
Payment Channels with Proofs
1st Chad E. Brown

Czech Technical University in Prague
Prague, Czech Republic

2nd Cezary Kaliszyk
University of Melbourne
University of Innsbruck
Melbourne, Australia

ckaliszyk@unimelb.edu.au
0000-0002-8273-6059

3rd Josef Urban
Czech Technical University in Prague

Prague, Czech Republic
josef.urban@gmail.com

0000-0002-1384-1613

Abstract—The fundamental building blocks of the Bitcoin
lightning network are bidirectional payment channels. We
describe an extension of payment channels in the Proofgold
network which allow the two parties to bet on whether a
proposition will be proven by a certain time. These provide
the foundation for a Proofgold lightning network that would
allow parties to request proofs (by betting there will be no
proof by a certain time) and other parties to provide proofs
(and be rewarded by betting there will be a proof). The bets
may also provide a way to approximate the probability that a
certain proposition is provable (in the given amount of time). We
describe the implementation of payment channels supporting
proofs in Proofgold and discuss a potential lightning network
that could be built as a result. One application of such lightning
network would be a large decentralized infrastructure for fast
collaborative formalization projects.

Index Terms—blockchain, payment channels, proofs, light-
ning network

I. INTRODUCTION

The Bitcoin lightning network [1] provides a Layer 2
solution for securely and quickly sending off-chain payments,
addressing the limitation that on-chain Bitcoin transactions
can take a long time to confirm. Similar constructions could
be applied to other cryptocurrencies where the primary use
case is the transfer of value and there is little or no need for
more complex transaction data.

One of the most important use-cases of Proofgold [2],
is being able to pay users for proofs of theorems. Similar
ideas as the Bitcoin lightning network could be used to
create a lightning network for Proofgold, however, the ideas
underlying the Bitcoin lightning network must be extended to
allow users on the network to also pay for proofs of theorems
by betting on whether a theorem will be proven by a given
deadline. We describe such an extension in this paper. The
bets could also be used as a prediction market, to estimate
the probability that a proof of a proposition will be public
by a certain deadline.

Proofgold is a cryptocurrency supporting formal logic
and mathematics launched in 2020. In Proofgold users can
publish theories (primitives and axioms) within a framework

The results were supported by the Ministry of Education, Youth and Sports
within the dedicated program ERC CZ under the project POSTMAN no.
LL1902, Czech Science Foundation grant no. 25-17929X, Amazon Research
Awards, and the ERC PoC grant FormalWeb3 no. 101156734.

of intuitionistic higher-order logic. These theories can be
developed as users publish documents, making new defini-
tions and proving new theorems within the theory. As of
early 2025, six theories have been created in Proofgold, with
the most developed one being a higher-order set theory [3].
In addition, over 2000 definitions and over 50000 proofs
have been published into the Proofgold blockchain. Proofgold
users can also place bounties on conjectures they would
like to see proven. As of early 2025, over 13000 bounties
have been placed on conjectures and almost 3000 have been
collected (as the result of someone proving the conjecture or
its negation).

The usual method of publishing Proofgold documents onto
the chain is time consuming. Proofgold has a block time
approximating one block per hour. Furthermore, a commit-
and-reveal scheme is used to protect document authors from
plagiarism. As a consequence, it takes about a day to publish
a document into the Proofgold blockchain. An appropriate
off-chain lightning network would provide a faster alternative
to placing a bounty on a conjecture (on chain) and waiting
for someone to publish a document (on chain) with a cor-
responding proof of the conjecture in order to collect the
bounty. Since the lightning network would work off-chain,
we will also need an alternative to the commit-and-reveal
scheme Proofgold uses (on chain) to ensure authorship of
proofs. The alternative we consider is paying agents who bet
there will be a proof by a certain deadline, regardless of who
authored the proof. Those agents will be paid by other agents
who bet there will not be a proof (presumably because they
want to pay for a proof to appear).

Contents:

In Section II we remind the concept of payment channels
and the ideas underlying the Bitcoin lightning network. We
propose the extension of payment channels to proofs in
Section III. In section IV we discuss an extension of the
channels to a full lightning network for Proofgold and in
section V we discuss betting on the odds of theorems being
proved that leads to a prediction market for theorems. In
Section VI we discuss the implementation of the discussed
extensions in the Proofgold Lava client.



II. PAYMENT CHANNELS AND LIGHTNING

The fundamental building blocks of the lightning network
(for Bitcoin) are bidirectional payment channels (or, simply
“payment channels”). We give a simple explanation here, and
leave the curious reader to study [1] for more details.

A payment channel involves two agents, e.g., Alice and
Bob. To open a payment channel, Alice and Bob combine
some bitcoin into a single asset (bitcoin utxo). For example,
suppose Alice and Bob both have 1 bitcoin and they together
build a transaction spending each of their bitcoins to a new
address with 2 bitcoins. The new address is a 2-of-2 multisig
address, so it can only be spent if Alice and Bob agree on
how to spend it. (That is, they must both sign any transaction
spending from the address.)

Of course, if they simply do this, then Bob can hold
Alice’s bitcoin hostage – only agreeing to spend the 2 bitcoins
if he receives, e.g., 1.9 bitcoins and Alice receives only
0.1. Likewise, Alice can hold Bob’s bitcoin hostage for the
same reason. So, before sending the bitcoins to the multisig
address, Alice and Bob create three unsigned transactions:
a “funding transaction” sending Alice and Bob’s bitcoin to
the combined multisig address and two initial “commitment
transactions.” Before Alice or Bob sign and publish the
funding transactions, each must sign one of the commitment
transactions. The commitment transactions reflect the current
balance of the payment channel. We will oversimplify and
say both commitment transactions spend from the (currently
hypothetical) utxo from the funding transaction with two
outputs: 1 bitcoin for Alice and 1 bitcoin for Bob. Alice
creates this commitment transaction, signs it, and sends it
to Bob. Bob does the same. Now both can sign and publish
the funding transaction, so that the 2 bitcoins at the multisig
address is an actual asset (utxo) with 2 bitcoins. These 2
bitcoins cannot be held hostage by either Alice or Bob, since
either can sign and publish their commitment transaction
(which was already signed by the other party).

The procedure described above does allow Alice and Bob
to create an asset (essentially “opening a channel”) and
spend the asset to recover their balance (essentially “closing
a channel”), but lacks the ability to update the balance.
Without the ability to update the balance, payments are not
yet possible. In order to allow for payments, the commitment
transactions use hash timelock contracts (htlcs).

Described simply, an htlc is a certain kind of script
that can be spent in one of two ways: by one party after
enough confirmations or by another party (immediately) with
a “secret.” Extending the example above, suppose the two
initial commitment transactions Alice and Bob did are as
follows:

• Alice’s initial commitment transaction spends the mul-
tisig utxo with 1 bitcoin to Bob and 1 bitcoin to an htlc
address. The htlc address is spendable by Alice after 3
days but is also spendable by Bob immediately if Bob
knows Alice’s secret. Assume only Alice knows Alice’s
secret initially.

• Bob’s initial commitment transaction is symmetric,
spending the multisig utxo with 1 bitcoin to Alice and 1
bitcoin to an htlc address. The htlc address is spendable
by Bob after 3 days or by Alice immediately with Bob’s
secret. Again, assume only Bob knows Bob’s secret
initially.

Assume Alice signs Bob’s initial commitment transaction
and Bob signs Alice’s initial commitment transaction before
they both sign the funding transaction. After the funding
transaction has been confirmed, the payment channel is open.
Alice can close the channel by signing and publishing her
initial commitment transaction. This would give Bob access
to his 1 bitcoin immediately and give Alice access to her 1
bitcoin after 3 days. Assuming Bob does not know Alice’s
secret, her 1 bitcoin will be unspent and available after those
3 days. Likewise Bob could close the channel by signing and
publishing his initial commitment transaction, causing him to
wait 3 days for his 1 bitcoin to be available.

The use of htlc’s and secrets makes the current pair com-
mitment transactions revokable. This is what allows Alice
and Bob to update their balance. For example, suppose Alice
wishes to send 0.1 bitcoin to Bob over the channel. Assuming
the two of them agree, they create a new pair of commitment
transactions (with new secrets) sending 0.9 to Alice and 1.1
to Bob. They then reveal the previous secrets to each other.
Now that Alice and Bob know the previous secrets, neither
can close the channel using the old commitment transactions
without losing their entire balance in the channel. Thus they
can still close the channel at any time, but can only do so by
using their latest commitment transaction.

It will be convenient to have a notation for htlc scripts. Let
h be the (SHA256) hash of a secret s (a 256 bit number), N
be a number of blocks and α and β be addresses (the hash of
the public key of a private key) and let h(h, α,N, β) denote
the htlc script that can be spent in two ways (where which
way is chosen by the spender):

1) A secret s hashing to h is given and the transaction
is signed by α. This behavior uses cryptographic op-
erations common to both the Bitcoin and Proofgold
scripting languages.

2) At least N blocks have passed and the transaction
is signed by α. Checking if N blocks have passed
is enforced by OP_CSV (check sequence verify), an
operation common to both the Bitcoin and Proofgold
scripting languages.

Suppose α is Alice’s address and β is Bob’s address. In
practice the N would be chosen to be a specific number. For
example, in Bitcoin taking N = 288 would require 288 con-
firmations (roughly 2 days) before h(h, α,N, β) is spendable
by Bob. This would give Alice roughly two days to notice
if Bob publishes an outdated commitment transaction. Each
of Alice’s commitment transactions sends Alice’s balance to
an address controlled by the script h(hA

m, β,N, α) and Bob’s
balance to β. Here hA

m is the hash of Alice’s mth secret
sAm. Each of Bob’s commitment transactions sends Alice’s



balance to α and Bob’s balance to h(hB
m, α,N, β). Here hB

m

is the hash of Bob’s mth secret sBm. If m is the most recent
pair of commitment transactions, then both parties should
know sAi and sBi for each i < m, but only Alice should
know sAm and only Bob should know sBm.

Once there are multiple agents with open payment chan-
nels, it is clear that one can implement a network of such
channels. As a simple example, suppose Alice and Bob have
an open payment channel and Bob and Charlie have an open
payment channel. Suppose Alice has a balance of at least
1 bitcoin in her payment channel with Bob, and that Bob
has a balance of at least 1 bitcoin in his payment channel
with Charlie. In this case Alice can send Charlie 1 bitcoin
by sending Bob 1 bitcoin via the first payment channel while
Bob (atomically) sends 1 bitcoin to Charlie via the second
payment channel. Note that Alice’s balance has decreased by
1 bitcoin and Charlie’s balance has increased by 1 bitcoin.
Bob’s total balance has not changed: his balance in the first
payment channel has increased by 1 bitcoin and his balance
in the second payment channel has decreased by 1 bitcoin.
In order to incentivize Bob to play this intermediate role,
he may charge Alice a small fee. For example, Bob could
require Alice to send Bob 1 bitcoin and 1 satoshi on the first
channel while Bob still sends only 1 bitcoin to Charlie on
the second channel.

The lightning network is essentially a network of payment
channels where payments can be routed through multiple
payment channels. There are a number of details (such as
finding routes with sufficient liquidity) which are beyond the
scope of this simple explanation.

III. PAYMENT CHANNELS WITH PROOFS IN PROOFGOLD

Since Proofgold supports multisig and htlc addresses,
bidirectional payment channels as described for Bitcoin can
also be opened, updated, and closed in Proofgold. A light-
ning network is arguably more important on Proofgold, as
Proofgold’s Layer 1 is slower than Bitcoin’s; Bitcoin has 1
block every 10 minutes on average while Proofgold has 1
block an hour on average. Suppose Alice and Bob have an
open payment channel with a 2-of-2 multisig utxo with 200
Proofgold bars and a current balance of 100 bars for Alice
and 100 bars for Bob. The current balance is reflected by the
latest pair of commitment transactions that Alice and Bob
can use to close the channel.

Suppose Alice wants a proof of proposition P . In Proof-
gold (Layer 1), she could put a bounty on the proposition
P . Whoever proves P (or its negation) would be able to
collect the bounty. Proofgold uses a commitment scheme
so that the author of a proof can safely publish a proof
without having it “stolen” during the publication process. The
author first publishes a commitment and (roughly 12 hours)
later publishes the document with the proof. If someone else
wanted to “steal” the proof, they would first see it when
the document is being published. They would then need to
publish their own commitment and wait another (roughly) 12

hours before they could publish their version of the document
(essentially replacing the original author with themselves).
Presumably, the original document with the original author
would have been published during this waiting period. The
first author to publish the proof of a proposition P becomes
the “owner” of P . The owner of P can collect any bounties
on P .

Lifting the bounty mechanism to a Layer 2 lightning
network seems impossible. One cannot use the commitment
scheme since that relies on Layer 1, which is slow. This
conflicts with the desire for Layer 2 to be fast and not need
to wait for blocks on Layer 1. Layer 1 should only be used
to open and close channels.

Since Alice and Bob have an open channel, she could
simply announce to Bob that she will pay 50 bars for a proof
of P . Suppose Bob proves P . If he sends her the proof, she
has no reason to update the balance to reflect paying Bob 50
bars, and Bob has no recourse. If he claims to have the proof
but will only reveal it after Alice sends the 50 bars, she has
no recourse if she sends the 50 bars but Bob never reveals
a proof. Ultimately, Layer 1 should be the “recourse” if one
party is uncooperative. That is, if one party is uncooperative,
the other party should be able to close the channel in a way
that reflects the expected balance.

Suppose Alice and Bob update the balance using new
commitment transactions with three outputs instead of two.
One output would send 50 bars to Alice and the second output
would send 100 bars to Bob. One of these first two outputs
would be an htlc address (depending on which of the pair of
commitment transactions it is). The third output would send
50 bars to a third address. The intention of this third address
is that the 50 bars go to Bob if Bob has a proof of P and
the 50 bars go to Alice otherwise. Assuming we can do this,
then Bob can safely reveal the proof of P to Alice privately.
Alice should then update the balance of the channel to reflect
that she has 50 bars and Bob has 150 bars, without the need
for a third output. Otherwise, Alice is uncooperative and Bob
can publish the proof of P on the blockchain and close the
channel by publishing the commitment transaction with the
third output. Since P will have been proven on Layer 1,
Bob should be able to spend the third output with 50 bars to
himself. On the other hand, if Bob tries to close the channel
without P being proven, Alice should be able to collect the
third output (after an appropriate timeout, assuming Alice has
requested a proof of P by a certain time).

Note that in this high-level description it is not important
that Bob actually be the one to prove P . If anyone else
publishes a proof of P on Layer 1, then Bob can still use
this to collect the 50 bars. As a consequence, the 50 bars can
be seen as a “bet” by Alice that Bob will not know a proof
of P by some timeout and a “bet” by Bob that he will know
a proof of P by the timeout (even if the proof was given
by someone else). With the current setup, however, it is not
quite a “bet” since Alice makes no reward if no one provides
a proof by Alice’s timeout. Also, since the bet is specific to



paying Bob, but not specific to Bob proving P , it is natural
to question why Alice would make this bet with Bob instead
of someone else with whom she has a payment channel.

Bob could encourage Alice to make the bet with him
instead of another partner by adding 10 bars of his own to the
bet. After making such a bet, the commitment transactions
would send 50 bars to Alice, 90 bars to Bob and 60 bars
to the third output. In this scenario, Alice will be rewarded
10 bars for “winning” the bet because no one proved P in
time. We will now assume this modification, so that the third
output is worth 60 bars.

As a first approximation, the third output should be spend-
able by a script that lets Bob spend the third output if P
has been proven and lets Alice spend the third output after
a certain time has passed. The key element of Proofgold’s
scripting language that allows for such an output is an
operation OP_PROVEN which checks if a given proposition
(identified by its hash root) has been proven in the Proofgold
blockchain. Let us call such a script a ptlc (proposition
time lock contract) and denote it by p(P, β, T, α) for a
proposition P , an address β, a time (either in block height
or unix timestamp) T and an address α. In the discussion
above, β is Bob’s address and α is Alice’s address. The
script p(P, β, T, α) states that the output can be spent in two
different ways (which way is determined by spender):

1) The proposition P has been proven (on chain) and the
transaction is signed by the private key address for β.
This is where OP_PROVEN is used, in addition to the
usual operations for signature checking.

2) Time T has passed and the transaction is signed by
the private key for α. This uses the usual operations
for signature checking and OP_CLTV (check locktime
verify). OP_CLTV is an operation common to both
Bitcoin and Proofgold and checks if a certain time has
passed (either judged by block height or by the unix
timestamps of blocks).

Using the ptlc p(P, β, T, α) does work to enforce the
bet as described above, but has the drawback that it is not
revokable. Suppose Bob does prove P (off chain) and Alice
acknowledges this by updating the payment channel to reflect
Alice’s balance of 50 bars and Bob’s balance of 150 bars.
Updating the payment channel requires Alice to reveal the
secret she used for the htlc of her previous commitment
transaction (with the third output corresponding to the bet).
Alice could, nevertheless, wait until time T has passed and
publish her revoked commitment transaction with the third
output. If she does this, Bob can take the first two outputs,
using his signature and Alice’s revealed secret. This allows
Bob to take 140 bars. However, he cannot take the third
output – with 60 bars – until he publishes the proof of P on
chain. Before he does so, Alice can spend the third output
(since time T has passed) and obtain 60 bars. In effect, Alice
has been able to use a revoked commitment transaction to
withdraw more than her intended balance.

We can remedy this situation by combining the htlc

Channel fund

100 bars
h(hA

1 , β, 48, α)

100 bars
β

Fig. 1. Alice’s initial commitment transaction τA1

Channel fund

100 bars
α

100 bars
h(hB

1 , α, 48, β)

Fig. 2. Bob’s initial commitment transaction τB1

behavior with the ptlc behavior. That is, we also need the
third output to be controlled by the counterparty after a secret
has been revealed. We simply denote this as the composition
h(h, δ,N, p(P, β, T, α)) where h is the hash of a secret, N
is a number of blocks, P is a proposition, T is a time and δ,
β and α are addresses. The script h(h, δ,N, p(P, β, T, α))
states that the output can be spent in two different ways
(chosen by the spender):

1) A secret s hashing to h is given and the transaction is
signed by δ.

2) At least N blocks have passed and inputs for the script
p(P, β, T, α) are given.

Note that there are actually three ways of spending the output,
since the script p(P, β, T, α) can be satisfied in two ways.
Note also that though there are three addresses α, β and
δ, the intention is that δ is either α or β (whichever is the
counterparty of the commitment transaction).

Let us reconsider the example above. We will assume the
value of N is 48, so that the htlc behavior requires a user
to wait for 48 confirmations (roughly 2 days in Proofgold).
Alice and Bob both make initial commitment transactions
before the funding transaction is signed, transmitted and
confirmed. Alice’s initial commitment transaction τA1 will use
secret sA1 with hash hA

1 and will have two outputs: 100 bars to
h(hA

1 , β, 48, α) and 100 bars to β, as shown in Figure 1. For
Bob’s initial commitment transaction τB1 , the roles of α and
β are reversed, with an output of 100 bars to α and 100 bars
to h(hB

1 , α, 48, β), as shown in Figure 2. After these initial
commitment transactions are signed by the counterparty and
the funding transaction has confirmed, the channel is open.

Suppose Alice and Bob agree to bet on whether or not
Bob will have (access to) a proof of P at some block height
T in the future, with Alice contributing 50 bars and Bob
contributing 10 bars. Since the htlc behavior will lead to
a delay of 48 blocks, we use the block height T + 48 in
the ptlc below. Alice’s new commitment transaction τA2 will
have three outputs: 50 bars to h(hA

2 , β, 48, α), 90 bars to β
and 60 bars to h(hA

2 , β, 48, p(P, β, T + 48, α)), as shown
in Figure 3. Bob’s new commitment transaction τB2 will



Channel fund

50 bars
h(hA

2 , β, 48, α)

90 bars
β

60 bars
h(hA

2 , β, 48, p(P, β, T + 48, α))

Fig. 3. Alice’s commitment transaction τA2 with the bet that Bob will not
have a proof of P before block height T

Channel fund

50 bars
α

90 bars
h(hB

2 , α, 48, β)

60 bars
h(hB

2 , α, 48, p(P, β, T + 48, α))

Fig. 4. Bob’s commitment transaction τB2 with the bet that Bob will have
a proof of P before block height T

have three outputs: 50 bars to α 90 bars to h(hB
2 , α, 48, β),

and 60 bars to h(hB
2 , α, 48, p(P, β, T + 48, α)), as shown

in Figure 4. After the counterparty has signed the new
commitment transactions, Alice and Bob revoke the previous
commitment transactions by sharing the secrets sA1 and sB1 .

Suppose Bob has a proof of P before block height T
and shares this proof with Alice. Alice should agree he has
won the bet and update the channel to reflect a balance
of 50 bars for Alice and 150 bars for Bob. Otherwise,
Bob should publish τB2 and publish the proof of P in a
document on the Proofgold blockchain. After 48 blocks
(which is presumed to still be before block height T + 48),
Bob can spend the outputs controlled by h(hB

2 , α, 48, β) and
h(hB

2 , α, 48, p(P, β, T + 48, α)), giving him 150 bars, as
desired. Note that if Bob delays and τB2 is confirmed at block
height T or after, then Alice will also be able to spend the
60 bars controlled by h(hB

2 , α, p(P, β, T +48, α)) and it will
essentially be a competition to spend the output first. Thus
Bob should really supply the proof of P at most a few blocks
before height T to prevent this possibility.

Next suppose block height T has arrived and Bob has not
shared a proof of P with Alice. Bob should agree she has won
the bet and update the channel to reflect a balance of 110 bars
for Alice and 90 bars for Bob. Otherwise, Alice should pub-
lish τA2 at block height T . After 48 blocks, the block height
will be beyond T +48 and Alice can spend the outputs con-
trolled by h(hA

2 , β, 48, α) and h(hA
2 , β, p(P, β, T + 48, α)),

giving her 110 bars, as desired. However, Bob still has the
possibility of finding and publishing a proof of P on chain
before the 48 confirmations have passed. In this case, after
48 confirmations both Alice and Bob will race to spend the
60 bars controlled by h(hA

2 , β, p(P, β, T + 48, α)).

Given this behavior, it is more accurate to say Bob is
betting he will have a proof of P at the latest a few blocks
before T , and Alice is betting Bob will not have a proof of P
by block T +N (e.g., T +48 in our example). If Bob obtains
a proof during the uncertain period from T to T +N , either
could be considered the winner of the bet. In such a case, it
would arguably be in Bob’s interest to withhold sharing the
proof and make a new bet before revealing it – as he would
be certain of winning the new bet and have only a partial
chance of winning the old bet.

The appropriate commands to support payment channels
with proofs have been implemented in the Proofgold Lava
client [2] and are shortly presented in Section VI.

IV. A LIGHTNING NETWORK WITH PROOFS

Similar to the way payment channels can be combined
to form the lightning network, it seems possible to do the
same with these “bets” about the existence of proofs by a
time limit. In simple terms, Alice could bet Bob as above
(50+10=60 bars) that there will not be a proof of P by Block
T . Bob could later hedge by betting Charlie 50+10=60 bars
there will not be a proof of P by Block T . In this case, if no
one proves P by Block T , Alice will gain 10 bars, Bob’s total
balance will not change (losing 10 bars on the first channel
but gaining 10 bars on the second channel) and Charlie will
lose 10 bars. On the other hand, if someone proves P by
Block T , Alice will lose 50 bars, Bob’s total balance will
not change (gaining 50 bars on the first channel but losing
50 bars on the second channel) and Charlie will gain 50 bars.
Effectively, Bob will have sold his side of the bet to Charlie.

In the case of three actors, it is useful to consider the
motivations of each actor. If Charlie finds a proof of P , he
is motivated to share the proof with Bob to win one bet
and then Bob is motivated to share the proof with Alice
to win the other bet. In general, there is a motivation for
proofs to propagate from those betting there will be a proof
to those betting there will not be a proof. On the other hand,
if Alice finds a proof of P , she is not motivated to share it
at all. As long as Charlie does not have access to a proof
of P by the time limit, he has technically lost the bet (even
if Alice has obtained a proof of P ). This suggests a third
possibility that both Alice and Charlie lose the bet. Suppose
Bob finds a proof of P . He is motivated to share the proof
with Alice, but not to share the proof with Charlie so that
he can potentially win both bets. If Alice wishes to protect
against such a possibility, then she could agree that whenever
her channel counterparty (Bob) sends her a proof of P , she
makes that proof publicly available immediately. In this case,
Charlie will have access to the proof as well. Alice will lose
nothing by making the proof public. Alice will also lose
nothing by allowing Bob (who was not intended to be a party
to the bet) to win both bets, so the appropriate behavior when
a middleman finds the proof is admittedly questionable.



V. PREDICTION MARKET

Suppose again that Alice is willing to bet 50 bars Bob will
have no proof of P by Block T and Bob is willing to bet
10 bars he will have a proof of P by Block T . This can be
interpreted as the two parties agreeing that the probability
that Bob will have a proof of P by Block T is 0.1667 (1
chance out of 6). Alice is incentivized to take the highest
counteroffer (since she will then maximize her payout if no
proof appears in time). If Charlie is willing to bet Alice 50
bars he will have a proof of P by Block T , then Alice will
prefer to make the bet with Charlie than Bob. The bet with
Charlie can be interpreted as the probability that Charlie will
have a proof of P by Block T is 0.5. In an extreme case,
before Alice has accepted a counteroffer, Daria may secretly
find a proof of P . It is then in Daria’s interest to bet Alice as
much as possible (since Daria is sure she will win the bet).
Thus when someone (other than Alice) has a proof, the bets
will reflect that by making the apparent probability approach
1. If Alice has a proof, she will presumably no longer offer
to make such bets.

On the other hand, suppose Alice believes P is not
provable (e.g., she has privately proven its negation). She
can freely make arbitrary bets that P will not be proven by
a deadline as she will win every bet (unless, of course, the
relevant theory turns out to be inconsistent). Over time, it
seems likely there will be fewer counterparties willing to bet
Alice, even with very low contributions to the bet. This would
push the apparent probability towards 0.

It is likely the odds of the bet will change over time based
on the perceived likelihood that P will be proven by Block
T . This change would be reflected in multiple participants
making new bets which would give the lightning network
with proofs many properties of a prediction market. A similar
idea for a prediction market regarding the potential truth of
mathematical statements was described in [4].

VI. IMPLEMENTATION AND EXPERIMENTS

We have added and evaluated payment channels operations
in Proofgold using multisig addresses and hashed timelock
contracts. The key operations available for payment channels
include:

• Creating a channel: Using CREATECHANNEL to set up a
2-of-2 multisig address and generate initial commitment
transactions.

• Updating channel state: Creating new commitment
transactions with updated balances and exchanging par-
tially signed transactions between parties.

• Closing a channel: Either cooperatively by both parties
signing a closing transaction, or unilaterally by publish-
ing the latest commitment transaction.

• Adding conditional payments: Using HTLCs to create
outputs that can be spent based on revealing a secret or
after a timeout.

• Adding bet-like conditional payments: Using a combi-
nation of HTLCs and prop timelock contracts (PTLCs)

to create outputs that depend on whether a proposition
is proven by a certain block height.

The implementation has been tested with various scenarios,
in particular considering various attacks on the protocol. The
particular tests include opening channels, updating balances,
adding conditional payments, and closing channels both co-
operatively and unilaterally1. The tests cover corner cases like
trying to use revoked commitment transactions and racing to
claim HTLC outputs. We also show the bet-like conditional
payments using PTLCs, that can allow parties to wager on
whether certain propositions will be proven within a given
time.

VII. RELATED WORK

Decker and Wattenhofer [5] have proposed an alternative
fast payment network for Bitcoin. It remains to be seen
if a similar approach can also be extended to payment
channels with proofs. Miller et al [6] discuss approaches to
reduce the worst case of the number of hops in a Layer 2
network on top of any blockchain based currency. A more
thorough analysis of the security of the proposed lightning
network for proofs, similar to that done for the Bitcoin
lightning network also remains open [7]. Naor and Keidar
consider payment channels in asynchronous money transfer
systems [8]. Dziembowski et al. [9] introduced general state
channel networks which generalize payment networks.

VIII. CONCLUSION

We have described an extension of payment channels
in Proofgold to allow counterparties to bet on whether
a certain proposition will be proven by a certain
time. The payment channels with proofs have been
implemented in the Proofgold Lava repository version
(https://github.com/ckaliszyk/proofgold-lava/)
and have been tested.

These payment channels can be combined into a lightning
network allowing parties to bet on propositions via combining
bets through a route consisting individual channels. This
would require handling the complex challenges of routing
and liquidity management within a full lightning network,
in particular we would need to investigate dealing with
conditional “proof bets” across multiple channels.

We have so far provided the necessary foundational exten-
sions; however, as this is developed into a complete frame-
work, practical performance metrics or simulations could be
conducted to assess the scalability or latency of the protocol.

In the proposed setting, we have multiple proof producers
and consumers that interact. As this is the first time such
a setting is considered, it would be interesting to formalize
the economic model and incentive alignment, ensuring that
proof buyers, producers, and bettors are clearly defined. Such

1https://github.com/ckaliszyk/proofgold-lava/blob/
69fc329ab1175ab01e69385abb88402a4ee447e4/doc/
paymentchannels-pfg.md



a model would also specify their incentives and ensure that
they are compatible.

Further future work includes more user-friendly commands
for the lightning network. Furthermore, the bets can be
interpreted as indicating a probability, opening up the use
of the network as a prediction market for the provability of
mathematical statements by a given deadline.

ACKNOWLEDGMENT

We want to thank Thibault Gauthier who provided some
of the important ideas ultimately leading to this work.

REFERENCES

[1] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016, https://lightning.network/lightning-network-
paper.pdf.

[2] C. E. Brown, C. Kaliszyk, T. Gauthier, and J. Urban, “Proofgold:
Blockchain for formal methods,” in 4th International Workshop on
Formal Methods for Blockchains, FMBC@CAV 2022, August 11, 2022,
Haifa, Israel, ser. OASIcs, Z. Dargaye and C. Schneidewind, Eds., vol.
105. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 4:1–
4:15. [Online]. Available: https://doi.org/10.4230/OASIcs.FMBC.2022.4

[3] C. E. Brown and K. Pąk, “A tale of two set theories,” in Intelligent
Computer Mathematics - 12th International Conference, CICM 2019,
Prague, Czech Republic, July 8-12, 2019, Proceedings, ser. Lecture
Notes in Computer Science, C. Kaliszyk, E. C. Brady, A. Kohlhase,
and C. S. Coen, Eds., vol. 11617. Springer, 2019, pp. 44–60.

[4] B. Su, “Mathcoin: A blockchain proposal that helps verify mathematical
theorems in public,” IACR Cryptol. ePrint Arch., vol. 2018, p. 271, 2018.

[5] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Stabilization, Safety,
and Security of Distributed Systems - 17th International Symposium,
SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings,
ser. Lecture Notes in Computer Science, A. Pelc and A. A.
Schwarzmann, Eds., vol. 9212. Springer, 2015, pp. 3–18. [Online].
Available: https://doi.org/10.1007/978-3-319-21741-3_1

[6] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry,
“Sprites and state channels: Payment networks that go faster than
lightning,” in Financial Cryptography and Data Security - 23rd
International Conference, FC 2019, Frigate Bay, St. Kitts and
Nevis, February 18-22, 2019, Revised Selected Papers, ser. Lecture
Notes in Computer Science, I. Goldberg and T. Moore, Eds.,
vol. 11598. Springer, 2019, pp. 508–526. [Online]. Available:
https://doi.org/10.1007/978-3-030-32101-7_30

[7] G. Kappos, H. Yousaf, A. M. Piotrowska, S. Kanjalkar, S. Delgado-
Segura, A. Miller, and S. Meiklejohn, “An empirical analysis of
privacy in the lightning network,” in Financial Cryptography and
Data Security - 25th International Conference, FC 2021, Virtual
Event, March 1-5, 2021, Revised Selected Papers, Part I, ser.
Lecture Notes in Computer Science, N. Borisov and C. Díaz,
Eds., vol. 12674. Springer, 2021, pp. 167–186. [Online]. Available:
https://doi.org/10.1007/978-3-662-64322-8_8

[8] O. Naor and I. Keidar, “On payment channels in asynchronous money
transfer systems,” in 36th International Symposium on Distributed
Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,
USA, ser. LIPIcs, C. Scheideler, Ed., vol. 246. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, pp. 29:1–29:20. [Online].
Available: https://doi.org/10.4230/LIPIcs.DISC.2022.29

[9] S. Dziembowski, S. Faust, and K. Hostáková, “Foundations of state
channel networks,” IACR Cryptol. ePrint Arch., p. 320, 2018. [Online].
Available: https://eprint.iacr.org/2018/320


