

Standard Models. Given a theory T , a standard model M ∈ JT K is a tuple
providing an interpretation for every declaration in T . Similarly, given a context
Γ , an assignment α ∈ JΓ KM for Γ is a tuple providing an interpretation for
every declaration in Γ . These induce the interpretation function J−KMα (with α
omitted if the context is empty), which is defined inductively for all the syntax.
In particular, the possible components of a model are defined by induction on
declarations:
– For a type symbol with arguments Γ = x1 : A1, . . . , xn : An, a function

JΓ KM → SET
– For a term symbol c : A, a value from JAKM
– For an axiom ▷ F , a unique choice ✓ if JMKF = 1, and no choice otherwise

For the components of an assignment:
– For a term variable x : A, a value from JAKMα
– For an assumption ▷ F , a unique choice ✓ if JMKFα = 1, and no choice

otherwise
For types and terms, the model is defined by induction in the usual way, in
particular
– JoKMα = {0, 1}
– JΠx : A.BKMα is the set of functions f mapping every u ∈ JAKMα to some

f(u) ∈ JBKMαu where αu extends α with the value u for x

General Models. The definition of general models generalizes the Henkin models
from HOL by applying methods from categorical models of type theory. First,

12 D. Ranalter et al.

akin to assignments for Γ , substitutions γ : Γ → ∆ as lists of terms or ✓ by
induction on Γ are defined:
– For a term variable x : A, a term of type ∆ ⊢ A[γ]
– For an assumption ▷ F , the unique choice ✓ if ∆ ⊢ F [γ], and no choice

otherwise
Equality of contexts and substitutions is defined by applying the existing equality
judgments for types and terms component-wise. For every theory T , this yields
the syntactic category JT K of T -contexts and substitutions. A general model is
then defined as any pushout-preserving contravariant functor Φ : JT K → SET .
From such a Φ, an interpretation function is extracted using Φ(x : A) as the inter-
pretation of the type A and Φ(t) as the interpretation of the term t : A (seen as a
substitution x : A → •). These general models must further satisfy Φ(o) = {0, 1},
and Φ |= F is defined as Φ(F) = 1. Here the pushout-preservation essentially
corresponds to the preservation of substitution, i.e., interpretation and substi-
tution commute. The lack of any preservation of exponentials allows for a non-
compositional interpretation of function types. This approach can be seen as a
generalization of Henkin models, which also preserve substitution but do not
need to interpret function types compositionally. Contrary to Henkin models,
the interpretation of λ and application terms can also be non-compositional in
these general models as long as substitution is preserved.

Models for Polymorphic DHOL. As mentioned above, a rank-1 polymorphic
variant of DHOL is being developed in parallel work. It is straightforward to
extend standard models to polymorphic DHOL. The syntax of binding a type
variable corresponds to abstracting over an arbitrary set on the semantic side.
In particular, the interpretation of a polymorphic term/type symbol with n type
variables takes n sets as arguments. Polymorphic axioms correspond to universal
quantification over sets. The definition of syntactic category and general models
is expected to carry over to polymorphic DHOL as well. This has not been
investigated in detail.

4 Problem Dataset

Over 100 problems in DHF format have been collected for addition to the TPTP
problem library. Their classification is presented in Table 2 and discussed here
(with 36 problems just for testing DHOL prover features omitted). The number
of problems in each class is given in the last column. The problems concern sev-
eral domains that can benefit from dependent types. While [17] shows DHOL to
be sound and complete, the strength of the existing automation for this foun-
dation (discussed in Section 5) still needs to be improved. For this reason, some
of the harder problems were broken down into simpler subproblems that can
be proven independently. Some list properties that require both induction and
reasoning with dependent types are an instance of this. For example, the fact
that list append is associative, ListAppAssoc, is split into three subproblems,
showing the particular induction scheme, the proof of the base case, and the step

DHF: The TPTP DHOL Form 13

case. These three subproblems are easier to prove than their combined version,
which is also included. Some problems benefit from intermediate lemmas, e.g.
the instantiation of the inductive step case. These are found in the “Lemmas”
categories of Table 2.

One of the simplest classes of examples are lists that depend on their length
(also called vectors, for example in the Rocq library). As the list libraries of most
interactive theorem provers are substantial, it is relatively easy to experiment
with many properties of dependently typed lists. Such properties include the
aforementioned associativity of append, corollaries of this statement, or invo-
lution statements about the reverse function. Some of these list examples are
extended to their polymorphic generalizations, which are in the “Polymorphic”
categories.

The idea of expressing well-known but sometimes challenging properties ex-
tends to several other algebraic data types, such as matrices that have fixed
dimensions, and lists of lists. Red-black trees are a well-known data structure
for balanced trees where the invariant can be expressed using dependent types,
and again several problems concerning this type are included. The Fin type
present in several proof libraries has been manually recreated, and some prob-
lems about these are in the ROCQ category of Table 2. The collection includes
the five examples from category theory that were originally presented in [17],
slightly reformatted to match the TPTP syntax. To make use of the choice op-
erator [16], several problems about dependent higher-order Skolemization are
included. Choice is also used in a function definition with no fixed point, and
conjectures establishing this are presented in the “no FP” category. Finally, sev-
eral simple tests to evaluate the ability of provers to perform native DHOL
inferences are provided.

Some of the dependent HOL problems are more interesting from a proof
perspective – the deep type checking is there only to make sure the problem is
well-formed. For example, for all the dependent list problems, the type checking
obligations are there mostly to make sure no incorrect calls are being made, but
they are relatively straightforward to discharge. It is the proof that requires more
logical reasoning. Other problems, while relatively straightforward in terms of
proving, are harder to type check. This is because it is possible to use dependent
types to encode important properties and invariants in the type system.

5 Tools

This section discusses the tools capable of processing problems in DHF format.

5.1 The Logic Embedding Tool

The Leo-III [20] prover includes the Logic Embedding Tool, which has been ex-
tended to support polymorphic DHF. The tool implements the erasure presented
in Section 2.2, and incorporates the polymorphic extension. The tool can gen-
erate both the type checking obligations and the translated problem separately.

14 D. Ranalter et al.

Problem Type Problem Category Problem Count
Monomorphic Complete Category theory 5

Choice basic 11
Choice list 3
Choice no fixed point 10
List app assoc 3
List app assoc corollary 1
List app nil 4
List of lists 1
List reversal involution 1
List reversal inv lemma 3
Matrices 5
ROCQ 3

Monomorphic Lemmas Choice no fixed point 10
List app assoc 5
List app assoc corollary 5
List reversal involution 5
List reversal inv lemma 11

Polymorphic Complete List app assoc poly 3
List app nil poly 4
List reversal involution poly 1
Red-black tree 3

Polymorphic Lemmas List app assoc poly 14
List reversal involution poly 13
Red-black tree 9

Table 2. The categories of the DHF problems.

This makes it possible to translate DHF problems into THF problems (that
do not have dependent types). The embedding tool is available as NTFLET in
SystemB4TPTP 6. The embedding tool enables the use of existing higher-order
ATP systems for solving DHF problems, by pipelining the output from NTFLET
to a THF ATP system of the user’s choosing. This has been implemented as the
DT2H2X ATP systems, available in SystemOnTPTP 7.

5.2 DLash

The Lash prover [5] is a partial reimplementation of the tableaux calculus of
Satallax [4], using a central term representation with perfect sharing. This de-
sign facilitated the implementation of the DLash extension of Lash, which han-
dles DHF [11]. In addition to the erasure implementation, DLash can process
monomorphic dependently typed higher-order logic with choice. As with the
Logic Embedding Tool, type checking and proving can be requested separately.
DLash, like Satallax, includes a strategy language used to build so-called modes.
6 tptp.org/cgi-bin/SystemB4TPTP
7 tptp.org/cgi-bin/SystemOnTPTP

https://tptp.org/cgi-bin/SystemB4TPTP
https://tptp.org/cgi-bin/SystemOnTPTP

DHF: The TPTP DHOL Form 15

The current version includes 36 dedicated modes for dependent types, tailored
to specific problem types. DLash is available in SystemOnTPTP 8.

5.3 MMT

MMT [14] is a logical framework designed to formalize and manage large collec-
tions of interconnected formal systems and their libraries, using modular theory
graphs. A particular application of MMT is rapid prototyping [10], and it was
the tool originally used to develop and prototype DHOL. The MMT/DHOL im-
plementation offers reconstruction of omitted types and implicit arguments as
well as parsing against user-defined notations. It can be used to interactively
author and type check DHOL problems and export them in TPTP format. It
uses the PER translation, and calls the Leo-III prover to discharge the resulting
proof obligations. MMT is mostly useful for developing formalizations, rather
than proving TPTP conjectures. Therefore, it does not provide a TPTP im-
port at this point, but provides additional evidence of the well-typedness DHF
problems.

5.4 TPTP Systems

As discussed in Section 2.1, TPTP includes several generic tools capable of pro-
cessing problems and solutions. For DHF problems:

– TPTP4X pretty-prints DHF problems and solutions, and offers various trans-
formations/augmentations of problems.

– BNFParser produces the abstract syntax tree from parsing a DHF problem.
– Leo-III-STC validates the syntax and types of DHF problems.
– ProblemStats outputs various syntactic measures for problems.

All these tools are available in SystemB4TPTP 9. For DHF proofs:

– ProofStats outputs various syntactic measures for DAG-structured proofs.
– IDV provides interactive viewing of proofs from DHF problems.

All these tools are available in SystemOnTSTP 10.

6 Conclusion

This paper has described DHF, the dependently typed higher-order form of
the TPTP language. It responds to the growing interest in dependently typed
automated reasoning as exemplified by the number of TPTP problems and tools
that have cropped up in the short time since DHOL was first described. It can be
8 tptp.org/cgi-bin/SystemOnTPTP
9 tptp.org/cgi-bin/SystemB4TPTP

10 tptp.org/cgi-bin/SystemOnTSTP

https://tptp.org/cgi-bin/SystemOnTPTP
https://tptp.org/cgi-bin/SystemB4TPTP
https://tptp.org/cgi-bin/SystemOnTSTP

16 D. Ranalter et al.

seen as pushing the boundary of automated theorem proving towards language
features that have previously been found only in interactive provers.

DHOL problems sometimes used differing standards, which defeated the uni-
formity advantage that the TPTP language provides. This work unifies them,
and provides over a 100 problems from different domains, benefiting from the
use of dependent types. We hope that the availability of dependent types in the
TPTP will stimulate research into dependently typed automated theorem prov-
ing, by making it easier to exchange and compare results. Extending existing
systems with support for DHF, and improving the performance of the systems
that already exist, will be important next steps. In particular, the extension of
superposition-based theorem proving to dependent types is a tantalizing goal.

Acknowledgements: The authors thank Johannes Niederhauser and Colin
Rothgang for granting access to their DHOL problems that are in the prob-
lem dataset. This work was supported by the ERC PoC grant no. 101156734
“FormalWeb3”.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

2. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-
1 polymorphism. In: Bonacina, M.P. (ed.) Proc. 24th International Conference on
Automated Deduction. LNCS, vol. 7898, pp. 414–420. Springer (2013). https://doi.
org/10.1007/978-3-642-38574-2_29, https://doi.org/10.1007/978-3-642-38574-2_
29

3. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
Proc. 22nd International Conference on Theorem Proving in Higher Order Logics.
LNCS, vol. 5674, pp. 73–78 (2009). https://doi.org/10.1007/978-3-642-03359-9_6

4. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) Proc. 6th International Joint Conference on Auto-
mated Reasoning. LNAI, vol. 7364, pp. 111–117 (2012). https://doi.org/10.1007/
978-3-642-31365-3_11

5. Brown, C.E., Kaliszyk, C.: Lash 1.0 (system description). In: Blanchette, J.,
Kovács, L., Pattinson, D. (eds.) Proc. 11th International Joint Conference on Auto-
mated Reasoning. LNAI, vol. 13385, pp. 350–358 (2022). https://doi.org/10.1007/
978-3-031-10769-6_21

6. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic
5(2), 56–68 (1940). https://doi.org/10.2307/2266170

7. Constable, R., Allen, S., Bromley, H., Cleaveland, W., Cremer, J., Harper, R.,
Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J., Smith, S.: Imple-
menting Mathematics with the Nuprl Development System. Prentice-Hall (1986)

8. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with
rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proc. 5th Work-
shop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceed-
ings, vol. 1635, pp. 41–55. CEUR-WS.org (2016), https://ceur-ws.org/Vol-1635/
paper-05.pdf

https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-031-10769-6_21
https://doi.org/10.1007/978-3-031-10769-6_21
https://doi.org/10.1007/978-3-031-10769-6_21
https://doi.org/10.1007/978-3-031-10769-6_21
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://ceur-ws.org/Vol-1635/paper-05.pdf
https://ceur-ws.org/Vol-1635/paper-05.pdf

DHF: The TPTP DHOL Form 17

9. de Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) Proc. 28th International Conference on Auto-
mated Deduction. LNAI, vol. 12699, pp. 625–635 (2021). https://doi.org/10.1007/
978-3-030-79876-5_37

10. Müller, D., Rabe, F.: Rapid Prototyping Formal Systems in MMT: Case Studies.
In: Miller, D., Scagnetto, I. (eds.) Logical Frameworks and Meta-languages: Theory
and Practice. pp. 40–54 (2019)

11. Niederhauser, J., Brown, C.E., Kaliszyk, C.: Tableaux for automated reasoning in
dependently-typed higher-order logic. In: Benzmüller, C., Heule, M.J.H., Schmidt,
R.A. (eds.) Proc. 24th International Joint Conference on Automated Reasoning.
pp. 86–104. LNAI (2024). https://doi.org/10.1007/978-3-031-63498-7_6

12. Owre, S., Shankar, N.: The formal semantics of PVS. Tech. Rep. SRI-CSL-97-2,
SRI International (1997)

13. Pfenning, F., Schürmann, C.: System description: Twelf – a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) Proc. 16th International Conference
on Automated Deduction. LNAI, vol. 1632, pp. 202–206 (1999). https://doi.org/
10.1007/3-540-48660-7_14

14. Rabe, F.: A Modular Type Reconstruction Algorithm. ACM Transactions on Com-
putational Logic 19(4), 1–43 (2018)

15. Rabe, F.: Model theory for dependently-typed higher-order logic (2024), under
review, see https://kwarc.info/people/frabe/Research/rabe_dholmodels_24.pdf

16. Ranalter, D., Brown, C.E., Kaliszyk, C.: Experiments with choice in dependently-
typed higher-order logic. In: Bjørner, N.S., Heule, M., Voronkov, A. (eds.) Proc.
25th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning. EPiC Series in Computing, vol. 100, pp. 311–320. EasyChair (2024).
https://doi.org/10.29007/2V8H, https://doi.org/10.29007/2v8h

17. Rothgang, C., Rabe, F., Benzmüller, C.: Theorem proving in dependently-typed
higher-order logic. In: Pientka, B., Tinelli, C. (eds.) Proc. 29th International
Conference on Automated Deduction. LNAI, vol. 14132, pp. 438–455 (2023).
https://doi.org/10.1007/978-3-031-38499-8_25

18. Rothgang, C., Rabe, F., Benzmüller, C.: Dependently-typed higher-order logic –
extended preprint (2025). https://doi.org/10.48550/arXiv.2305.15382, under re-
view

19. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: Predicate subtyping
in PVS. IEEE Transactions on Software Engineering 24(9), 709–720 (1998). https:
//doi.org/10.1109/32.713327

20. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III.
Journal of Automated Reasoning 65, 775–807 (2021). https://doi.org/10.1007/
s10817-021-09588-x

21. Steen, A., Fuenmayor, D., Gleißner, T., Sutcliffe, G., Benzmüller, C.: Automated
reasoning in non-classical logics in the TPTP world. In: Konev, B., Schon, C.,
Steen, A. (eds.) Proc. 8th Workshop on Practical Aspects of Automated Reasoning.
CEUR Workshop Proceedings, vol. 3201. CEUR-WS.org (2022), https://ceur-ws.
org/Vol-3201/paper11.pdf

22. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a Cross-Community Infrastructure
for Logic Solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Proceedings
of the 7th International Joint Conference on Automated Reasoning. pp. 367–373.
No. 8562 in Lecture Notes in Artificial Intelligence (2014)

23. Sutcliffe, G.: SystemOnTPTP. In: McAllester, D. (ed.) Proceedings of the 17th In-
ternational Conference on Automated Deduction. pp. 406–410. No. 1831 in Lecture
Notes in Artificial Intelligence, Springer-Verlag (2000)

https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-031-63498-7_6
https://doi.org/10.1007/978-3-031-63498-7_6
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://kwarc.info/people/frabe/Research/rabe_dholmodels_24.pdf
https://doi.org/10.29007/2V8H
https://doi.org/10.29007/2V8H
https://doi.org/10.29007/2v8h
https://doi.org/10.1007/978-3-031-38499-8_25
https://doi.org/10.1007/978-3-031-38499-8_25
https://doi.org/10.48550/arXiv.2305.15382
https://doi.org/10.48550/arXiv.2305.15382
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/32.713327
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1007/s10817-021-09588-x
https://ceur-ws.org/Vol-3201/paper11.pdf
https://ceur-ws.org/Vol-3201/paper11.pdf

18 D. Ranalter et al.

24. Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe,
G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the
LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics. pp. 38–49.
No. 418 in CEUR Workshop Proceedings (2008)

25. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

26. Sutcliffe, G.: The TPTP World - Infrastructure for Automated Reasoning. In:
Clarke, E., Voronkov, A. (eds.) Proceedings of the 16th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning. pp. 1–12. No. 6355
in Lecture Notes in Artificial Intelligence, Springer-Verlag (2010)

27. Sutcliffe, G.: The Logic Languages of the TPTP World. Logic Journal of the IGPL
31(6), 1153–1169 (2023)

28. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N.
(eds.) Proceedings of the 3rd International Joint Conference on Automated Rea-
soning. pp. 67–81. No. 4130 in Lecture Notes in Artificial Intelligence, Springer
(2006)

29. Sutcliffe, G., Suttner, C.: Evaluating General Purpose Automated Theorem Prov-
ing Systems. Artificial Intelligence 131(1-2), 39–54 (2001). https://doi.org/{10.
1016/S0004-3702(01)00113-8}

30. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Magazine 37(2),
99–101 (2016). https://doi.org/10.1609/AIMAG.V37I2.2620, https://doi.org/10.
1609/aimag.v37i2.2620

31. Sutcliffe, G.: Stepping Stones in the TPTP World. In: Benzmüller, C., Heule,
M.J.H., Schmidt, R.A. (eds.) Proc. 24th International Joint Conference on Au-
tomated Reasoning. LNAI, vol. 14739, pp. 30–50 (2024)

32. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using
the TPTP THF infrastructure. Journal of Automated Reasoning 3(1), 1–27
(2010). https://doi.org/10.6092/ISSN.1972-5787/1710, https://doi.org/10.6092/
issn.1972-5787/1710

33. Sutcliffe, G., Kotelnikov, E.: TFX: the TPTP extended typed first-order form.
In: Konev, B., Urban, J., Rümmer, P. (eds.) Proc. 6th Workshop on Practical
Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 2162, pp.
72–87. CEUR-WS.org (2018), https://ceur-ws.org/Vol-2162/paper-07.pdf

34. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N.S., Voronkov, A. (eds.) Proc. 18th In-
ternational Conference on Logic for Programming, Artificial Intelligence and Rea-
soning. LNCS, vol. 7180, pp. 406–419. Springer (2012). https://doi.org/10.1007/
978-3-642-28717-6_32, https://doi.org/10.1007/978-3-642-28717-6_32

35. Sutcliffe, G., Suttner, C.B.: The TPTP problem library - CNF release v1.2.1. Jour-
nal of Automated Reasoning 21(2), 177–203 (1998). https://doi.org/10.1023/A:
1005806324129, https://doi.org/10.1023/A:1005806324129

36. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K.,
Zanella-Béguelin, S.: Dependent types and multi-monadic effects in F⋆. In: Bodik,
R., Majumdar, R. (eds.) Proc. 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 256–270 (2016). https://doi.org/10.
1145/2837614.2837655

37. The Rocq Development Team: The Rocq reference manual – release 9.0.0. https:
//coq.inria.fr/doc/V9.0.0/refman (2024)

https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/{10.1016/S0004-3702(01)00113-8}
https://doi.org/10.1609/AIMAG.V37I2.2620
https://doi.org/10.1609/AIMAG.V37I2.2620
https://doi.org/10.1609/aimag.v37i2.2620
https://doi.org/10.1609/aimag.v37i2.2620
https://doi.org/10.6092/ISSN.1972-5787/1710
https://doi.org/10.6092/ISSN.1972-5787/1710
https://doi.org/10.6092/issn.1972-5787/1710
https://doi.org/10.6092/issn.1972-5787/1710
https://ceur-ws.org/Vol-2162/paper-07.pdf
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1023/A:1005806324129
https://doi.org/10.1023/A:1005806324129
https://doi.org/10.1023/A:1005806324129
https://doi.org/10.1023/A:1005806324129
https://doi.org/10.1023/A:1005806324129
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://coq.inria.fr/doc/V9.0.0/refman
https://coq.inria.fr/doc/V9.0.0/refman

DHF: The TPTP DHOL Form 19

38. Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A.
(ed.) Proceedings of the 9th International Joint Conference on Artificial Intelli-
gence. pp. 26–28. Morgan Kaufmann (1985)

	The Dependently Typed Higher-Order Form for the TPTP World
	Introduction
	Preliminaries
	The TPTP World and Infrastructure
	Dependently Typed Higher-Order Logic

	DHF
	Syntax
	Type Checking
	Semantics

	Problem Dataset
	Tools
	The Logic Embedding Tool
	DLash
	MMT
	TPTP Systems

	Conclusion

