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Abstract. Dependent type theory gives an expressive type system facil-
itating succinct formalizations of mathematical concepts. In practice, it
is mainly used for interactive theorem proving with intensional type theo-
ries, with PVS being a notable exception. In this paper, we present native
rules for automated reasoning in a dependently-typed version (DHOL)
of classical higher-order logic (HOL). DHOL has an extensional type the-
ory with an undecidable type checking problem which contains theorem
proving. We implemented the inference rules as well as an automatic
type checking mode in Lash, a fork of Satallax, the leading tableaux-
based prover for HOL. Our method is sound and complete with respect
to provability in DHOL. Completeness is guaranteed by the incorpora-
tion of a sound and complete translation from DHOL to HOL recently
proposed by Rothgang et al. While this translation can already be used as
a preprocessing step to any HOL prover, to achieve better performance,
our system directly works in DHOL. Moreover, experimental results show
that the DHOL version of Lash can outperform all major HOL provers
executed on the translation.
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1 Introduction

Dependent types introduce the powerful concept of types depending on terms.
Lists of fixed length are an easy but interesting example. Instead of having a
simple type lst we may have a type Πn : nat. lst n which takes a natural number
as argument and returns the type of a list with length n. More generally, lambda
terms λx.s now have a dependent type Πx : A.B which makes the type of (λx.s)t
dependent on t. With that, it is possible for example to specify an unfailing ver-
sion of the tail function by declaring its type to be Πn : nat. lst(sn) → lstn. Many
interactive theorem provers for dependent type theory are available [3,9,12,14],
most of them implement intensional type theories, i.e., they distinguish between
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a decidable judgmental equality (given by conversions) and provable equality
(inhabiting an identity type). Notable exceptions are PVS [16] and F⋆ [?] which
implement an extensional type theory. In the context of this paper, we say a
type theory is extensional if judgmental equality and provable equality coincide,
as in [?]. The typing judgment in such type theories is usually undecidable, as
shown in [?].

The broader topic of this paper is automated reasoning support for exten-
sional type theories with dependent types. Not much has been done to this end,
but last year Rothgang et al. [15] introduced an extension of HOL to dependent
types which they dub DHOL. In contrast to dependent type theory, automated
theorem proving in HOL has a long history and led to the development of so-
phisticated provers [2,4,17]. Rothgang et al. defined a natural extension of HOL
and equipped it with automation support by providing a sound and complete
translation from DHOL into HOL. Their translation has been implemented and
can be used as a preprocessing step to any HOL prover in order to obtain an au-
tomated theorem prover for DHOL. Hence, by committing to DHOL, automated
reasoning support for extensional dependent type theories does not have to be
invented from scratch but can benefit from the achievements of the automated
theorem proving community for HOL.

In this paper, we build on top of the translation from Rothgang et al. to
develop a tableau calculus which is sound and complete for DHOL. In addition,
dedicated inference rules for DHOL are defined and their soundness is proved.
The tableau calculus is implemented as an extension of Lash [6]. The remainder
of this paper is structured as follows: Section 2 sets the stage by defining DHOL
and the erasure from DHOL to HOL due to Rothgang et al. before Section 3
defines the tableau calculus and provides soundness and completeness proofs.
The implementation is described in Section 4. Finally, we report on experimental
results in Section 5.

2 Preliminaries

2.1 HOL

We start by giving the syntax of higher-order logic (HOL) which goes back to
Church [8]. In order to allow for a graceful extension to DHOL, we define it with
a grammar based on [15].

T ::= ◦ | T, a : tp | T, x : A | T, s (theories)
Γ ::= · | Γ, x : A | Γ, s (contexts)

A,B ::= a | A → B | o (types)
s, t, u, v ::= x | λx : A.s | s t | ⊥ | ¬s | s ⇒ t | s =A t | ∀x : A.s (terms)

A theory consists of base type declarations a : tp, typed variable or constant
declarations x : A and axioms. Contexts are like theories but without base type
declarations. In the following, we will often write s ∈ T, Γ to denote that s
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occurs in the combination of T and Γ . Furthermore, note that ◦ and · denote
the empty theory and context, respectively. Types are declared base types a,
the base type of booleans o or function types A → B. As usual, the binary
type constructor → is right-associative. Terms are simply-typed lambda-terms
(modulo α-conversion) enriched by the connectives ⊥, ¬, ⇒, =A as well as the
typed binding operator for ∀. All connectives yield terms of type o (formulas).
By convention, application associates to the left, so s t u means (s t) u with the
exception that ¬ s t always means ¬(s t). Moreover, we abbreviate ¬(s =A t) by
s ̸=A t and sometimes omit the type subscript of =A when it is either clear from
the context or irrelevant. We write s[x1/t1, . . . , xn/tn] to denote the simultaneous
capture-avoiding substitution of the xi’s by the ti’s. The set of free variables of
a term s is denoted by Vs.

A theory T is well-formed if all types are well-formed and axioms have type o
with respect to its base type declarations. In that case, we write ⊢s T Thy where
the superscript s indicates that we are in the realm of simple types. Given a
well-formed theory T , the well-formedness of a context Γ is defined in the same
way and denoted by ⊢s

T Γ Ctx. Given a theory T and a context Γ , we write
Γ ⊢s

T A tp to state that A is a well-formed type and Γ ⊢s
T s : A to say that

s has type A. Furthermore, Γ ⊢s
T s denotes that s has type o and is provable

from Γ and T in HOL. Finally, we use Γ ⊢s
T A ≡ B to state that A and B

are equivalent well-formed types. For HOL this is trivial as it corresponds to
syntactic equivalence, but this will change drastically in DHOL.

2.2 DHOL

The extension from HOL to DHOL consists of two crucial ingredients:

– the type constructor A → B is replaced by the constructor Πx : A.B which
potentially makes the return type B dependent on the actual argument x;
we stick to the usual arrow notation if B does not contain x

– base types a can now take term arguments; for an n-ary base type we write
a : Πx1 : A1. · · · Πxn : An. tp

Thus, the grammar defining the syntax of DHOL is given as follows:

T ::= ◦ | T, a : (Πx : A.)∗ tp | T, x : A | T, s (theories)
Γ ::= · | Γ, x : A | Γ, s (contexts)

A,B ::= a t1 . . . tn | Πx : A.B | o (types)
s, t, u, v ::= x | λx : A.s | s t | ⊥ | ¬s | s ⇒ t | s =A t | ∀x : A.s (terms)

If a base type a has arity 0, it is called a simple base type. Note that HOL is
the fragment of DHOL where all base types have arity 0. Allowing base types
to have term arguments makes type equality a highly non-trivial problem in
DHOL. For example, if Γ ⊢d

T s : Πx : A.B (the d in ⊢d indicates that we are
speaking about DHOL) and Γ ⊢d

T t : A′ we still want Γ ⊢d
T (s t) : B[x/t] to

hold if Γ ⊢d
T A ≡ A′, so checking whether two types are equal is a problem
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which occurs frequently in DHOL. Intuitively, we have Γ ⊢d
T A ≡ A′ if and

only if their simply-typed skeleton consisting of arrows and base types without
their arguments is equal and given a base type a : Πx1 : A1. · · · Πxn : An. tp, an
occurrence a t1 . . . tn in A and its corresponding occurrence a t′1 . . . t′n in A′,
we have Γ ⊢d

T ti =Ai[x1/t1,...,xi−1/ti−1] t
′
i for all 1 ⩽ i ⩽ n. This makes DHOL an

extensional type theory where already type checking is undecidable as it requires
theorem proving. Another difference from HOL is the importance of the chosen
representation of contexts and theories: Since the well-typedness of a term may
depend on other assumptions, the order of the type declarations and formulas
in a context Γ or theory T is relevant. A formal definition of the judgments
Γ ⊢d

T A tp, Γ ⊢d
T s : A, Γ ⊢d

T s and Γ ⊢d
T A ≡ B via an inference system is given

in [15]. Since we use more primitive connectives, a minor variant is presented in
Figure 2.

Example 1. Consider the simple base types nat : tp and elem : tp as well as the
dependent base type lst : Πx : nat. tp. The constants and functions

0 : nat s : nat → nat

nil : lst 0 cons : Πn : nat. elem → lst n → lst (s n)

provide means to represent their inhabitants. Additionally, we define functions
plus : nat → nat → nat

∀n : nat. plus 0 n =nat n ∀n,m : nat. plus (s n)m =nat s (plus n m)

and app : Πn : nat.Πm : nat. lst n → lstm → lst (plus n m):

∀n : nat, x : lst n. app 0 n nil x =lst n x

∀n,m : nat, z : elem, x : lst n, y : lstm.

app (s n)m (cons n z x) y =lst (s (plus n m)) cons (plus n m) z (app n m x y)

In the defining equations of app, we annotated the equality sign with the de-
pendent type of the term on the right-hand side. In all cases, the simply-typed
skeleton is just lst but for a type check we need to prove the two equalities

∀n : nat. plus 0 n =nat n ∀n,m : nat. plus (s n)m =nat s (plus n m)

which are exactly the corresponding axioms for plus. Type checking the conjec-
ture

∀n : nat, x : lst n. app n 0 x nil =lst n x

would require proving ∀n : nat. plus n 0 =nat n which can be achieved by induc-
tion on natural numbers if we include the Peano axioms.

2.3 Erasure

The following definition presents the translation from DHOL to HOL due to
Rothgang et al. [15]. Intuitively, the translation erases dependent types to their
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⊢d ◦ Thy thyEmpty
⊢d
T x1 : A1, . . . , xn : An Ctx

⊢d T, a : Πx1 : A1. . . . Πxn : An.tp Thy
thyType

⊢d
T A tp

⊢d T, x : A Thy
thyConst

⊢d
T s : o

⊢d T, s Thy
thyAxiom

⊢d T Thy

⊢d
T · Ctx

ctxEmpty

Γ ⊢d
T A tp

⊢d
T Γ, x : A Ctx

ctxVar
Γ ⊢d

T s : o

⊢d
T Γ, s Ctx

ctxAssume

a : (· · ·Πxi : Ai. · · · .tp) ∈ T ⊢d
T Γ Ctx · · ·Γ ⊢d

T ti : Ai[x1/s1 . . . xi−1/si−1] · · ·
Γ ⊢d

T a t1 . . . tn tp
type

x : A′ ∈ T Γ ⊢d
T A′ ≡ A

Γ ⊢d
T x : A

const
s ∈ T ⊢d

T Γ Ctx

Γ ⊢d
T s

axiom

x : A′ ∈ Γ Γ ⊢d
T A′ ≡ A

Γ ⊢d
T x : A

var
s ∈ Γ ⊢d

T Γ Ctx

Γ ⊢d
T s

assume
⊢d
T Γ Ctx

Γ ⊢d
T o tp

bool

Γ ⊢d
T A tp Γ, x : A ⊢d

T B tp

Γ ⊢d
T Πx : A.B tp

pi
Γ ⊢d

T A ≡ A′ Γ, x : A ⊢d
T B ≡ B′

Γ ⊢d
T Πx : A.B ≡ Πx : A′.B′ congΠ

a : (· · ·Πxi : Ai. · · · .tp) ∈ T ⊢d
T Γ Ctx · · ·Γ ⊢d

T si =Ai[x1/s1...xi−1/si−1] ti · · ·
Γ ⊢d

T a s1 . . . sn ≡ a t1 . . . tn
congBT

Γ, x : A ⊢d
T t : B

Γ ⊢d
T (λx : A.t) : Πx : A.B

lambda
Γ ⊢d

T s : Πx : A.B Γ ⊢d
T t : A

Γ ⊢d
T (s t) : B[x/t]

appl

Γ ⊢d
T s : A Γ ⊢d

T t : A

Γ ⊢d
T (s =A t) : o

=type
Γ ⊢d

T A ≡ A′ Γ, x : A ⊢d
T t =B t′

Γ ⊢d
T λx : A.t =Πx : A.B λx : A′.t′

congλ

Γ ⊢d
T s =Πx : A.B s′ Γ ⊢d

T t =A t′

Γ ⊢d
T s t =B[x/t] s′ t′

congAppl
Γ ⊢d

T s : A

Γ ⊢d
T s =A s

refl

Γ ⊢d
T s =A t

Γ ⊢d
T t =A s

sym
Γ ⊢d

T s : (Πx : A.B) x ̸∈ Vs
Γ ⊢d

T s =Πx : A.B λx : A.s x
eta

Γ ⊢d
T (λx : A.s) t : B

Γ ⊢d
T (λx : A.s) t =B s[x/t]

beta
⊢d
T Γ Ctx

Γ ⊢d
T ⊥ : o

⊥type
Γ ⊢d

T s : o Γ ⊢d
T ⊥

Γ ⊢d
T s

⊥e

Γ ⊢d
T s : o

Γ ⊢d
T (¬s) : o

¬type
Γ ⊢d

T s : o Γ, s ⊢d
T ⊥

Γ ⊢d
T ¬s

¬i
Γ ⊢d

T s Γ ⊢d
T ¬s

Γ ⊢d
T ⊥

¬e

Γ ⊢d
T ¬¬s

Γ ⊢d
T s

¬¬e
Γ ⊢d

T s : o Γ, s ⊢d
T t : o

Γ ⊢d
T (s ⇒ t) : o

⇒type
Γ ⊢d

T s : o Γ, s ⊢d
T t

Γ ⊢d
T s ⇒ t

⇒i

Γ ⊢d
T s ⇒ t Γ ⊢d

T s

Γ ⊢d
T t

⇒e
Γ, x : A ⊢d

T s : o

Γ ⊢d
T ∀x : A.s : o

∀type
Γ, x : A ⊢d

T s

Γ ⊢d
T ∀x : A.s

∀i

Γ ⊢d
T ∀x : A.s Γ ⊢d

T t : A

Γ ⊢d
T s[x/t]

∀e
Γ ⊢d

T A ≡ A′ Γ, x : A ⊢d
T s =o s′

Γ ⊢d
T ∀x : A.s =o ∀x : A′.s′

cong∀

Γ ⊢d
T s =o s′ Γ ⊢d

T s′

Γ ⊢d
T s

cong⊢ Γ ⊢d
T s⊥ Γ ⊢d

T s(¬⊥)

Γ ⊢d
T ∀x : o.sx

boolExt

Γ ⊢d
T s : o Γ, x : A ⊢d

T s A simple type
Γ ⊢d

T s
nonempty

Fig. 1. Natural Deduction Calculus for DHOL
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simply typed skeletons by ignoring arguments of base types. The thereby lost
information on concrete base type arguments is restored with the help of a
partial equivalence relation (PER) A∗ for each type A. A PER is a symmetric,
transitive relation. The elements on which it is also reflexive are intended to
be the members of the original dependent type, i.e., Γ ⊢d

T s : A if and only if
Γ ⊢s

T
A∗ s s.

Definition 1. The translation from DHOL to HOL is given by the erasure func-
tion s as well as A∗ which computes the formula representing the corresponding
PER of a type A. The functions are mutually defined by recursion on the gram-
mar of DHOL. The erasure of a theory (context) is defined as the theory (context)
which consists of its erased components.

o = o a t1 . . . tn = a

Πx : A.B = A → B x = x

λx : A.s = λx : A. s s t = s t

⊥ = ⊥ ¬s = ¬s
s ⇒ t = s ⇒ t s =A t = A∗ s t

∀x : A.s = ∀x : A. A∗ x x ⇒ s x : A = x : A,A∗ x x

a : Πx1 : A1. · · · Πxn : An. tp = a : tp, a∗ : A1 → · · · → An → a → a → o, aper

o∗ s t = s =o t

(a t1 . . . tn)
∗ s t = a∗ t1 . . . tn s t

(Πx : A.B)∗ s t = ∀x, y : A. A∗ x y ⇒ B∗ (s x) (t y)

Here, aper is defined as follows:

aper = ∀x1 : A1. . . . ∀xn : An. ∀u, v : a. a∗ x1 . . . xn u v ⇒ u =a v

Theorem 1 (Completeness [15]).

– if Γ ⊢d
T A : tp then Γ ⊢s

T
A : tp and A∗ is a PER over A

– if Γ ⊢d
T A ≡ B then Γ ⊢s

T
∀x, y : A. A∗ x y =o B∗ x y

– if Γ ⊢d
T s : A then Γ ⊢s

T
s : A and Γ ⊢s

T
A∗ s s

– if Γ ⊢d
T s then Γ ⊢s

T
s

Theorem 2 (Soundness [15]).

– if Γ ⊢d
T s : o and Γ ⊢s

T
s then Γ ⊢d

T s

– if Γ ⊢d
T s : A and Γ ⊢d

T t : A and Γ ⊢s
T
A∗ s t then Γ ⊢d

T s =A t

Note that the erasure treats simple types and dependent types in the same
way. In the following, we define a post-processing function Φ on top of the original
erasure [15] which allows us to erase to simpler but equivalent formulas. The goal
of Φ is to replace A∗ s t where A is a simple type by s =A t. As a consequence,
the guard A∗ x x in ∀x : A.s for simple types A can be removed. The following
definition gives a presentation of Φ as a pattern rewrite system [11].
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Definition 2. Given a HOL term s, we define Φ(s) to be the HOL term which
results from applying the following pattern rewrite rules exhaustively to all sub-
terms in a bottom-up fashion:

a∗ F G → F =a G

∀x, y : A. (x =A y) ⇒ (F x =B G y) → F =A→B G

∀x : A. (x =A x) ⇒ F x → ∀x : A. F x

Here, F,G are free variables for terms, a∗ denotes the constant for the PER of
a simple base type a and A,B are placeholders for simple types. Given a HOL
theory T , there are finitely many instances for a∗ but infinite choices for A and
B, so the pattern rewrite system is infinite.

Lemma 1. Assume Γ ⊢d
T s : o. Γ ⊢d

T s if and only if Γ ⊢s
T
Φ(s).

Proof. Since the erasure is sound and complete (Theorem 2 and Theorem 1), it
suffices to show that Γ ⊢s

T
Φ(s) if and only if Γ ⊢s

T
s. Consider the rules from

Definition 2. Φ(s) is well-defined: Clearly, the rules terminate and confluence
follows from the lack of critical pairs [11]. Hence, it is sufficient to prove Γ ⊢s

T
l

if and only if Γ ⊢s
T
r for every rule in Definition 2. For the first rule, assume

Γ ⊢s
T
a∗ F G. Since aper ∈ T , we have Γ ⊢s

T
F =a G. Now assume Γ ⊢s

T
F =a G.

Since F has type a, we obtain Γ ⊢d
T F =a F . Completeness of the erasure yields

Γ ⊢s
T
a∗ F F . Now, the assumption allows us to replace equals by equals, so

we conclude Γ ⊢s
T

a∗ F G. The desired result for the second rule follows from
extensionality. Finally, the third rule is an easy logical simplification. ⊓⊔

Given a theory T (context Γ ) we write Φ(T ) (Φ(Γ )) to denote its erased
version where formulas have been simplified with Φ.

Corollary 1. Assume Γ ⊢d
T s : o. Γ ⊢d

T s if and only if Φ(Γ ) ⊢s
Φ(T )

Φ(s).

Example 2. Consider again the axiom recursively defining app from Example 1

∀n,m : nat, z : elem, x : lst n, y : lstm.

app (s n)m (cons n z x) y =lst (s (plus n m)) cons (plus n m) z (app n m x y)

which we refer to as sapp. Its post-processed erasure Φ(sapp) is given by the
following formula which is simpler than sapp:

∀n,m : nat, z : elem, x : lst. lst∗ n x x ⇒ ∀y : lst. lst∗ m y y ⇒ lst∗
(
s (plus n m)

)(
app (s n)m (cons n z x) y

) (
cons (plus n m) z (app n m x y)

)
3 Tableau Calculus for DHOL

3.1 Rules

The tableau calculus from [1,7] is the basis of Satallax [4] and its fork Lash [6].
We present an extension of this calculus from HOL to DHOL by extending
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the rules to DHOL as well as providing tableau rules for the translation from
DHOL to HOL. A branch is a 3-tuple (T, Γ, Γ ′) which is well-formed if ⊢d T Thy,
⊢d
T Γ Ctx and ⊢s

Φ(T ) Γ
′ Ctx. Intuitively, the theory contains the original problem

and remains untouched while the contexts grow by the application of rules.
Furthermore, DHOL and HOL are represented separately: For DHOL, the theory
T and context Γ are used while HOL has a separate context Γ ′ with respect
to the underlying theory Φ(T ). In particular, each rule in Figure 1 really stands
for two rules: one that operates in DHOL and the original version that operates
in HOL. Except for the erasure rules TER1 and TER2 which add formulas to the
HOL context based on information from the DHOL theory and context, the rules
always stay in DHOL or HOL, respectively. More formally, a step is an n + 1-
tuple ⟨(T, Γ, Γ ′), (T, Γ1, Γ

′
1), . . . , (T, Γn, Γ

′
n)⟩ of branches where ⊥ ̸∈ T, Γ, Γ ′ and

either Γ ⊂ Γi and Γ ′ = Γ ′
i for all 1 ⩽ i ⩽ n or Γ = Γi and Γ ′ ⊂ Γ ′

i for all
1 ⩽ i ⩽ n. Given a step ⟨A,A1, . . . , An⟩, the branch A is called its head and
each Ai is an alternative.

A rule is a set of steps defined by a schema. For example, the rule T⇒
from Figure 1 indicates the set of steps ⟨(T, Γ, Γ ′), (T, Γ1, Γ

′
1), (T, Γ2, Γ

′
2)⟩ where

⊥ ̸∈ T, Γ, Γ ′ and either s ⇒ t ∈ T, Γ or s ⇒ t ∈ Φ(T ), Γ ′. In the former case, we
have Γ1 = Γ,¬s and Γ2 = Γ, t as well as Γ ′ = Γ ′

1 = Γ ′
2. The latter case is the

same but with the primed and unprimed variants swapped.

In the original tableau calculus [1, 7], normalization is defined with respect
to an axiomatized generic operator [·]. As one would expect, one of these axioms
states that the operator does not change the semantics of a given term. Since
there is no formal definition of DHOL semantics yet, we simply use [s] to denote
the βη-normal form of s which is in accordance with our implementation.

A rule applies to a branch A if some step in the rule has A as its head.
A tableau calculus is a set of steps. Let T be the tableau calculus defined by
the rules in Figure 1. The side condition of freshness in T¬∀ means that for a
given step with head (T, Γ, Γ ′) there is no type A such that y : A ∈ T, Γ or
y : A ∈ Φ(T ), Γ ′ and we additionally require that there is no name x such that
¬[s x] ∈ T, Γ or ¬[s x] ∈ Φ(T ), Γ ′. In practice, this means that to every formula,
T¬∀ can be applied at most once. Furthermore, the side condition t : A in the
rule T∀ means that either Γ ⊢d

T t : A or Γ ′ ⊢s
Φ(T ) t : A depending on whether the

premise is in T, Γ or Φ(T ), Γ ′. The side condition s : o in the rule TER1
means

that Γ ′ ⊢s
Φ(T ) s : o. This is to prevent application of TER1

before the necessary
type information is obtained by applying TER2

.

The set of T -refutable branches is defined inductively: If ⊥ ∈ T, Γ, Γ ′, then
(T, Γ, Γ ′) is refutable. If ⟨A,A1, . . . , An⟩ is a step in T and every alternative Ai

is refutable, then A is refutable.

The rules in Figure 1 strongly resemble the tableau calculus from [1]. In order
to support DHOL, we replaced simple types by their dependent counterparts. To
that end, we tried to remain as simple as possible by only allowing syntactically
equivalent types in T∀ and TCON: Adding a statement like A ≡ A′ as a premise
would change the tableau calculus as well as the automated proof search signif-
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T¬
s,¬s
⊥ T ̸=

s ̸=at1...tn s

⊥ T¬¬
¬¬s
s

T⇒
s ⇒ t

¬s | t T¬⇒
¬(s ⇒ t)

s,¬t

T∀
∀x : A.s

[s[x/t]]
t : A T¬∀

¬∀x : A.s

y : A,¬[s[x/y]] y fresh TBE
s ̸=o t

s,¬t | ¬s, t

TBQ
s =o t

s, t | ¬s,¬t TFE
s ̸=Πx : A.B t

¬[∀x. sx = tx]
x ̸∈ Vs ∪ Vt TFQ

s =Πx : A.B t

[∀x. sx = tx]
x ̸∈ Vs ∪ Vt

TMAT
x s1 . . . sn,¬ x t1 . . . tn
s1 ̸= t1 | · · · | sn ̸= tn

n ⩾ 1 TDEC
x s1 . . . sn ̸=au1...un x t1 . . . tn

s1 ̸= t1 | · · · | sn ̸= tn
n ⩾ 1

TCON
s =at1...tn t, u ̸=at1...tn v

s ̸= u, t ̸= u | s ̸= v, t ̸= v
TER1

s

[Φ(s)]
s : o TER2

x : A

x : A,A∗ x x

Fig. 2. Tableau rules for DHOL

icantly, so these situations are handled by the erasure for which the additional
rules TER1

, TER2
are responsible.

It is known that the restriction of T to HOL (without TER1
and TER2

) is
sound and complete with respect to Henkin semantics [1, 7]. Furthermore, due
to Corollary ??, the rules TER1 and TER2 define a sound and complete translation
from DHOL to HOL with respect to Rothgang et al.’s definition of provability
in DHOL [15].

3.2 Soundness and Completeness

In general, a soundness result based on the refutability of a branch (T, Γ, Γ ′) is
desirable. If there were a definition of semantics for DHOL which is a conserva-
tive extension of Henkin semantics, the proof could just refer to satisfiability of
T, Γ, Γ ′. Unfortunately, this is not the case. Note that an appropriate definition
of semantics is out of the scope of this paper: In addition to its conception, we
would have to prove soundness and completeness of ⊢d on top of the correspond-
ing proofs for our novel tableau calculus. Therefore, soundness and completeness
of the tableau calculus will be established with respect to provability in DHOL or
HOL. Unfortunately, this requirement complicates the proof tremendously as a
refutation can contain a mixture of DHOL, erasure and HOL rules. Therefore, we
have to consider both HOL and DHOL and need to establish a correspondence
between Γ and Γ ′ which is difficult to put succinctly and seems to be impossible
without further restricting the notion of a well-formed branch. Therefore, we
prove soundness and completeness with respect to a notion of refutability which
has three stages: At the beginning, only DHOL rules are applied, the second
stage is solely for the erasure and in the last phase, only HOL rules are applied.
Note that this notion of refutability includes the sound but incomplete strategy
of only using native DHOL rules as well as the sound and complete strategy of
exclusively working with the erasure.
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Definition 3. A branch (T, Γ, Γ ′) is s-refutable if it is refutable with respect to
the HOL rules.

Lemma 2. A well-formed branch (T, Γ, Γ ′) is s-refutable ⇐⇒ Γ ′ ⊢s
Φ(T )

⊥.

Proof. Immediate from soundness and completeness of the original HOL calculus
as well as soundness and completeness of ⊢s. ⊓⊔

Definition 4. The set of e-refutable branches is inductively defined as follows:
If (T, Γ, Γ ′) is s-refutable and Γ ′ ⊆ Φ(Γ ), then it is e-refutable. If ⟨A,A1⟩ ∈
TER1

∪ TER2
and A1 is e-refutable, then A is e-refutable.

Lemma 3. If (T, Γ, Γ ′) is well-formed and e-refutable then Φ(Γ ) ⊢s
Φ(T )

⊥.

Proof. Let (T, Γ, Γ ′) be well-formed and e-refutable. We proceed by induction
on the definition of e-refutability. If (T, Γ, Γ ′) is s-refutable then Γ ′ ⊢s

Φ(T ) ⊥ by
Lemma 2. Since Γ ′ ⊆ Φ(Γ ) we also have Φ(Γ ) ⊢s

Φ(T ) ⊥. For the induction step,
let ⟨(T, Γ, Γ ′), (T, Γ, Γ ′

1)⟩ be a step with either TER1
or TER2

and assume that the
branch (T, Γ, Γ ′

1) is e-refutable. Since well-formedness of (T, Γ, Γ ′
1) follows from

the well-formedness of (T, Γ, Γ ′), the induction hypothesis yields Φ(Γ ) ⊢s
Φ(T ) ⊥

as desired. ⊓⊔

Definition 5. The set of d-refutable branches is inductively defined as follows:
If (T, Γ, ·) is e-refutable or ⊥ ∈ T, Γ , then it is d-refutable. If ⟨A,A1, . . . , An⟩ ∈
T \ (TER1

∪ TER2
) and every alternative Ai is d-refutable, then A is d-refutable.

Next, we have to prove soundness of every DHOL rule. For most of the rules,
this is rather straightforward. We show soundness of TFE, TFQ and TDEC as
representative cases and start with an auxiliary lemma.

Lemma 4. Assume Γ ⊢d
T s : o. We have Γ ⊢d

T s if and only if Γ ⊢d
T [s].

Proof. By the beta and eta rules, we have Γ ⊢d
T s =o [s]. Using cong⊢ we obtain

the desired result in both directions. ⊓⊔

Lemma 5 (TFE). Let (T, Γ, Γ ′) be a well-formed branch. Choose x such that
x ̸∈ Vs ∪ Vt and assume s ̸=Πx : A.B t ∈ T, Γ . If Γ,¬[∀x : A.sx = tx] ⊢d

T ⊥ then
Γ ⊢d

T ⊥.

Proof. From the assumptions and Lemma 7, we obtain Γ ⊢d
T s ̸=Πx : A.B t and

Γ ⊢d
T ∀x : A.sx =B tx. Furthermore, an application of ∀e yields Γ, x : A ⊢d

T

sx =B tx. Using congλ, we get Γ ⊢d
T (λx : A.sx) =Πx : A.B (λx : A.tx). Hence,

we can apply eta (x ̸∈ Vs∪Vt) , sym and the admissible rule trans [?] which says
that equality is transitive to get Γ ⊢d

T s =Πx : A.B t and therefore Γ ⊢d
T ⊥. ⊓⊔

Lemma 6 (TFQ). Let (T, Γ, Γ ′) be a well-formed branch. Assume s =Πx : A.B

t ∈ T, Γ and x ̸∈ Vs ∪ Vt. If Γ, [∀x : A.sx = tx] ⊢d
T ⊥ then Γ ⊢d

T ⊥.
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Proof. From the assumptions, Γ ⊢d
T ¬[s] =o [¬s], cong⊢ and Lemma 7, we

obtain Γ ⊢d
T s =Πx : A.B t and Γ ⊢d

T ¬∀x : A.sx =B tx. Furthermore, we have
Γ, x : A ⊢d

T sx =B tx by refl and congAppl. Hence, ∀i yields Γ ⊢d
T ∀x : A.sx =B

tx and we conclude by an application of ¬e. ⊓⊔

Lemma 7 (TDEC). Let (T, Γ, Γ ′) be a well-formed branch. Assume

x s1 . . . sn ̸=au1...um x t1 . . . tn ∈ T, Γ

and Γ ⊢d
T x : Πy1 : A1 · · ·Πyn : An.a u

′
1 . . . u′

m where ui = u′
i[y1/s1 . . . yn/sn] for

1 ⩽ i ⩽ m. If Γ, si ̸=Ai[x1/s1,...,xi−1/si−1] ti ⊢d
T ⊥ for all 1 ⩽ i ⩽ n then Γ ⊢d

T ⊥.

Proof. From the assumptions, we obtain Γ ⊢d
T si =Ai[x1/s1,...,xi−1/si−1] ti for all

1 ⩽ i ⩽ n and Γ ⊢d
T x =Πy1 : A1···Πyn : An.au′

1...u
′
m

x. Hence, n applications of the
congruence rule for application yield Γ ⊢d

T xs1 . . . sn =au1...um x t1 . . . tn. Since
we also have Γ ⊢d

T x s1 . . . sn ̸=au1...um x t1 . . . tn, we obtain Γ ⊢d
T ⊥. ⊓⊔

Now we are ready to prove the soundness result for T .

Theorem 3. If (T, Γ, ·) is well-formed and d-refutable then Γ ⊢d
T ⊥.

Proof. Let (T, Γ, ·) be well-formed and d-refutable. We proceed by induction on
the definition of d-refutability. If (T, Γ, ·) is e-refutable, the result follows from
Lemma 3 together with Corollary ??. If ⊥ ∈ T, Γ then clearly Γ ⊢d

T ⊥. For
the inductive case, consider a step ⟨(T, Γ, ·), (T, Γ1, ·), . . . , (T, Γn, ·)⟩ with some
DHOL rule. Since (T, Γ, ·) is d-refutable, all alternatives must be d-refutable.
If we manage to show well-formedness of every alternative, we can apply the
induction hypothesis to obtain Γi ⊢d

T ⊥ for all 1 ⩽ i ⩽ n. Then, we can conclude
Γ ⊢d

T ⊥ by soundness of the DHOL rules. Hence, it remains to prove well-
formedness of the alternatives. In most cases, this is straightforward. We only
show one interesting case, namely TDEC.

Instead of proving Γ, si ̸=Ai[x1/s1,...,xi−1/si−1] ti ⊢d
T ⊥ for all 1 ⩽ i ⩽ n we

show that Γ ⊢d
T si =Ai[x1/s1,...,xi−1/si−1] ti for all 1 ⩽ i ⩽ n. Since (T, Γ, ·) is a

well-formed branch, both s1 and t1 have type A1. Hence, (T, (Γ, s1 ̸=A1
t1), ·)

is well-formed and our original induction hypothesis yields Γ, s1 ̸=A1
t1 ⊢d

T

⊥ from which we obtain Γ ⊢d
T s1 =A1

t1. Now let i ⩽ n and assume we
have Γ ⊢d

T sj =Aj [x1/s1,...,xj−1/sj−1] tj for all j < i (∗). This is only possible
if Γ ⊢d

T tj : Aj [x1/s1, . . . , xj−1/sj−1] for all j < i. Since (T, Γ, ·) is a well-
formed branch, it is clear that Γ ⊢d

T si : Ai[x1/s1, . . . , xi−1/si−1] and Γ ⊢d
T

ti : Ai[x1/t1, . . . , xi−1/ti−1]. From (∗), we obtain

Γ ⊢d
T ti : Ai[x1/s1, . . . , xi−1/si−1],

so (T, (Γ, si ̸=Ai[x1/s1,...,xi−1/si−1] ti), ·) is well-formed. Hence, the original induc-
tion hypothesis yields Γ ⊢d

T si =Ai[x1/s1,...,xi/si−1] ti as desired. ⊓⊔

In the previous proof, we can see that for TDEC, well-formedness of an al-
ternative depends on refutability of all branches to the left. Note that the same
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holds for TMAT and T⇒. This is a distinguishing feature of DHOL as in tableaux,
branches are usually considered to be independent.

Finally, completeness is immediate from the completeness of the HOL tableau
calculus and the erasure:

Theorem 4. If Γ ⊢d
T ⊥ then (T, Γ, ·) is d-refutable.

Proof. Let Γ ⊢d
T ⊥. Using Corollary ?? and Lemma 2 we conclude s-refutability

of (T, Γ, Φ(Γ )). By definition, (T, Γ, Φ(Γ )) is also e-refutable. Furthermore, by
inspecting TER1

and TER2
we conclude that (T, Γ, ·) is also e-refutable and there-

fore d-refutable. ⊓⊔

4 Implementation

We implemented the tableau calculus for DHOL as an extension of Lash [6] which
is a fork of Satallax, a successful automated theorem prover for HOL [4]. By
providing an efficient C implementation of terms with perfect sharing as well as
other important data structures and operations, Lash outperforms Satallax when
it comes to the basic ground tableau calculus which both of them implement.
However, Lash removes a lot of the additional features beyond the basic calculus
that was implemented in Satallax. Nevertheless, this was actually beneficial for
our purpose as we could concentrate on adapting the core part. Note that Lash
and Satallax do not just implement the underlying ground tableau calculus but
make heavy use of SAT-solving and a highly customizable priority queue to guide
the proof search [4, 5].

For the extension of Lash to DHOL, the data structure for terms had to be
changed to support dependent function types as well as quantifiers and lambda
abstractions with dependent types. Of course, it would be possible to represent
everything in the language of DHOL but the formulation of DHOL suggests
that the prover should do as much as possible in the HOL fragment and only use
“proper” DHOL when it is really necessary. With this in mind, the parser first
always tries to produce simply-typed terms and only resorts to dependent types
when it is unavoidable. Therefore, the input problem often looks like a mixture
of HOL and DHOL even though everything is included in DHOL. A nice side
effect of this design decision is that our extension of Lash works exactly like
the original version on the HOL fragment except for the fact that it is expected
to be slower due to the numerous case distinctions between simple types and
dependent types which are needed in this setting.

Although DHOL is not officially part of TPTP THF, it can be expressed due
to the existence of the !>-symbol which is used for polymorphism. Hence, a type
Πx : A.B is represented as !>[X:A]:B. For simplicity and efficiency reasons, we
did not implement dependent types by distinguishing base types from their term
arguments but represent the whole dependent type as a term. When parsing a
base type a, Lash automatically creates an eponymous constant of type tp to be
used in dependent types as well as a simple base type a0 for the erasure and a
constant a∗ for its PER. The flags DHOL_RULES_ONLY and DHOL_ERASURE_ONLY
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control the availability of the erasure as well as the native DHOL rules, respec-
tively. Note that the implementation is not restricted to d-refutability but allows
for arbitrary refutations. In the standard flag setting, however, only the native
DHOL rules are used. Clearly, this constitutes a sound strategy. It is incomplete
since the confrontation rule only considers equations with syntactically equiva-
lent types. We have more to say about this in Section ??.

4.1 Type Checking

By default, problems are only type-checked with respect to their simply-typed
skeleton. If the option exactdholtypecheck is set, type constraints stemming
from the term arguments of dependent base types are generated and added to the
conjecture. The option typecheckonly discards the original conjecture, so Lash
just tries to prove the type constraints. Since performing the type check involves
proper theorem proving, we added the new SZS ontology statuses TypeCheck
and InexactTypecheck to the standardized output of Lash. Here, the former
one means that a problem type checks while the latter one just states that it
type checks with respect to the simply-typed skeleton.

For the generation of type constraints, each formula of the problem is tra-
versed like in normal type checking. In addition, every time a type condition
a t1 . . . tn ≡ a s1 . . . sn comes up and there is some i such that si and ti are not
syntactically equivalent, a constraint stating that si = ti is provable is added
to the set of type constraints. Note that it does not always suffice to just add
si = ti as this equation may contain bound variables or only hold in the con-
text in which the constraint appears. To that end, we keep relevant information
about the term context when generating these constraints. Whenever a forall
quantifier or lambda abstraction comes up, it is translated to a corresponding
forall quantifier in the context since we want the constraint to hold in any case.
While details like applications can be ignored, it is important to keep left-hand
sides of implications in the context as it may be crucial for the constraint to be
met. In general, any axiom may contribute to the typechecking proof.

Example 3. The conjecture

∀n : nat, x : lst n. n =nat 0 ⇒ app n n x x = x

is well-typed if the type constraint

∀n : nat, x : lst n. n =nat 0 ⇒ plus n n =nat n

is provable. Lash can generate this constraint and finds a proof quickly using the
axiom ∀n : nat. plus 0 n =nat n.

Since conjunctions and disjunctions are internally translated to implications,
it is important to note that we process formulas from left to right, i.e. for x : lstn
and y : lstm, the proposition m ̸= n∨ x = y type checks because we can assume
m = n to process x = y. Consequently, x = y ∨ m ̸= n does not type check.
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As formulas are usually read from left to right, this is a natural adaption of
short-circuit evaluation in programming languages. Furthermore, it is in accor-
dance with the presentation of Rothgang et al. [15] as well as the corresponding
implementation in PVS [16]. As a matter of fact, PVS handles its undecidable
type checking problem in essentially the same way as our new version of Lash
by generating so called type correctness conditions (TCCs).

4.2 Implementation of the Rules

Given the appropriate infrastructure for dependent types, the implementation
of most rules in Figure 1 is a straightforward extension of the original HOL
implementation. For T∀, the side condition Γ ⊢d

T t : A is undecidable in general.
It has been chosen to provide a simple characterization of the tableau calculus.
Furthermore, it emphasizes that we do not instantiate with terms whose type
does not literally match with the type of the quantified variable. In the imple-
mentation, we keep a pool of possible instantiations for types A which occur
in the problem. The pool gets populated by terms of which we know that they
have a given type because this information was available during parsing or proof
search. Hence, we only instantiate with terms t for which we already know that
Γ ⊢d

T t : A holds.
Given an equation s =A t, there are many candidate representations of A

modulo type equality. When we build an equation in the implementation, we usu-
ally use the type of the left-hand side. Since all native DHOL rules of the tableau
calculus enforce syntactically equivalent types, the ambiguity with respect to the
type of an equation leads to problems. For example, consider a situation where
Γ ⊢d

T s : A, Γ ⊢d
T t : B and Γ ⊢d

T s =A t which implies Γ ⊢d
T A ≡ B. During

proof search, it could be that Γ ⊢d
T t ̸= s is established. Clearly, this is a contra-

diction which leads to a refutation, but usually the inequality annotated with
the type B which makes the refutation inaccessible for our native DHOL rules.
Therefore, we implemented rules along the lines of

TSYMCAST1

s =A t

t =B s
t : B TSYMCAST2

s ̸=A t

t ̸=B s
t : B

which do not only apply symmetry but also change the type of the equality in
a sound way. Like in T∀, the side condition should be read as Γ ⊢d

T t : B which
makes it undecidable. However, in practice, we can compute a representative of
the type of t given the available type information. While experimenting with the
new DHOL version of Lash, the implementation of these rules proved to be very
beneficial for refutations which only work with the DHOL rules. For the future,
it is important to note that TSYMCAST1

and TSYMCAST2
are not sound for the

extension of DHOL to predicate subtypes as Γ ⊢d
T s =A t and Γ ⊢d

T t : B do not
imply Γ ⊢d

T A ≡ B anymore.

4.3 Generating Instantiations

Since Lash implements a ground tableau calculus, it does not support higher-
order unification. Therefore, the generation of suitable instantiations is a major
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issue. In the case of DHOL, it is actually beneficial that Lash already implements
other means of generating instantiations since the availability of unification for
DHOL is questionable: There exist unification procedures for dependent type
theories (see for example [10]) but for DHOL such a procedure would also have
to address the undecidable type equality problem.

For simple base types, it suffices to consider so-called discriminating terms
to remain complete [1]. A term s of simple base type a is discriminating in
a branch A if s ̸=a t ∈ A or t ̸=a s ∈ A for some term t. For function
terms, completeness is guaranteed by enumerating all possible terms of a given
type. Of course, this is highly impractical, and there is the important flag
INITIAL_SUBTERMS_AS_INSTANTIATIONS which adds all subterms of the initial
problem as instantiations. This heuristic works very well in many cases.

For dependent types, we do not check for type equality when instantiating
quantifiers but only use instantiations with the exact same type (c.f. T∀ in Fig-
ure 1) and let the erasure handle the remaining cases.

An interesting feature of this new version of Lash is the possibility to auto-
matically generate instantiations for induction axioms. Given the constraints of
the original implementation, the easiest way to sneak a term into the pool of
instantiations is to include it into an easily provable lemma and then use the flag
INITIAL_SUBTERMS_AS_INSTANTIATIONS. However, this adds unnecessary proof
obligations, so we modified the implementation such that initial subterms as in-
stantiations also include lambda-abstractions corresponding to forall quantifiers.

Example 4. Consider the induction axiom for lists:

∀p : (Πn : nat. lst n → o). p 0 nil

⇒ (∀n : nat, x : elem, y : lst n. p n y ⇒ p (s n) (cons n x y))

⇒ (∀n : nat, x : lst n. p n x)

Even though it works for arbitrary predicates p, it is very hard for an ATP
system to guess the correct instance for a given problem without unification in
general. However, given the conjecture ∀n : nat, x : lst n. app n 0 x nil =lst n x we
can easily read off the correct instantiation for p where ∀ is replaced by λ.

5 Case Study: List Reversal Is an Involution

Consider the following equational definition of the list reversal function rev:

rev 0 nil =lst 0 nil

∀n : nat, x : elem, y : lst n.

rev (s n) (cons n x y) =lst (sn) app n (s 0) (rev n y) (cons 0 x nil)

The conjecture

∀n : nat, x : lst n. rev n (rev n x) =lst n x (rev-invol)
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Goal Number of Problem Files

app-nil 4
app-assoc 8

app-assoc-m1 5
rev-invol-lem 12

rev-invol 5
Table 1. Amount of problem files per (intermediate) goal

is very easy to state, but turns out to be hard to prove automatically. The proof
is based on the equational definitions of plus and app given in Example 1 as
well as several induction proofs on lists using the axiom from Example 4. In
particular, some intermediate goals are needed to succeed:

∀n : nat, x : lst n. app n 0 x nil =lst n x (app-nil)

∀n1 : nat, x1 : lst n1, n2 : nat, x2 : lst n2, n3 : nat, x3 : lst n3. (app-assoc)
app n1 (plus n2 n3) x1 (app n2 n3 x2 x3)

= app (plus n1 n2) n3 (app n1 n2 x1 x2) x3

∀n : nat, x : lst n, y : elem,m : nat, z : lstm. (app-assoc-m1)
app (plus n (s 0))m (app n (s 0) x (cons 0 y nil)) z = app n (sm) x (consm y z)

∀n : nat, x : lst n,m : nat, y : lstm. (rev-invol-lem)
rev (plus n m) (app n m (rev n x) y) = appm n (revm y) x

Note that for polymorphic lists, this is a standard example of an induction proof
with lemmas (see e.g. [13, Section 2.2]). In the dependently-typed case, however,
many intermediate equations would be ill-typed in interactive theorem provers
like Coq or Lean. In order to succeed in automatically proving these problems,
we had to break them down into separate problems for the instantiation of the
induction axiom, the base case and the step case of the induction proofs. Often,
we further needed to organize these subproblems in manageable steps. Overall,
we created 34 TPTP problem files which are distributed over the intermediate
goals as shown in Table 5. Note that already type checking these intermediate
problems is not trivial: All type constraints are arithmetic equations, and given
the Peano axioms, many of them need to be proven by induction themselves.
Since we are mainly interested in the dependently-typed part, we added the
needed arithmetical facts as axioms. Overall, the problem files have up to 18
axioms including the Peano axioms, selected arithmetical results, the defining
equations of plus, app and rev as well as the list induction axiom. We left out
unnecessary axioms in many problem files to make the proof search feasible.

With our new modes for DHOL which solely work with the native DHOL
rules, Lash can type check and prove all problems easily. If we turn off the native
DHOL rules and only work with the erasure using the otherwise same modes
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with a 60s timeout, Lash can still typecheck all problems but it only manages to
prove 7 out of 34 problems. In order to further evaluate the effectiveness of our
new implementation, we translated all problems from DHOL to HOL using the
Logic Embedding Tool4, which performs the erasure from [15]. We then tested
16 other HOL provers available on SystemOnTPTP5 on the translated problems
with a 60s timeout (without type checking). We found that 5 of the 34 problems
could only be solved by the DHOL version of Lash, including one problem where
it only needs 5 inference steps. Detailed results as well as means to reproduce
them are available on Lash’s website6 together with its source code.

6 Conclusion

Starting from the erasure from DHOL to HOL by Rothgang et al. [15], we devel-
oped a sound and complete tableau calculus for DHOL which we implemented in
Lash. To the best of our knowledge, this makes it the first standalone automated
theorem prover for DHOL. According to the experimental results, configurations
where the erasure is performed as a preprocessing step for a HOL theorem prover
can be outperformed by our new prover by solely using the native DHOL rules.
We hope that this development will raise further interest in DHOL. Possible fur-
ther work includes theoretical investigations such as the incorporation of choice
operators into the erasure as well as a definition of the semantics of DHOL. Fur-
thermore, it is desirable to officially define the TPTP syntax for DHOL which
then opens the possibility of establishing a problem data set on which current
and future tools can be compared. Finally, we would like to extend Lash to
support predicate subtypes. Rothgang et al. already incorporated this into the
erasure but there is no corresponding syntactic support in TPTP yet. In partic-
ular, this would get us much closer to powerful automation support for systems
like PVS.
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A Soundness of DHOL Rules

In the following lemmas, we prove the remaining cases of soundness of the DHOL
tableau rules with respect to the natural deduction calculus in Figure 2. We begin
with two auxiliary lemmas.

Lemma 8. Let T , Γ and s be such that ⊢d T Thy, ⊢d
T Γ Ctx and Γ ⊢d

T s : o. If
Γ, s ⊢d

T ⊥ and Γ,¬s ⊢d
T ⊥, then Γ ⊢d

T ⊥.

Proof. Since Γ, s ⊢d
T ⊥, we have Γ ⊢d

T ¬s. Since Γ,¬s ⊢d
T ⊥, we have Γ ⊢d

T s.
Hence, Γ ⊢d

T ⊥. ⊓⊔

Lemma 9. If Γ ⊢d
T (s =A t) : o then Γ ⊢d

T s : A and Γ ⊢d
T t : A.

Proof. Let Γ ⊢d
T (s =A t) : o. An inspection of the proof system in Figure 2

shows that this can only be inferred by the rule =type which requires Γ ⊢d
T s : A

and Γ ⊢d
T t : A. ⊓⊔

Lemma 10 (T¬). Let (T, Γ, Γ ′) be a well-formed branch. If s ∈ T, Γ and ¬s ∈
T, Γ then Γ ⊢d

T ⊥.

Proof. Clearly, Γ ⊢d
T s and Γ ⊢d

T ¬s. Using the ¬e rule, we obtain Γ ⊢d
T ⊥. ⊓⊔

Lemma 11 (T ̸=). Let (T, Γ, Γ ′) be a well-formed branch. If s ̸=at1...tn s ∈ T, Γ
then Γ ⊢d

T ⊥.

Proof. From s ̸=at1...tn s ∈ T, Γ we obtain Γ ⊢d
T (s ̸=at1...tn s) : o. Note that

this can only be the case if Γ ⊢d
T (s =at1...tn s) : o. Then, Lemma 6 yields

Γ ⊢d
T s : a t1 . . . tn. Hence, we can use the refl rule to get Γ ⊢d s =at1...tn s and

therefore Γ ⊢d
T ⊥ by ¬e. ⊓⊔

Lemma 12 (T¬¬). Let (T, Γ, Γ ′) be a well-formed branch. Assume ¬¬s ∈ T, Γ .
If Γ, s ⊢d

T ⊥ then Γ ⊢d
T ⊥.

Proof. From Γ, s ⊢d
T ⊥ we conclude Γ ⊢d

T ¬s. We have Γ ⊢d
T ¬¬s and therefore

Γ ⊢d
T s by ¬¬e. An application of ¬e concludes the proof. ⊓⊔

Lemma 13 (T⇒). Let (T, Γ, Γ ′) be a well-formed branch. Assume s ⇒ t ∈ T, Γ .
If Γ,¬s ⊢d

T ⊥ and Γ, t ⊢d
T ⊥ then Γ ⊢d

T ⊥.

Proof. From the assumptions, we get Γ ⊢d
T s and Γ ⊢d

T ¬t. Together with
Γ ⊢d

T s ⇒ t, we obtain Γ ⊢d
T t and therefore Γ ⊢d

T ⊥. ⊓⊔
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Lemma 14 (T¬⇒). Let (T, Γ, Γ ′) be a well-formed branch. Assume ¬(s ⇒ t) ∈
T, Γ . If Γ, s,¬t ⊢d

T ⊥ then Γ ⊢d
T ⊥.

Proof. From the assumption, we get Γ ⊢d
T s ⇒ t. Hence, an application of ¬e

yields Γ ⊢d
T ⊥. ⊓⊔

Lemma 15 (T∀). Let (T, Γ, Γ ′) be a well-formed branch. Assume ∀x : A.s ∈
T, Γ and Γ ⊢d

T t : A. If Γ, [s[x/t]] ⊢d
T ⊥ then Γ ⊢d

T ⊥.

Proof. From Γ, [s[x/t]] ⊢d
T ⊥ we get Γ ⊢d

T ¬[s[x/t]]. We also have Γ ⊢d
T ∀x : A.s

and therefore Γ ⊢d
T [s[x/t]] by ∀e and Lemma 7. Finally, Γ ⊢d

T ⊥ by ¬e. ⊓⊔

Lemma 16 (T¬∀). Let (T, Γ, Γ ′) be a well-formed branch. Assume ¬∀x : A.s ∈
T, Γ and y is fresh for T, Γ . If Γ, y : A,¬[s[x/y]] ⊢d

T ⊥ then Γ ⊢d
T ⊥.

Proof. From Γ, y : A,¬[s[x/y]] ⊢d
T ⊥ we obtain Γ, y : A ⊢d

T s[x/y] using Lemma 7.
An application of ∀i yields Γ ⊢d

T ∀y : A.s[x/y] which is the same as Γ ⊢d
T ∀x : A.s.

Since we also have Γ ⊢d
T ¬∀x : A.s, we conclude Γ ⊢d

T ⊥ by ¬e. ⊓⊔

Lemma 17 (TBE). Let (T, Γ, Γ ′) be a well-formed branch. Assume s ̸=o t ∈
T, Γ . If Γ, s,¬t ⊢d

T ⊥ and Γ,¬s, t ⊢d
T ⊥ then Γ ⊢d

T ⊥.

Proof. From the assumptions we obtain Γ, s ⊢d
T t and Γ,¬s ⊢d

T ¬t which is
equivalent to Γ, t ⊢d

T s. Hence, the rule

Γ, s ⊢T t Γ, t ⊢T s

Γ ⊢T s =o t
propExt

which is proven admissible in the appendix of [?] (the extended version of [15])
yields Γ ⊢d

T s =o t and we obtain Γ ⊢d
T ⊥ with ¬e. ⊓⊔

Lemma 18 (TBQ). Let (T, Γ, Γ ′) be a well-formed branch. Assume s =o t ∈
T, Γ . If Γ, s, t ⊢d

T ⊥ and Γ,¬s,¬t ⊢d
T ⊥ then Γ ⊢d

T ⊥.

Proof. By assumption, we have Γ, s ⊢d
T s =o t and Γ, s ⊢d

T s. Hence, we obtain
Γ, s ⊢d

T t by cong⊢. Furthermore, ¬i applied to Γ, s, t ⊢d
T ⊥ yields Γ, s ⊢d

T ¬t.
Hence, we arrive at Γ, s ⊢d

T ⊥ by an application of ¬e. In a similar way, we can
derive Γ,¬s ⊢d

T ⊥. Therefore, an application of Lemma 5 gives us the desired
result. ⊓⊔

Lemma 19 (TMAT). Let (T, Γ, Γ ′) be a well-formed branch. Assume xs1 . . . sn ∈
T, Γ , ¬x t1 . . . tn ∈ T, Γ and let Γ ⊢d

T x : Πy1 : A1 · · ·Πyn : An.o. If

Γ, si ̸=Ai[x1/s1,...,xi−1/si−1] ti ⊢
d
T ⊥

for all 1 ⩽ i ⩽ n then Γ ⊢d
T ⊥.

Proof. Note that xs1 . . . sn ∈ T, Γ and ¬x t1 . . . tn ∈ T, Γ implies

Γ ⊢d
T x s1 . . . sn ̸=o x t1 . . . tn.

Since in Lemma 4 it makes no difference whether the assumption is contained
in T, Γ or is merely provable from it, Lemma 4 can be used to complete the
proof. ⊓⊔
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Lemma 20 (TCON). Let (T, Γ, Γ ′) be a well-formed branch. Assume s =at1...tn

t, u ̸=at1...tn v ∈ T, Γ . If Γ, s ̸= u, t ̸= u ⊢d
T ⊥ and Γ, s ̸= v, t ̸= v ⊢d

T ⊥ then
Γ ⊢d

T ⊥.

Proof. Let Γ, s ̸= u, t ̸= u ⊢d
T ⊥ and Γ, s ̸= v, t ̸= v ⊢d

T ⊥. By Lemma 5 it is
enough to prove Γ, s = u ⊢d

T ⊥ and Γ, s ̸= u ⊢d
T ⊥.

We first prove Γ, s = u ⊢d
T ⊥. By Lemma 5 it is enough to prove Γ, s =

u, t = v ⊢d
T ⊥ and Γ, s = u, t ̸= v ⊢d

T ⊥. Using s = t ∈ T, Γ and symmetry
and transitivity (which is an admissible rule [?]) we can infer Γ, s = u, t = v ⊢d

T

u = v. This along with u ̸= v ∈ T, Γ gives Γ, s = u, t = v ⊢d
T ⊥. In order

to prove Γ, s = u, t ̸= v ⊢d
T ⊥ we again use Lemma 5 to reduce to proving

Γ, s = u, t ̸= v, s = v ⊢d
T ⊥ and Γ, s = u, t ̸= v, s ̸= v ⊢d

T ⊥. We know
Γ, s = u, t ̸= v, s ̸= v ⊢d

T ⊥ already since Γ, t ̸= v, s ̸= v ⊢d
T ⊥. By symmetry and

transitivity, Γ, s = u, t ̸= v, s = v ⊢d
T u = v giving Γ, s = u, t ̸= v, s = v ⊢d

T ⊥.
Hence Γ, s = u, t ̸= v ⊢d

T ⊥ and Γ, s = u ⊢d
T ⊥.

All that remains is to prove Γ, s ̸= u ⊢d
T ⊥. By Lemma 5 it is enough to prove

Γ, s ̸= u, t = u ⊢d
T ⊥ since we already know Γ, s ̸= u, t ̸= u ⊢d

T ⊥. By Lemma 5
it is enough to prove Γ, s ̸= u, t = u, t = v ⊢d

T ⊥ and Γ, s ̸= u, t = u, t ̸= v ⊢d
T ⊥.

We have Γ, s ̸= u, t = u, t = v ⊢d
T ⊥ since Γ, s ̸= u, t = u, t = v ⊢d

T u = v
by symmetry and transitivity. By Lemma 5 all that remains is to prove Γ, s ̸=
u, t = u, t ̸= v, s = v ⊢d

T ⊥ and Γ, s ̸= u, t = u, t ̸= v, s ̸= v ⊢d
T ⊥. We know

Γ, s ̸= u, t = u, t ̸= v, s ̸= v ⊢d
T ⊥ since Γ, t ̸= v, s ̸= v ⊢d

T ⊥. We finally have
Γ, s ̸= u, t = u, t ̸= v, s = v ⊢d

T ⊥ as a consequence of Γ, s ̸= u, t = u, t ̸= v, s =
v ⊢d

T u = v, which again follows from symmetry and transitivity. ⊓⊔
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