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Abstract. We use automated theorem provers to significantly shorten a
formal development in higher order set theory. The development includes
many standard theorems such as the fundamental theorem of arithmetic
and irrationality of square root of two. Higher order automated theorem
provers are particularly useful here, since the underlying framework of
higher order set theory coincides with the classical extensional higher
order logic of (most) higher order automated theorem provers, so no sig-
nificant translation or encoding is required. Additionally, many subgoals
are first order and so first order automated provers often suffice. We com-
pare the performance of different provers on the subgoals generated from
the development. We also discuss possibilities for proof reconstruction,
i.e., obtaining formal proof terms when an automated theorem prover
claims to have proven the subgoal.

1 Introduction

In this work, we first describe (Section 2) a formal development in higher order
set theory (using the Megalodon system) containing several well-known mathe-
matical theorems, including Conway’s surreal numbers and 12 of the Freek100
theorems. We then use this development (Section 3) to create a large set (and
a benchmark) of higher order problems for automated theorem provers (ATPs),
evaluating multiple state-of-the-art ATPs on the benchmark. When an ATP is
able to solve one of the problems, we are able to replace part of the development
with a call to an ATP. This results in a reduction of the text of the development
to less than a half its original size. We also describe the related hammer-style
proof automation for Megalodon in Emacs, and discuss proof reconstruction
(Section 4).

2 Megalodon and Formalization of 12 Freek100 Theorems

2.1 Megalodon

We start with a formal development in the Megalodon system. Megalodon is a
fork of the Egal system [15] and is based on higher order Tarski-Grothendieck
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set theory. The underlying logical framework is simply-typed intuitionistic higher
order logic (with Curry Howard proof terms). In addition to the built-in type o
of propositions we use one base type ι which should be interpreted as sets. The
remaining types are function types α → β, as usual. Simply typed terms are
constructed via the grammar

c | x | (s t) | (λx.t) | (s ⇒ t) | (∀x.t)

where c ranges over (typed) names (which may be primitives or definitions) and
x ranges over (typed) variables. We assume the usual conventions about simple
type theory (e.g., s t u means ((s t)u) and λxy.t means λx.λy.t) and leave the
reader to consult [15] if necessary. Although we have only included implication
and universal quantification, there are (several) well-known impredicative defini-
tions of other connectives and quantifiers [40,38,10]. Consequently, we will freely
use ⊤, ⊥, ¬, ∧, ∨, ⇔, ∃ and = below without further comment.

There are well-known ways to axiomatize set theory within a simply typed
framework [36,25]. In our case we add a primitive ε as a choice function over ι and
primitives of the set theory: ∈: ι → ι → o, ∅ : ι,

⋃
: ι → ι (unary union operator),

℘ : ι → ι (power set operator), Repl : ι → (ι → ι) → ι (Fraenkel Replacement
operator) and UnivOf : ι → ι. The unary operator UnivOf takes a set X and
returns the least Grothendieck universe with X as a member. A Grothendieck
universe is a transitive set closed under

⋃
, ℘ and Repl. Typically a Grothendieck

universe is also required to have an infinite set, so that it would be a model of
Zermelo Fraenkel. Here we also consider Vω (the set of all hereditarily finite sets)
to be a Grothendieck universe. Applying UnivOf to the empty set yields the set
of hereditarily finite sets. Since Vω is infinite, we do not need an explicit axiom
of infinity. In addition to the primitives, we assume the expected set theoretic
axioms, including set extensionality. We also assume a higher order axiom of
∈-induction from which Regularity can be proven. Finally we assume axioms of
propositional and functional extensionality so that the underlying higher order
logic is extensional. The full set of primitives and axioms can be found in [15],
with the minor change that here we only assume ε at type ι rather than at every
type.

2.2 Initial Formalization of 12 Freek100 Theorems

As one would expect, the development continues by making definitions and prov-
ing theorems. Wiedijk maintains a collection of 100 theorems that have become
standard challenges for ITPs.3 For our purposes we limit the development to
definitions and theorems that are sufficient to prove 12 of these 100 theorems,
mostly removing definitions or lemmas that are not dependencies of at least
one of these 12, or a variant of one of the 12. Listed in order of appearance in
the development, the selected 12 theorems are mathematical induction, Cantor’s
Theorem, Schroeder Bernstein, number of subsets of a (finite) set, infinitude of

3 https://www.cs.ru.nl/~freek/100/

https://www.cs.ru.nl/~freek/100/
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primes, Ramsey’s Theorem, Bezout’s Theorem, the greatest common divisor al-
gorithm, the Fundamental Theorem of Arithmetic, non-denumerability of the
reals, denumerability of the rationals and the irrationality of

√
2. In order to

state these results, the development must include a representation of functions,
natural numbers, integers, rationals and reals.

The first part of the development contains basic logical definitions and theo-
rems. For example, conjunction (∧) is defined as λAB.∀p.(A ⇒ B ⇒ p) ⇒ p and
a theorem andI ∀AB.A ⇒ B ⇒ A ∧ B is proven with the exact tactic and the
proof term λA B a b p H.H a b. Later in the development when a subgoal has a
conclusion of the form A∧B, we can reduce the goal to the obvious two subgoals
(A and B) using the tactic apply andI. This already introduces a minor amount
of automation, as the apply tactic uses matching to extract the A and B from
the subgoal in order to construct the partial proof term andI A B D E where
D and E will be determined by the subsequent subproofs.

The tenth theorem of the entire development (well before any of the 12
Freek100 theorems) is excluded middle xm : ∀p.p ∨ ¬p. The proof follows the
Diaconescu argument [39,34] using ε at ι. Before proving excluded middle, it
does not make sense to use classical ATPs as hammers. For this reason, we only
start considering the use of ATPs after the first 10 theorems of the development.

Throughout the development basic infrastructure is included (e.g., ordinals,
ordered pairs and functions as sets) as needed, largely following [10], though the
setting there was intuitionistic. As usual, the finite ordinals are used to repre-
sent natural numbers and provide the material to state and prove mathematical
induction, both in its usual form and in the form of complete induction. The
ordinal ω is defined to be the set of natural numbers, and we define a set to be
finite if it is equipotent to a member of ω. This basic material is enough to state
and prove five more of the 12 theorems. The development up to the proofs of
these first 6 theorems consists of 6649 lines with 59 definitions and 314 theorems
(including the 6).

2.3 Conway’s surreal numbers

The remaining 6 of the 12 require either integers, rationals or real numbers. We
construct these numbers (and more) using a specific set-theoretic representation
of Conway’s surreal numbers [18]. Surreal numbers have also been formalized
in Mizar [35] using representations closer to Conway’s description. Here we use
a different representation, for reasons that will become clear. A surreal number
can be uniquely represented by an ordinal length branch on an arbitrarily large
binary tree. That is, each surreal number can be represented by an ordinal α
and a function f : α → {0, 1} where f(β) = 0 indicates the left option at
stage β ∈ α and f(β) = 1 indicates the right option at stage β ∈ α. Instead of
representing surreal numbers in precisely this way, we represent them using a set
that remembers the ordinal α and which ordinals β ∈ α would take the left option
and which would take the right option. To represent the left option at stage β, we
define the set β′ to be β∪{{1}}. It is easy to see that β′ is never an ordinal (since
the set {1} is not transitive). It is also to see that if β′ = γ′ for ordinals β and γ,
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then β = γ. We now represent the surreal number given by α and f : α → {0, 1}
by the set {β ∈ α|f(β) = 1}∪{β′|β ∈ α, f(β) = 0}. It is easy to see that α and f
can be recovered from this set. It is also easy to see that the surreal number given
by α and f : α → {0, 1} with f(β) = 1 for all β ∈ α is represented simply by the
set α. That is, ordinals are already surreal numbers using this representation,
and correspond to the branch of length α that chooses the right option at each
step. Other examples of surreal numbers are −2 represented by {0′, 1′} and 1

2
represented by {0, 1′}. One can define recursion operators on surreal numbers and
use these to define the basic operations as described in [18] essentially proving
the surreal numbers form an ordered field (with a proper class as its carrier). The
development up to this point consists of 27316 lines with 116 definitions and 759
theorems, so that the primary surreal number part of the development consists of
20668 lines with 57 definitions and 445 theorems (almost half the development).
In the next 2544 lines (with 6 new definitions and 57 new theorems), the set Z

of integers can easily be defined (carved from the surreal number field) allowing
us to state and prove Bezout’s Theorem, the greatest common divisor algorithm
and the Fundamental Theorem of Arithmetic. The next 11211 lines (with 11 new
definitions and 137 new theorems) define the set R of real numbers (carved out of
the surreals), proven to have the expected properties including uncountability.
With 730 more lines, 2 new definitions and 8 new theorems, we can define the
set Q of rational numbers as a subset of R and prove Q is countable. Note that by
construction we have ω ⊆ Z ⊆ Q ⊆ R, which was our motivation for the specific
representation of surreal numbers as sets.

The only remaining theorem of the 12 is irrationality of
√
2. Conway describes

how to recursively define the square root operation on nonnegative surreal num-
bers. We make this definition and prove the square root of nonnegative reals are
nonnegative reals. The development ends with the proof that

√
2 is irrational,

i.e.,
√
2 ∈ R \ Q. This part of the development used 3203 more lines with 4 new

definitions and 38 new theorems.
In total the development contains 139 definitions and 999 theorems. The

development is given as a single file with 45004 lines and 346152 characters, and
the proofs are given in significant detail, with little automation.

3 Development using ATPs

3.1 Automation Tactic

We have extended Megalodon to allow the option of using the tactic aby (“auto-
mated by”) with a list of dependencies to justify a subgoal.4 Megalodon can check
the file and produce problem files for ATPs. Since the underlying framework is
simply typed higher order logic, we can directly translate the given dependencies
and current subgoal into the TH0 TPTP format [3], a common format for higher
order ATPs. Hence every use of the aby tactic will result in one TH0 problem
4 Megalodon with the data/code discussed here is available at https://github.com/
MgUser36/megalodon.

https://github.com/MgUser36/megalodon
https://github.com/MgUser36/megalodon
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file. In addition, if the conclusion and the dependencies are in the first order
fragment of higher order logic, we can translate the problem to the FOF TPTP
format and call first order theorem provers. Note that we do not attempt to
encode higher order logic into first order [7,37,28,29]. The use of the aby tactic
is justified if either a higher order ATP can prove the TH0 file, or if a first order
ATP can prove the FOF file.

3.2 Experiments

In order to identify subproofs that could be replaced by calls to ATPs, we used
Megalodon to generate TH0 problem files for most tactic calls, determining the
dependencies when the subproof is completed. Each problem corresponds to
a sequence of text (from before the tactic is called to where the subproof is
completed) that can be replaced if the problem file can be proven by an ATP.
This resulted in 41738 higher order problem files.5 With a 60 second timeout,
we ran Vampire [4] (with two different portfolios), Zipperposition [2], E [43],
Lash [12] and cvc5 [1]. The results are shown in Table 1. In total, 34172 (82%)
of the 41738 subgoals could be replaced by ATP calls. Megalodon additionally
produced 29880 first order problem files when the subgoal had a first order proof.
We ran Vampire for 5 seconds on each of these problems and 60 seconds on a
selection of the problems, resulting in 11179 subproofs that could be replaced
by ATP calls, although only 11 of these subproofs were not already identified by
the higher order problems.

Vampire Vampire Zipperposition E Lash cvc5
(sledgehammer) (ho)

32675 32474 31310 23866 14987 13238
78.3% 77.8% 75% 57.2% 35.9% 31.7%

Table 1. Higher order ATPs on premise-selected subgoals

Some ATP calls may result in replacing a larger part of text than others.
For example, a subproof in the original development contained a line with three
tactics:

apply In_irref delta. rewrite H2 at 2. exact Ldsa.

This line resulted in three problem files, corresponding to whether the exact

could be replaced, the rewrite and the exact could be replaced, and whether
all three could be replaced. In this case, all three could be replaced. That is, one
5 The resulting large HO-TP benchmark is at https://github.com/MgUser36/
MegalodonATPBenchmark.

https://github.com/MgUser36/MegalodonATPBenchmark
https://github.com/MgUser36/MegalodonATPBenchmark
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problem solved by an ATP would allow us to replace the exact tactic by an aby

call. A second problem solved by an ATP would allow us to replace both the
rewrite and the exact tactic in the line above with an aby call. A third problem
solved by an ATP would allow us to replace all three tactics on the line by an
aby call. Obviously replacing all three tactics supersedes replacing either the last
two or the last one alone, so it makes sense to find the ATP problems that allow
us to replace as much text as possible. After filtering for the problems that allow
the maximum amount of text to be replaced, the first two ATP problems above
(corresponding to replacing exact alone or only replacing rewrite and exact)
would be filtered out, in favor of only including the third ATP problem allowing
the replacement of all three tactics.

Once we restrict to the problems that allow the largest texts to be replaced
(along with some manual modifications), we were left with 3401 calls to an
ATP and a development with 17435 lines and 159363 characters. This is roughly
46% the original size of the development.6 The majority of the proofs in the
development (765 of the 989 proofs considered for replacement) could be replaced
simply by a single aby call. The remaining 224 proofs contained 2636 ATP calls
in subproofs, with approximately 12 ATP calls per proof.

In order to justify the 3401 ATP calls, Megalodon produced 3401 TH0 prob-
lem files and 1618 FOF problem files. Table 2 shows the results of higher order
ATPs on these files. We also called a recent first order version of Vampire was
called on the FOF problems, with it solving 1322 (81.7%) of the 1618 first order
problems. Each call was with a 60s timeout.

Vampire Vampire Zipperposition E Lash
(sledgehammer) (ho)
3223 (94.8%) 3165 (93.1%) 2801 (82.4%) 2403 (70.7%) 1567 (46.1%)

Table 2. Higher order ATPs on the 3401 ATP problems

3.3 Examples

We consider a few examples to give an idea of what kinds of proofs can be
replaced by calls to an ATP.7

Example 1 The largest text replaced by a call to an ATP (in this case, Lash) is
the proof of the following theorem PNoLt_tra8:

6 Note that we do not include the ATP output as part of the size of the new text.
7 Successful ATP outputs with TPTP proofs for these examples can be found at
http://grid01.ciirc.cvut.cz/~chad/atppfs2025.

8 https://mgwiki.github.io/mgw_test/Part2.mg.html#PNoLt_tra

http://grid01.ciirc.cvut.cz/~chad/atppfs2025
https://mgwiki.github.io/mgw_test/Part2.mg.html#PNoLt_tra
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Theorem PNoLt_tra : forall alpha beta gamma,
ordinal alpha → ordinal beta → ordinal gamma →
forall p q r:set → prop,
PNoLt alpha p beta q → PNoLt beta q gamma r
→ PNoLt alpha p gamma r.

This is essentially the proof of transitivity of the (strict) ordering on surreal
numbers. At the point in the development where this theorem is stated and
proven, surreal numbers are not yet defined. However, the ordinal α with the
predicate p : ι → o determines a surreal number where p indicates for which
α′ ∈ α the right option is taken. Likewise, β with q determines a surreal number
and γ with r determines a surreal number. The definition of PNoLt α p β q
corresponds to when the surreal number determined by α and p is less than the
surreal number determined by β and q. This can happen in three ways:

1. α = β and there is some δ ∈ α such that p and q agree up to δ, ¬p δ and q δ.
That is, the two surreal numbers use the same left and right options until δ
at which point p chooses the left option and q chooses the right option.

2. α ∈ β, p and q agree up to α and q α. That is, the surreal number given by
β and q is an extension of the sequence given by α and p, where the first
new option (at step α) is the right option.

3. β ∈ α, p and q agree up to β and ¬p β. That is, the surreal number given
by α and p is an extension of the sequence given by β and q, where the first
new option (at step β) is the left option.

To give concrete examples, suppose α = 1 and p 0 holds. Then α and p correspond
to the surreal number 1, since the sequence is of length 1 and chooses the right
option at step 0. Suppose β = 2 and both q 0 and q 1 hold. Then β and q
correspond to the surreal number 2. In this case PNoLt α p β q holds since
α ∈ β, p and q agree up to 1 (i.e., p 0 ⇔ q 0) and q 1 holds. On the other hand,
if β = 2, q 0 and ¬q 1 (corresponding to the surreal number 1

2 ) then we have
PNoLt β q α p holds since α ∈ β, p and q agree up to 1 and ¬q 1 holds. Finally,
suppose α = 2, p 0, ¬p 1, β = 2, q 0 and q 1, then PNoLt α p β q holds since
α = β, p and q agree up to 1, ¬p 1 and q 1.

The manual proof of transitivity of PNoLt proceeds as follows. Suppose α,
β and γ are ordinals and p, q, r : ι → o are such that PNoLt α p β q and
PNoLt β q γ r hold. We need to prove PNoLt α p γ r holds. We split into the
three cases based on why PNoLt α p β q holds. In each of the three cases we split
into three subcases based on why PNoLt β q γ r holds. The full manual proof
uses 311 lines. Of these 311 lines, the first 5 are simply introducing the variables
and hypotheses. Roughly 61 lines correspond to splitting into the 3 cases and
the 9 subcases, introducing the relevant variables and hypotheses for each case
and subcase. On average completing the proof in each of the 9 subcases requires
about 27 lines. When using the hammer, the full proof is reduced to the following
single use of aby:
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aby and3I binintersectI binintersectE ordinal_Hered
ordinal_trichotomy_or PNoEq_tra_ PNoEq_antimon_ PNoLtI1
PNoLtI2 PNoLtI3 PNoLtE.

While the automated proof is much shorter, a reader examining the proof may
have trouble determining that the proof involves splitting into 3 cases and 9
subcases. The only hint is that the call to aby references PNoLtE, which is a
theorem that can be applied when we know PNoLt α p β q to split the current
goal into three cases.

Example 2 The second largest text replaced in a proof is at the end of the proof
of the following theorem PNo_rel_split_imv_imp_strict_imv9:

Theorem PNo_rel_split_imv_imp_strict_imv :
forall L R:set → (set → prop) → prop,
forall alpha, ordinal alpha → forall p:set → prop,

PNo_rel_strict_split_imv L R alpha p
→ PNo_strict_imv L R alpha p.

Again, this theorem is about surreal numbers before committing to the particular
set theoretic representation of surreal numbers. Here L and R of type ι →
(ι → o) → o can be thought of as sets of surreal numbers (given as β and
q : ι → o). The conclusion PNo_strict_imv L R α p means that the surreal
number given by α and p is an intermediate value between L and R. That
is, PNoLt β q α p whenever L β q and PNoLt α p β q whenever R β q. The
hypothesis PNo_rel_strict_split_imv L R α p is a similar property about
the two extensions of α and p of length α+.

The manual proof of this theorem was 240 lines. The proof using aby is 27
lines. No ATP was able to prove the theorem completely. (If an ATP had proven
the full theorem, we could replace the full proof by one call to aby.) The proof
using aby starts the same way as the manual proof, assuming we have L, R, an
ordinal α and some p : ι → o satisfying PNo_rel_strict_split_imv L R α p.
ATPs can automatically prove α+ (the successor of α) is also an ordinal, so this
subproof is replaced by aby. As part of the beginning of the proof we define p0 to
be the predicate that holds for δ if p δ∧δ ̸= α and we define p1 to be the predicate
that holds for δ if p δ∨ δ = α. ATPs can automatically prove ¬p0 α and p1 α, so
these two subproofs are replaced by aby. ATPs can also prove PNoLt α+ p0 α p
and PNoLt α p α+ p1, so these two subproofs are replaced by aby. At this point
we need to prove the conclusion PNo_strict_imv L R α p. The rest of the
manual proof requires 200 lines. ATPs can finish the rest of the proof and so
these 200 lines are replaced by a final call to aby. In the manual proof, the first
of the remaining 200 lines explicitly expands the definition of PNo_strict_imv

and reduces the conclusion to proving α and p are greater than everything in L

9 https://mgwiki.github.io/mgw_test/Part2.mg.html#PNo_rel_split_imv_imp_
strict_imv

https://mgwiki.github.io/mgw_test/Part2.mg.html#PNo_rel_split_imv_imp_strict_imv
https://mgwiki.github.io/mgw_test/Part2.mg.html#PNo_rel_split_imv_imp_strict_imv
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and to proving α and p are less than everything in R. Meanwhile, when these last
200 lines are replaced by an aby call, there is no clear indication that the reader
should expand the definition of PNo_strict_imv and check the two conjuncts.
This is another example where replacing subproofs by aby may make the proof
less readable by making it less explicit.

Example 3 In many cases, replacing details of a proof may make it easier to read
a proof. Consider the following theorem exp_SNo_nat_mul_add10:

Theorem exp_SNo_nat_mul_add : forall x, SNo x →
forall m, nat_p m → forall n, nat_p n →

x ^ m * x ^ n = x ^ (m + n).

Here xn is the operation raising a surreal number x to the nth power (for a
natural number n). The goal is to prove xm·xn = xm+n, where multiplication and
addition are over surreal numbers (which agree with multiplication and addition
on natural numbers). The manual proof fixes x and m and proves that m is a
surreal number (since it is natural). We then apply natural number induction,
reducing the problem to proving the case for n = 0 and the inductive case. At this
point in the manual proof a series of explicit (though obvious) arithmetical steps
are required – including steps to change between addition on natural numbers
and addition on surreal numbers. Meanwhile, ATPs can complete the proofs for
the base case and inductive case, resulting in the following shorter proof:

let x. assume Hx. let m. assume Hm.
claim Lm: SNo m.
{ aby nat_p_SNo Hm. }
apply nat_ind.
- aby add_SNo_0R mul_SNo_oneR exp_SNo_nat_0 SNo_exp_SNo_nat

Lm Hm Hx.
- aby add_nat_SR add_nat_p nat_p_omega omega_ordsucc

add_nat_add_SNo mul_SNo_com mul_SNo_assoc exp_SNo_nat_S
SNo_exp_SNo_nat Hm Hx.

Qed.

The original manual proof is longer (29 lines instead of 6 lines) and all the extra
details are simply distracting. Omitting these steps arguably makes the proof
easier to read.

3.4 Use in Emacs and a Full Hammer

We have also implemented a simple Emacs mode11 for Megalodon and a com-
mand in it (aby.) which implements the “hammer” behavior, similar to the
Sledgehammer command in Isabelle/JEdit. The command calls Megalodon to

10 https://mgwiki.github.io/mgw_test/Part6.mg.html#exp_SNo_nat_mul_add
11 https://github.com/MgUser36/megalodon/blob/main/mg-advice.el

https://mgwiki.github.io/mgw_test/Part6.mg.html#exp_SNo_nat_mul_add
https://github.com/MgUser36/megalodon/blob/main/mg-advice.el
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Fig. 1. Original Megalodon Proof.

create a TH0 file which includes the whole previous development. Then it calls
Vampire with a schedule constructed for the Sledgehammer division of the CASC
competition.12 If successful, the names of the used axioms are translated back
to the Megalodon syntax and the aby call using them is automatically inserted
into the current buffer. The operation is shown in Figures 1, 2, and 3.

12 The schedule was constructed according to https://tptp.org/CASC/J11/
SystemDescriptions.html#SnakeForV4.7---1.0

https://tptp.org/CASC/J11/SystemDescriptions.html#SnakeForV4.7---1.0
https://tptp.org/CASC/J11/SystemDescriptions.html#SnakeForV4.7---1.0
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Fig. 2. Aby call invoked inside the proof.

To test this “full hammer” performance, we generated corresponding ATP
problems each time a tactic was used in the original development. This resulted
in 51243 TH0 problems.13 Note that this is larger than the 41738 premise se-
lected problem files. This difference arises from several factors, which we do not
discuss in detail here. We called Vampire with the two portfolios for 60s. With
the sledgehammer schedule, Vampire proved 29256 problems (57.1%). With the
default higher-order (ho) schedule, Vampire proved 28811 problems (56.2%). The
union of the two sets was 30473 problems (59.5%).

4 Proof Reconstruction

With the original development, complete proof terms are constructed by Mega-
lodon from the given proof scripts. Once ATPs are used, Megalodon is essentially
13 Also in our benchmark: https://github.com/MgUser36/MegalodonATPBenchmark/

tree/main/chainy.

https://github.com/MgUser36/MegalodonATPBenchmark/tree/main/chainy
https://github.com/MgUser36/MegalodonATPBenchmark/tree/main/chainy
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Fig. 3. Successful aby call with the axiom names inserted.

behaving like the Naproche system [19]. That is, when an ATP completes the
proof of a subgoal, we trust that there is, indeed, a proof. Ultimately it would
be more satisfying to do proof reconstruction so that we still obtain complete
proof terms even when some subgoals are completed by ATPs.

A common technique [33] is to use an ATP to prune the dependencies and
then use an internal search procedure (like Metis [28] for Isabelle) to create the
appropriate ITP proof. Megalodon currently has no significant internal search
procedure that could be used for this purpose. A more optimal state of affairs
would be if ATPs returned sufficiently detailed proof objects that could be inde-
pendently checked. Prover9 [32] is a rare example of an ATP that has provided
explicit proof objects for decades, though it is limited to clausal proofs. This is
used for proof reconstruction e.g. in the Metamath hammer [17].

4.1 Using Vampire with the Deducti Output

Due to recent work on Vampire [31] one can request proof output (for first order
problems) that can be checked by Dedukti [22], with some limitations noted
below.
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We consider a very simple example. Suppose we are in a proof where we
have a set α and a local assumption Ha that α is an ordinal (i.e., the propo-
sition ordinal α). We have a local subgoal to prove α+ is an ordinal (i.e.,
ordinal (ordsucc α)). The relevant previous theorem is ordinal_ordsucc:
∀α.ordinal α ⇒ ordinal (ordsucc α). This is a first order subgoal and Vam-
pire can easily prove it. The simplest Megalodon proof term for this subgoal
would be ordinal_ordsucc α Ha. In Megalodon this part of the proof14 looks
as follows:

claim Lsa: ordinal (ordsucc alpha).
{ exact ordinal_ordsucc alpha Ha. }

Replacing the subproof with a call to an ATP simply changes the proof to15

claim Lsa: ordinal (ordsucc alpha).
{ aby ordinal_ordsucc Ha. }

We examine parts of the Dedukti output of Vampire. The previous theorem
ordinal_ordsucc is given as an axiom (with some changes to the name for
TPTP compliance) and this is reflected in the following declared axiom in the
Dedukti output:

{|axiom_ordinal_5Fordsucc9|}:
Prf (forall iota

(0 : El iota =>
(imp ({|ordinal|} 0)

({|ordinal|} ({|ordsucc|} 0))))).

Likewise the local assumption that α is an ordinal is reflected in the following
declared axiom:

{|axiom_c_Ha16|}: Prf ({|ordinal|} {|alpha|}).

The negated conclusion is also given as a declared axiom:

{|axiom_18|}: Prf (not ({|ordinal|} ({|ordsucc|} {|alpha|}))).

In principle the rest of the proof should be given as a sequence of Dedukti
definitions, but in practice some of the steps to produce clausal form are left
unjustified at the moment. If we skip forward past the unjustified steps (which
are minor in this case), we can start from three Dedukti items with types corre-
sponding to the three assumptions above, but in clausal form. The two resolution
14 https://github.com/MgUser36/megalodon/blob/main/examples/form100/

100thms_12.mg#L9964
15 https://github.com/MgUser36/megalodon/blob/main/examples/hammer/

100thms_12_h.mg#L3681

https://github.com/MgUser36/megalodon/blob/main/examples/form100/100thms_12.mg#L9964
https://github.com/MgUser36/megalodon/blob/main/examples/form100/100thms_12.mg#L9964
https://github.com/MgUser36/megalodon/blob/main/examples/hammer/100thms_12_h.mg#L3681
https://github.com/MgUser36/megalodon/blob/main/examples/hammer/100thms_12_h.mg#L3681
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steps corresponds to two Dedukti definitions. In principle the Dedukti represen-
tation could be translated into Megalodon as follows: One begins the subproof
by applying double negation, so that one may assume the negated conclusion
and reduce to proving false. Then each Dedukti definition would correspond to
a subgoal with a proof term translated from its definition. The last Dedukti
definition should give a proof of false (corresponding to the empty clause in the
resolution proof).

This translation is left as future work here. Another general idea for dis-
tributing ITP proofs – which includes proof reconstruction – is outsourcing to
the (Megalodon-related) Proofgold network [13], which newly includes also the
basis for a lightning network [14].

5 Related Work

ITP/ATP hammers and their various components have been developed and suc-
cessfully used for over two decades [26,21,27,41,42,33,37,6,5,30,24,8,20,17], in
systems such as Isabelle, HOL, Mizar, HOL Light, Coq, and Metamath. A com-
prehensive overview of the topic is given in [9]. Similarly, a number of large
problem sets and benchmarks for higher-order ATPs have been extracted from
various ITP libraries in the recent years [16,11,23].

6 Conclusion and Future Work

We have shown that calls to ATPs can be used to replace over half the content
of formal proofs in a mathematical development in higher order set theory. The
original development (without automation) can be used to generate tens of thou-
sands of higher order ATP problems and this benchmark can be used to judge
the performance of modern higher order ATPs, currently showing Vampire as
the clear leader. After replacing as much text as possible with calls to ATPs, we
obtain 3401 higher order ATP problems that are, in some sense, at the frontier
of what current higher order ATPs can solve.

We have also discussed options for proof reconstruction, such as the emerg-
ing Deducti proof format newly implemented in Vampire, and Megalodon’s con-
nection to the Proofgold blockchain, which targets decentralized and distributed
proof development. Another interesting avenue would be the use of SMT solvers,
specifically when the subgoal is about integers or real numbers. Of course, SMT
solvers should only be called once integers (or reals) are defined (along with the
corresponding operations) and the basic properties have been proven.
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