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Abstract. Proofgold is a blockchain that supports formalized mathe-
matics alongside standard cryptocurrency functionality. It incorporates
logical constructs into the blockchain, including declarations of formal
theories, definitions, propositions and proofs. It also supports placing
and collecting bounties on proving these propositions, incentivizing the
development of the formal libraries contained in Proofgold. In this paper,
we present a web-based blockchain explorer for Proofgold. The system
exposes not only the usual transactional data but also the formal mathe-
matical components embedded in the chain and allows some interaction
with them. The explorer allows users to inspect blocks, transactions,
and addresses, as well as formal objects: theories, definitions, theorems
and their proofs. We also support the submission of transactions to the
blockchain using our interface. We describe the system architecture and
its integration with the Proofgold Lava software, highlighting how the
explorer supports navigation of formal content and facilitates mathe-
matical knowledge management in a decentralized setting, as well as a
number of formalizations in category theory done in the system.

1 Introduction
Formalized mathematics has seen remarkable progress in recent years, with large-
scale developments such as the formal proof of the Feit-Thompson theorem in
Coq [16] and the proof of the Kepler conjecture in HOL Light and Isabelle [17],
the formalization of perfectoid spaces in Lean [10], and the formalization of su-
perposition calculus in Isabelle’s Archive of Formal Proofs [13]. Despite these
advances, most formalization efforts are still coordinated through centralized
repositories, and the ecosystem lacks well-established mechanisms for incentiviz-
ing contributions. Blockchain technology offers a promising avenue to address
both of these challenges by providing a decentralized infrastructure for stor-
ing and verifying formal content, as well as built-in mechanisms for transparent
incentives and attribution. By combining blockchains with formalized mathe-
matics, we can create systems in which formal theories, definitions, propositions
and their associated metadata are permanently recorded in a ledger. This en-
ables provenance tracking, ensures tamper resistance and facilitates collaborative
contributions across a global network without reliance on a central authority.
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Proofgold [8] builds upon this idea of integrating formal mathematics with a
decentralized system by providing a blockchain that supports the storage, ver-
ification and incentivization of formal math contributions. By including formal
theories, definitions, theorems and proofs directly into the blockchain, Proofgold
ensures that this mathematical knowledge is publicly accessible and verifiable.
By integrating a bounty system, where users can place rewards for the veri-
fication (or refutation) of specific conjectures, it also encourages development.
Despite these advantages, Proofgold is currently a command-line interface-only
system, lacking a user interface, which limits its accessibility to experts who are
familiar with the CLI and reduces its appeal to a broader audience.
Contributions In this paper, we present the Web-based blockchain explorer for
Proofgold, built by extending the Proofgold Lava client [8]. This extension adds
various functionalities for querying the blockchain, and includes the implemen-
tation of server-side code to facilitate interactions with the client. In particular:

– We describe the system architecture, outlining how the web-based explorer
interfaces with the Proofgold blockchain (Section 3);

– We demonstrate how formal mathematical objects – such as theorems, defi-
nitions and proofs – are rendered within the explorer, and explain how users
can interact with these objects (Section 4);

– As a case study, we present a number of conjectures in category theory along
with their proofs or refutations presented in Proofgold (Section 5).

2 Proofgold and Formal Mathematics on the Blockchain

This section briefly introduces Proofgold; for a more complete description, see
[8]. Proofgold is a cryptocurrency designed to support formal logic and mathe-
matics. The core of Proofgold is a proof checker for intuitionistic higher-order
logic with functional extensionality. We only give an introduction to the higher-
order Tarski Grothendieck set theory (HOTG) defined in Proofgold in Section 5.
Users can publish theories, which consist of primitive constants, their types, and
axioms. Each theory is uniquely identified by a 256-bit identifier derived from
its recursive hash (Merkle root). Documents defining new objects, proving the-
orems, and stating conjectures can be published within a theory. Ownership of
propositions is determined by public keys, enabling the redemption of bounties
by proving conjectures. Proofgold combines proof-of-stake and proof-of-burn,
with the proof-of-burn element involving burning small amounts of Litecoin.
This combination enhances security by reusing Litecoin’s proof-of-work. The first
5000 Proofgold blocks automatically placed bounties on pseudorandom proposi-
tions [8], allowing new participants to increase their stake by proving theorems.

Proofgold has seen significant activity in terms of theories, documents, and
formalizations. The platform includes a built-in theory of hereditarily finite sets
(HF), which was used to generate pseudorandom bounties for the first 5000
blocks. Additionally, two theories axiomatizing HOTG have been published [9],
one corresponding to Mizar [4] and one corresponding to Megalodon, along with
a theory for reasoning about syntax using higher-order abstract syntax (HOAS).
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Fig. 1. High-level architecture of the explorer

These theories have facilitated the formalization of various mathematical con-
cepts and the construction of significant mathematical objects, such as the real
numbers via Conway’s surreal numbers. In particular, the Megalodon proofs of
12 of Wiedijk’s 100 theorems [24] are included in Proofgold. Furthermore, the
platform has enabled the publication of conjectures and the collection of boun-
ties, with 2836 of the 13142 bounties resolved as of April 2025.

The Proofgold Lava Client, co-developed by the authors, addresses the scal-
ability issues of the original Proofgold Core software. It features an improved
database layer using the Unix DBM interface, a more efficient cryptography
layer, and enhancements to the networking and proof-checking layers. The client
is a command line interface that unfortunately requires somewhat complicated
installation (it relies on a litecoin running in RPC mode, and particular ver-
sions of the database). Additionally, it supports 210 commands, which may be
somewhat overwhelming for users.

3 System Architecture
The design of the Proofgold Explorer focuses on providing accessible and in-
teractive access to both blockchain data and formal mathematical content. In
particular, we aim to offer: an intuitive web interface that lowers the entry bar-
rier; structured access to formal and transactional data; and integration with
the existing Proofgold infrastructure. To achieve these goals, we propose the
architecture consisting of three main components (Fig. 1):

1. A modified Proofgold Lava client, running in a new explorer mode that
would cache and prepare additional information;

2. A server-side backend written in PHP;
3. An RPC communication layer connecting the backend with both the explorer

node and the underlying Litecoin node.

In explorer mode, the Lava client computes and caches additional informa-
tion about the formal content embedded in the blockchain. This includes the
possibility of looking up definitions, propositions, theories, proofs and boun-
ties. In principle, this information is already stored in the blockchain, but it
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Fig. 2. Explorer Main Page

requires traversing the whole history. The added information is stored in 34
OCaml hashtables that add approximately 10 Gigabytes in memory and that
are periodically (every hour) refreshed. These structures allow efficient access to:
information about individual formal entities, including their types, statements,
and owners; the history and status of bounties and their collection; dependencies
between formal objects and their evolution over time; ownership and authorship
tracking for mathematical content. It serves this structured information through
a custom RPC interface that returns it in a machine-readable format for use by
the frontend.

The web backend is implemented in PHP and is responsible for serving user-
facing pages that visualize both standard blockchain data (blocks, transactions,
addresses, bounties) and formal mathematical constructs (theorems, definitions,
proofs, theories, conjectures). The backend queries the explorer node in real time
and formats the data into interactive HTML views. It also enables lightweight
interaction with the blockchain, such as submitting transactions. These compo-
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nents are designed to be kept in sync with the live blockchain state and support
both incremental updates and history queries.
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Fig. 3. Chain Graph

The explorer is also connected to the
Megalodon Wiki (mgwiki)3 which is
a collaborative git-based platform for for-
mal math that enables users to edit and
verify Megalodon files directly in the
browser. The mgwiki workflow involves
cloning or forking the repository, modi-
fying or adding .mg files, and commit-
ting changes, which triggers automated
proof checking and HTML generation via
GitHub Actions. Errors, if any, are re-
ported in the GitHub action logs, and
successful edits are published as brows-
able HTML. A unique feature of mgwiki
is its integration with Proofgold: when a
valid Megalodon file is added, it is au-
tomatically converted into a .pfg doc-
ument that can be submitted to Proof-
gold. This allows users to associate for-
malized conjectures with bounties and
track their progress through the explorer.
Mgwiki thus serves also as a gateway
for contributing conjectures and proofs to
the Proofgold-based decentralized proof
bounty system.

4 Explorer Functionality
The Proofgold Explorer provides a struc-
tured and interactive interface to both
blockchain and formal mathematical data.
The main dashboard (Figure 2), avail-
able online4 aggregates statistics about
the blockchain such as block height, ad-
dress count, transaction volume and coin
circulation. An important feature is a link
to the overview of the current graph of
the blockchain. This is normally a single
chain with branches in the case of com-
peting chain tips. We show an example from a time when there were multiple
competing nodes (Figure 3). Particular nodes in the chain are marked in spe-
cial colors: nodes that define theories, include proof objects, place bounties on
3 https://github.com/mgwiki/mgw_test, https://mgwiki.github.io/mgw_test/
4 https://formalweb3.uibk.ac.at/pgbce/, http://proofgold.net/explorer/

https://github.com/mgwiki/mgw_test
https://mgwiki.github.io/mgw_test/
https://formalweb3.uibk.ac.at/pgbce/
http://proofgold.net/explorer/
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Fig. 4. Highest open and collected bounties
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Fig. 5. Open and collected bounty categories

propositions, or just include transactions are colored in green, blue, and pink.
Additionally, as the blockchain attempts to be resilient to attacks, the graph also
marks missing nodes and invalid nodes (spending non-existing assets, but also
invalid proof steps) in yellow and red respectively.

The explorer also visualizes the open and collected bounties, with a more de-
tailed view of the highest open and collected bounties, as well as a categorization
of bounties presented in Figures 4 and 5. This allows users to inspect the most
valuable open conjectures and focus their proof efforts on them, as well as to see
what are the domains of the conejctures users are working on. The individual
bounties can be viewed either in the Proofgold format, if their representation
is given in a theory document, or in case if they are only given in the opaque
formal, they are linked to the Megalodon Wiki. We show this in the example
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Fig. 6. Fermat as a bounty in the Proofgold explorer and its corresponding statement
in the Megalodon Wiki

Fig. 7. Explorer view of a block

of Fermat’s last theorem, as of April 2025 it is the conjecture with the highest
bounty in Proofgold (Figure 6).

The explorer allows viewing blocks (Figure 7) and transactions in them.
This is useful, because unlike in other blockchains, Proofgold transactions are
not always purely value-based. They can also introduce proof documents. We
show an example of such a transaction in Figure 8: The transaction takes a
small amount of proofgold along with a marker (used to safely claim ownership
of proved objects [8]) and sends them to the address of a proof document. The
newly defined objects, shown in the figure, and theorems proved in this document
are now owned by the publisher of the document.
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Fig. 8. Explorer view of a transaction. Clicking “. . . ” allows inspecting the proof.

The explorer also allows viewing the list of all theories and viewing individual
ones. We show the theory defining document for the Tarski Groethendieck theory
in Fig. 9. The axioms directly corresponding to the foundations of Megalodon
as known from [9].

4.1 Transaction Submission Interface

Blockchain explorers typically include transaction submission interfaces to allow
users to directly broadcast transactions to the network without needing a full
node or wallet software. This is useful for users who have already constructed
and signed a transaction (usually offline) and simply need to submit it to the
blockchain for confirmation. We also include such an interface in the explorer.

5 Use Case and Examples

Some of the examples of conjectures with bounties – many of which have already
been proven or disproven – assert the existence of a left adjoint to a forgetful
functor. Such left adjoints, when they exist, often correspond to freely generated
structures. More generally, the interest in such adjoints can be justified by Slogan
IV of [19]: “Many important concepts in mathematics arise as adjoints, right
or left, to previously known functors.” We begin with an informal description,
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Fig. 9. The higher-order Tarski Groethendieck theory in the explorer

leaving details to [19]. Suppose C and D are categories and F : C → D and U :
D → C are functors. F is left adjoint to U if there exist natural transformations
η : 1C → UF and ε : FU → 1D satisfying certain identities. In each conjecture
below, C will be the category of sets, D will be some category of structures
and U will be the forgetful functor sending a structure to its carrier set. The
conjecture will then state that there exist F , η and ε giving an adjunction. In
July 2021, bounties of 750 bars were placed on 33 conjectures of this form. As of
May 2025, 14 of the bounties have been collected (11 by proving the conjecture
and 3 by disproving the conjecture), and 19 remain open. We discuss a few of
these propositions below.

The conjectures and theorems are in the HOTG theory [9], with a base type
ι of sets. We use o for the type of propositions and αβ for the type of functions
from α to β. We briefly review elements of set theory required to describe the
conjectures. There are the usual logical definitions: ⊤ : o, ⊥ : o, ¬ : oo, ∧ : ooo,
≡: ooo, = and ∃. Two primitives of the set theory are relevant: ∈: ιιo (which
we write in infix) and ∅ : ι (which we often write as 0 below). After enough
infrastructure is defined, we also have the following objects:

– lam : ι(ιι)ι: Here lam X f is the set encoding the function f restricted to
the domain X.



10 C. Brown, C. Kaliszyk, J. Urban

– ap : ιιι: ap f x corresponds to applying the function (encoded by the set) f
to x. Here we often simply write f x, leaving ap as implicit. (Note that since
f and x have type ι, f x would be ill-typed if we did not insert ap.)

– Pi : ι(ιι)ι: Here Π X Y is the set of functions f : X →
⋃

x∈X(Y x) such that
f x ∈ Y x for each x ∈ X. We write Y X for the term Π X (λx.Y ). Note
that Y X is simply the set of functions from X to Y .

For the categories of interest, the following definitions are important.

– lam_id : ιι where lam_id X is lam X (λx.x). That is, lam_id is the set-
theoretic encoding of the identity function on X.

– lam_comp : ιιιι where lam_comp X g f is lam X (λx.g(fx)). Assuming f
is a function with domain X and g is appropriate, this is the set-theoretic
encoding of the composition of f and g.

– HomSet : ιιιo where HomSet X Y f is f ∈ Y X .

Some previously proven results can be assumed here, e.g., ∀X.lam_id X ∈ XX

and ∀XY f.f ∈ Y X → lam_comp X f (lam_id X) = f .
We will only consider structures with a single carrier set and assume the set

theoretic representation of each structure is as a function A where A 0 (i.e., A
applied to 0) yields the carrier. To account for this, the identities and composition
for categories of structures are defined by slight modifications of lam_id and
lam_comp.

– struct_id : ιι where struct_id A is lam_id (A 0).
– struct_comp : ιιιιιι where struct_comp A B C is lam_comp (A 0). Note that

this ignores its second and third arguments. Giving the last two arguments
explicitly yields struct_comp A B C g f is lam_comp (A 0) g f .

There are many examples of structures defined in Megalodon and Proofgold
which differ in two ways: the other components of the structure (a binary op-
eration, a binary relation, etc.) and what properties are assumed of these other
components. To give a simple, concrete example, we consider structures with a
single binary relation. Avoiding details (which are not relevant here), we note
that there is a previously defined object pack_r : ι(ιιo)ι such that pack_r X R
encodes the carrier set X and the binary relation R (restricted to its behavior
on X) as a set. We then define struct_r : ιo to be the class of all such sets. We
also assume the previously proven ∀X.∀R : ιιo.X = pack_r X R 0. That is, the
set pack_r X R is a function that yields the carrier set X when applied to 0.

A particular category of such structures will result from adding some restric-
tion of the class struct_r as objects. Regardless of the restriction, the arrows
should be all functions sending related inputs to related outputs. This is given
by BinRelnHom : ιιιo and the previously proven identity

BinRelnHom (pack_r X R) (pack_r Y Q) h
= (h ∈ Y X ∧ ∀xy ∈ X.R x y → Q (h x) (h y)).

To have a specific category as an example, we consider IrrPartOrd : ιo which is
the class of all structures with a single binary irreflexive transitive relation (i.e.,
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an irreflexive partial order). The details of the definition are not important. It
is enough to know we have the following previously proven results:

– If R is irreflexive and transitive on X, then IrrPartOrd (pack_r X R).
– Let A satisfy IrrPartOrd A and q : ιo be given. In order to prove q A it is

enough to prove q (pack_r X R) for all sets X and irreflexive transitive
relations R on X.

Let us now turn to the relevant formalization of category theory. In practice,
we will be interested in large categories (metalevel categories), so formally C
will not be encoded as a set but will consist of four components (given as four
explicit dependencies in the formalization):

– C0 : ιo – the class of all objects of C.
– C1 : ιιιo – where C1 X Y is the class of arrows from X to Y in C.
– idC : ιι – where idC X is the identity arrow for X in C.
– compC : ιιιιιι – where compC X Y Z g f is the composition of f (an arrow

from X to Y ) and g (an arrow from Y to Z).

The second category D will also be represented by four explicit components:
D0, D1, idD and compD. Similarly, the functor F is represented by two explicit
components:

– F0 : ιι – where F0 X is the object of D to which the object X of C maps.
– F1 : ιιιι – where F1 X Y f is the arrow from F0 X to F1 Y in D corre-

sponding to the arrow f from X to Y in C.

Of course, the functor U is also represented by U0 and U1. A natural transforma-
tion η is simply of type ιι – mapping an object in one category to an appropriate
arrow in the other category.

MetaCat : (ιo)(ιιιo)(ιι)(ιιιιιι)o is defined so that MetaCat C0 C1 idC compC
holds if the components form a category. Here, we only need to know that
two specific (alleged) categories are categories. The category of sets is given
by the constant true predicate (every set is an object), HomSet, lam_id and
(λXY Z.lam_comp X) (where the ignored arguments are needed for the types
to match). This has been previously proven to be a category, and the precise
proposition is MetaCat (λX.⊤) HomSet lam_id (λXY Z.lam_comp X). Likewise,
the category of all irreflexive transitive relations has been proven to be a category
and the proposition is MetaCat IrrPartOrd BinRelnHom struct_id struct_comp.

We know F0 and F1 give a functor between two categories if a number of
basic properties hold. Without going into details, there is a previous definition
MetaFunctor such that MetaFunctor C0 C1 idC compC D0 D1 idD compD F0 F1

holds precisely if those properties hold. A previously proven result allows us to
infer MetaFunctor C0 C1 idC compC D0 D1 idD compD F0 F1 by proving those
properties. There is also an object MetaFunctor_strict which further requires the
two (alleged) categories to actually be categories.

We already know the forgetful functor from the category of irreflexive tran-
sitive relations to the category of sets is a functor. The forgetful functor (in
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general) sends a structure A to its carrier set A 0 and sends structure mor-
phisms f to f (which is already an appropriate set-theoretic function). Hence,
the previously proven theorem is

MetaFunctor IrrPartOrd BinRelnHom struct_id struct_comp
(λX.⊤) HomSet lam_id (λXY Z.lam_comp X)

(λA.A 0) (λABf.f).

Similar to the discussion above, we have MetaNatTrans where

MetaNatTrans C0 C1 idC compC D0 D1 idD compD F0 F1 G0 G1 η

holds if η is a natural transformation from F to G (assuming C, D, F and G are
appropriate inputs). Finally we have MetaAdjunction where

MetaAdjunction C0 C1 idC compC D0 D1 idD compD F0 F1 U0 U1 η ε

is an adjunction (with witnessing natural transformations η and ε) – again,
assuming the inputs are appropriate. We also have MetaAdjunction_strict which
further ensures the inputs are appropriate by requiring:

– MetaFunctor_strict C0 C1 idC compC D0 D1 idD compD F0 F1 – ensuring C
and D are categories and F is a functor from C to D.

– MetaFunctor D0 D1 idD compD C0 C1 idC compC U0 U1 – ensuring U is a
functor from D to C.

– MetaNatTrans · · · η – ensuring η is a natural transformation from 1C to UF .
– MetaNatTrans · · · ε – ensuring ε is a natural transformation from FU to 1D.

Now, for each category D of structures, we can form the following conjecture
that a left adjoint to the forgetful functor exists:

∃F0 : ιι.∃F1 : ιιιι.∃ηε : ιι.
MetaAdjunction_strict (λX.⊤) HomSet lam_id (λXY Z.lam_comp X)

D0 D1 struct_id struct_comp
F0 F1 (λA.A 0) (λABf.f) η ε.

As mentioned above, bounties were placed on 33 propositions of this form, of
which 19 remain unresolved (neither proven nor disproven). Table 1 lists the 33
propositions and indications whether the proposition has been proven, disproven
or is still open. In the particular case of irreflexive transitive relations, D0 is
IrrPartOrd and D1 is BinRelnHom. The proof of this special case is given by taking
F0 to be λX.pack_r X (λxy.⊥) – that is, a set X is taken to the structure given
by X with the empty relation. Furthermore F1 is given so that F1 X Y f is f ,
η is given so that η X is lam_id X and ε is given so that ε A is lam_id (A 0).
The remainder of the proof involves checking the relevant properties. This proof
was published on the Proofgold blockchain in September 2021.

The most recent of the 33 propositions to be proven has D as the category of
structures with a carrier X and a bijective function f : X → X.5 A proof of the
5 The proposition can be viewed on the explorer at

the link https://formalweb3.uibk.ac.at/pgbce/OP.php?b=
a69df3cc99230330e94428aa4d4e3bf5ce0405944ff3242f3882144c1c0c5216.

https://formalweb3.uibk.ac.at/pgbce/OP.php?b=a69df3cc99230330e94428aa4d4e3bf5ce0405944ff3242f3882144c1c0c5216
https://formalweb3.uibk.ac.at/pgbce/OP.php?b=a69df3cc99230330e94428aa4d4e3bf5ce0405944ff3242f3882144c1c0c5216
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Name Status
MetaCat_struct_p_left_adjoint_forgetful Proven
MetaCat_struct_r_left_adjoint_forgetful Proven

MetaCat_struct_r_graph_left_adjoint_forgetful Proven
MetaCat_struct_r_partialord_left_adjoint_forgetful Proven

MetaCat_struct_r_ord_left_adjoint_forgetful Disproven
MetaCat_struct_r_wellord_left_adjoint_forgetful Disproven

MetaCat_struct_r_per_left_adjoint_forgetful Proven
MetaCat_struct_r_equivreln_left_adjoint_forgetful Proven

MetaCat_struct_c_left_adjoint_forgetful Proven
MetaCat_struct_c_topology_left_adjoint_forgetful Open

MetaCat_struct_c_T1_topology_left_adjoint_forgetful Open
MetaCat_struct_c_Hausdorff_topology_left_adjoint_forgetful Open

MetaCat_struct_u_left_adjoint_forgetful Proven
MetaCat_struct_u_inj_left_adjoint_forgetful Proven
MetaCat_struct_u_bij_left_adjoint_forgetful Proven

MetaCat_struct_u_idem_left_adjoint_forgetful Proven
MetaCat_struct_b_left_adjoint_forgetful Open

MetaCat_struct_b_quasigroup_left_adjoint_forgetful Open
MetaCat_struct_b_loop_left_adjoint_forgetful Open

MetaCat_struct_b_semigroup_left_adjoint_forgetful Open
MetaCat_struct_b_monoid_left_adjoint_forgetful Disproven
MetaCat_struct_b_group_left_adjoint_forgetful Open

MetaCat_struct_b_abelian_group_left_adjoint_forgetful Open
MetaCat_struct_b_b_e_left_adjoint_forgetful Open

MetaCat_struct_b_b_e_rng_left_adjoint_forgetful Open
MetaCat_struct_b_b_e_crng_left_adjoint_forgetful Open

MetaCat_struct_b_b_e_e_left_adjoint_forgetful Open
MetaCat_struct_b_b_e_e_semiring_left_adjoint_forgetful Open

MetaCat_struct_b_b_e_e_ring_left_adjoint_forgetful Open
MetaCat_struct_b_b_e_e_cring_left_adjoint_forgetful Open
MetaCat_struct_b_b_e_e_field_left_adjoint_forgetful Open

MetaCat_struct_b_b_r_e_e_left_adjoint_forgetful Open
MetaCat_struct_b_b_r_e_e_ordered_field_left_adjoint_forgetful Open

Table 1. Propositions asserting existence of adjunctions for forgetful functors

https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_p.mg.html#MetaCat_struct_p_left_adjoint_forgetful
https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_r.mg.html#MetaCat_struct_r_left_adjoint_forgetful
https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_r_graph.mg.html#MetaCat_struct_r_graph_left_adjoint_forgetful
https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_r_partialord.mg.html#MetaCat_struct_r_partialord_left_adjoint_forgetful
https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_r_ord.mg.html#MetaCat_struct_r_ord_left_adjoint_forgetful
https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_r_wellord.mg.html#MetaCat_struct_r_wellord_left_adjoint_forgetful
https://mgwiki.github.io/mgw_test/conj/cat/Category_struct_r_per.mg.html#MetaCat_struct_r_per_left_adjoint_forgetful
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Fig. 10. Definitions for the Adjoint Functor for Bijections in the Megalodon Wiki

Fig. 11. Adjunction Theorem for Bijections in the Megalodon Wiki

corresponding proposition was published on the blockchain in June 2024. The
witnesses in the proof are as follows:

– F0 X is the structure with carrier Z×X (where Z is the set of integers) and
the (bijective) unary function taking u ∈ Z×X to (u0 + 1, u1).

– F1 X Y f is the morphism taking u ∈ Z×X to (u0, f(u1)) ∈ Z× Y .
– η X is the function from X to Z×X taking x to (0, x).
– ε (X, f) is the function from Z×X to X taking u to fu0(u1). (Note that if

u0 < 0, this means iterating the inverse of the bijection f .)

There are definitions corresponding to these choices of F0, η and ε in the Mega-
lodon Wiki, and are shown here in Figure 10. The main proof is of a theorem
that checks these choices indeed give an adjunction. The proof is long and de-
tailed, so we only show the statement in Figure 11. The actual bounty was on
the statement that such an adjunction exists. Since all the details were checked
in the previous theorem, we can show the existential theorem with its proof in
Figure 12.

The most recent of the 33 propositions to be disproven takes D to be a
category with monoids as objects. Here “disproven” means the negation of the
proposition was proven. This should be surprising as it is clear that given a
set X one can create a monoid freely generated by X, and this should provide
the desired left adjoint. However, the category in question was defined to have
semigroup homomorphisms as arrows, and not every semigroup homomorphism
(preserving the operation) also preserves the identity element. The definition
is arguably a bug in the definition of the category of monoids. The bounty
presumably encouraged someone to look closely enough at the definition to find
and exploit the bug to prove the negation of the proposition. Using the explorer
to examine the proof of the surprising result, others can discover the same bug.
The proof follows from the fact that there is no initial object in the category of
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Fig. 12. Existential Adjunction Theorem for Bijections in the Megalodon Wiki

Fig. 13. There is no Initial Monoid in the Megalodon Wiki

monoids and semigroup homomorphisms (and an alleged left adjoint would send
the initial object in the category of sets to an initial monoid). The proof that
there is no initial monoid (with semigroup homomorphisms) essentially follows
from the fact that the two constant functions from a monoid to the multiplicative
monoid {0, 1} are both (always) semigroup homomorphisms, thus guaranteeing
an alleged initial monoid would not have a unique morphism to {0, 1}.

In a document in the Megalodon Wiki, the statement of the theorem that
there is no initial monoid (with semigroup homomorphisms) is shown in Fig-
ure 13. The proof (using the multiplicative monoid on {0, 1}) is also in the same
document, but we omit it here as it is long and detailed.6 The negation of the
adjunction conjecture is then proven as a consequence. Its statement and proof
in the document in the Megalodon Wiki are shown in Figure 14. The proof
begins by assuming there exists an adjunction, i.e., ∃F0 : ιι. · · ·. In general, a
proposition ∃x : α.φ is considered the same as ∀q : o.(∀x : α.φ → q) → q. This is
why the existential assumption can be “applied” to the current goal (of proving
⊥), followed by a “let” (essentially giving a fresh name x for the object) and an
“assume” (giving the property φ of the object x). This is repeated four times to
obtain F0, F1, η and ε. There is a previous (unshown) theorem that there is an
initial object in the category of sets. (It is witnessed by the empty set, but this
is irrelevant here.) We apply that previous theorem to obtain an initial set Init

6 Note that Hom_struct_b : ιιιo is defined so that Hom_struct_b A B h holds when
h is a function from the carrier of A to the carrier of B preserving the binary
operation. A correct definition of the category of monoids would extend the signature
to explicitly include the identity element in addition the binary operation. This would
presumably have a name like Hom_struct_b_e.
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Fig. 14. There is no Left Adjoint to the Forgetful Functor for Monoids in the Mega-
lodon Wiki

and a function uniq that takes each set X to the unique function from Init to
X. Our goal is to prove ⊥. We then apply the theorem from Figure 13 which
leaves the subgoal of proving there is an initial monoid. The monoid F0 Init is
used to witness that there is an initial monoid, and this is justified by a previous
(unshown) theorem that ensures left adjoints preserve initial objects.

An example of a proposition with an open bounty is given by taking D to
be the category of groups.7 In this case, the proposition should be provable by
taking F0 X to be the free group generated by X, but no one has yet done this
construction and proven the relevant theorem.

6 Related Work

Most proof assistants today are accompanied by tools for exploring their for-
mal libraries via web interfaces. The Mizar Mathematical Library (MML) [4],
one of the oldest central repositories of formalized mathematics, in addition to
its journal version, has been accessible through HTML renderings and search
tools [15,22]. Isabelle’s Archive of Formal Proofs (AFP) [7] provides a curated
collection of formal developments, rendered online using Isabelle’s document
preparation system. The Coq proof assistant is supported by an online web
interface that allows interactive Coq sessions entirely within the web [12]. Its ex-
tension to ProofWeb offers a web interface for multiple proof assistants, aiming
to lower the barrier to entry for formal verification [18]. The Lean community

7 The bounty can currently be seen on the explorer at the link https://formalweb3.
uibk.ac.at/pgbce/q.php?b=TMQvwY1m9iU5rev4qXQjWWGYTZDHwCseEMv.

https://formalweb3.uibk.ac.at/pgbce/q.php?b=TMQvwY1m9iU5rev4qXQjWWGYTZDHwCseEMv
https://formalweb3.uibk.ac.at/pgbce/q.php?b=TMQvwY1m9iU5rev4qXQjWWGYTZDHwCseEMv
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has developed a variety of web tools, including the ProofWidgets library [20],
with the paper discussing a lot of related work concerning user interfaces for
theorem proving.

Beyond these assistant-specific interfaces, more advanced and general-purpose
systems have been developed to support exploration, integration, and sharing of
formal mathematical knowledge. The MathHub/MMT framework provides a logic-
independent framework for querying across distributed libraries [5]. The Formal
Abstracts aims to explore structured summaries of theorems that link informal
and formal mathematics. Its web access to both metadata and formal develop-
ments8 has been impactful, but it appears to be currently inactive.

The Tezos [14] blockchain includes a smart contract programming language
that has been designed to make formal verification easier, which means that
off-chain formal methods can be used to verify properties of programs/scripts.
This supports formal methods, albeit offline [6]. Several blockchain explorers
exist for Tezos, but they focus on the usual smart contract information and
do not include verification content. Qeditas was an early attempt to combine
formalized mathematics with blockchain technology, but the project is no longer
maintained; Proofgold builds on its ideas, refining and extending them into a
working system.

There have been a number of formalizations of category theory done in type-
theoretic proof assistants; examples include UniMath [2] in Coq, the Lean 3
library [1], Agda-Category [23]; several developments in Isabelle/HOL [21] and
Isabelle/HOLZF and even Mizar [11]. While type-theoretic systems allow concise
and expressive formulations, they often provide less automation; in contrast,
Isabelle/HOL offers strong automation but can make some constructions more
cumbersome due to the lack of dependent types, and Mizar emphasizes human
readability but it has limited expressiveness for higher-category theory.

7 Conclusion

We created a web-based blockchain explorer for Proofgold that allows users to
interact with mathematical knowledge contained there. We have demonstrated
the utility of the system by presenting several conjectures and their proofs or
refutations using the system. Future work includes improving support for faster
collaboration, further improvements to the visualization of the formal mathe-
matics, as well as better search [3].
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tion, Youth and Sports within the dedicated program ERC CZ under the project
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