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Abstract. Formally verifying the correctness of mathematical proofs is
more accessible than ever, however, the learning curve remains steep for
many of the state-of-the-art interactive theorem provers (ITP). Deriv-
ing the most appropriate subsequent proof step, and reasoning about it,
given the multitude of possibilities, remains a daunting task for novice
users. To improve the situation, several investigations have developed
machine learning based guidance for tactic selection. Such approaches
struggle to learn non-trivial relationships between the chosen tactic and
the structure of the proof state and represent them as symbolic expres-
sions.
To address these issues we (i) We represent the problem as an Induc-
tive Logic Programming (ILP) task, (ii) Using the ILP representation
we enriched the feature space by encoding additional, computationally
expensive properties as background knowledge predicates, (iii) We use
this enriched feature space to learn rules explaining when a tactic is ap-
plicable to a given proof state, (iv) We use the learned rules to filter
the output of an existing tactic selection approach and empirically show
improvement over the non-filtering approaches.

Keywords: Inductive logic programming · Interactive theorem proving.

1 Introduction

Interactive Theorem Provers (ITP), such as Coq [27], Lean [20], and Isabelle [22],
are powerful tools that combine human instruction with computer verification to
construct formal mathematical proofs, providing a reliable means of certification
and ensuring safety in critical applications.

These systems operate as follows: the user specifies a goal to prove, the initial
proof state. Then the user specifies tactics (an operation transforming a proof
state into proof states). Certain tactics close proof states. The proof is complete
if there are no remaining open proof states, i.e., the goal has been proved.



2 L. Zhang et al.

Given the complexity of ITP systems, a fully automated approach to proving
user specified goals is intractable. Numerous investigations have instead focused
on providing the user with guidance through tactic suggestion.

The methods used in practice by ITP users are statistical machine learning
methods such as k-nearest neighbors (k-NN) and naive Bayes [9]. These methods
take a goal g, select a goal g′ most similar goal to g, and rank the particular
tactics relevant for solving g′ based on their likelihood of solving g.

Neural network and LLM-based approaches addressing the task include: Co-
qGym [29] trains tree neural networks to automatically construct proofs for Coq.
Thor [14] combines LLMs and external symbolic solvers to search for proofs for
Isabelle. LLMs are also applied to synthesising training data to enhance the
performance of theorem proving [28]. Despite showing slight improvement in
performance during machine learning evaluations, in practice these methods re-
quire long training for each new theory, which makes them less useful for day to
day proof development.

Additionally, they lack interpretability. When a user receives predictions,
they may want to know why a particular tactic was chosen over another tactic
to better understand what actions they should take in the future.

Furthermore, guidance based on statistical learning approaches often requires
propositionalisation of features, calculated based on the structure of the abstract
syntax tree (AST) of a proof state [31], e.g., there is a path between nodes X and
Y in tree T. For complex and precise features, pre-computation is prohibitively
expensive.

Moreover, logical inference is significantly influenced by the small error mar-
gins present in the statistical inferencing mechanisms of LLMs and similar mod-
els. Thus, predictions based on chained logical inferences will quickly suffer a
loss of predicative accuracy [17].

In contrast to pre-computed features, we represent such features as logic
programs and compute them only when needed for learning. For example, we
define logic programs for the existence of two particular nodes on a path (of
arbitrary length) from the root of the tree as (above(AST,X, Y )). Below, we
present a learned rule for the simplification tactic which states that the tactic
is applicable to a proof state when the goal node of the proof state contains a
constant above two constructs (also in the goal) which differ.

tac(A,"simpl") :-
goal_node(const,A,B,C), goal_node(construct,A,D,E),
goal_above(A,B,D), goal_node(construct,A,F,E),dif(F,D),
goal_above(A,B,F).

The rules, as presented above, are learned using inductive logic programming
(ILP), in particular, Aleph [26]. In addition to providing rules explaining tactic
prediction, we use the resulting rules to filter the output of k-NN, in particular,
the classifier presented in [3,9] (Tactician and TacticToe). Essentially, we want
to determine whether ps, r ⊨ pt where ps is a logic program representing the
proof state, r is a learned rule for the tactic t, and pt is the head predicate of
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r denoting that t should be applied to ps. Thus, given the list of recommended
tactics by a k-NN classifier, we can further filter this list using the learned rules.
Our hypothesis is that features of proof state defined through logic programs can
be used to learn rules which can be used to filter the output of a k-NN model to
improve accuracy.

In addition to improved performance, our approach produces rules to explain
the predictions. Consider again the aforementioned rule of simpl that specifies
that the goal may be simplified if it contains a constant above two construc-
tors with different positions. Here, the constructor and the constant denote the
datatypes of Coq’s terms. The same variable E confirms that the two construc-
tors must correspond to the same identifier in Coq. This rule may suit the Coq
structure S x − S y which denotes (1 + x) − (1 + y). It can be simplified to
x− y. S denotes a constructor, and − denotes a constant. The first argument of
goal_node is a constant that is constrained by us via mode declarations [26].

We use the ILP system Aleph [26] together with a user-defined cost func-
tion to evaluate the learned rules on the Coq standard library. We chose Aleph
because it has empirically good results [5]. We refrain from using modern ILP
approaches such as Popper [6] as the underlying ASP solvers have difficulty gen-
erating models when many variables are required and high-arity definitions are
included in the background. We develop representation predicates (goal_node)
to efficiently denote the nodes of the AST. We also develop feature predicates
(goal_above) which denote the properties of the AST calculated based on the
representation predicates. The motivation for developing feature predicates is
that propositionalization of it would significantly enlarge the representation mak-
ing it impractical to use. Our experiments confirm that feature predicates can
learn more precise rules (rules with higher F-1 scores [25]) compared to repre-
sentation predicates. Additionally, the experiments demonstrate that the com-
bination of ILP and k-NN can improve the accuracy of tactic suggestions in
Tactician, the main tactic prediction system for Coq.

Our contributions can be summarized as follows:

– We express the task of predicting the best tactic to apply to the given proof
state as an ILP task.

– Using the ILP representation we enriched the feature space by encoding ad-
ditional, computationally expensive features as background knowledge predi-
cates, allowing us to avoid grounding the features which are computationally
expensive.

– We use this enriched feature space to learn rules explaining when a tactic is
applicable to a given proof state, and filter the output of an existing tactic
selection approaches using these rules.

– Finally, we empirically show improvement over the non-filtering approaches.

This is the first time an investigation has considered ILP as a tool for im-
proving tactic suggestion methods for ITPs.
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Fig. 1. A Coq proof of the associative property of addition and the proof state before
simpl.

2 Background

2.1 Theorem Proving in Coq

Coq is one of the most popular proof assistants and has been widely used for
building trustworthy software [18] and verifying the correctness of mathematical
proofs [10]. Coq tactics are proof state transformations that provide a high-level
combination of underlying logical inferences.

To illustrate how theorems are formalized in Coq, we present a simple ex-
ample in Figure 1. Here, we want to prove the associative property of addition.
The natural numbers in Coq are defined by two constructors O and S. O de-
notes 0, and S n denotes n + 1. Here, the initial proof state is the same as the
statement of the theorem. We first apply induction on n and obtain two cases
corresponding to the two constructors. In the first case, n equals 0. After some
simplifications, we can prove 0 = 0 by the tactic reflexivity. The second case
is a bit more complicated, and we need to apply the induction hypothesis IHn
to finish the proof. Figure 1 also presents a concrete example of a proof state. A
proof state consists of a goal to prove and several hypotheses. The goal is below
the dashed line. IHn, n, m, and p are the names of hypotheses. A proof state is
often represented as a sequent E ⊢ g where E and g denote the hypotheses and
the goal, respectively.

2.2 k-NN adaptations to theorem proving

Several machine learning algorithms have been adapted to theorem proving
tasks. In most cases, simpler algorithms adapted to formal reasoning tasks per-
form better than deep learning based methods in practice. For this reason, mod-
ified k-NN (explained in [2]) is the main algorithm for TacticToe and Tactician.
Even if evaluations with deep learning or large tree-based classifiers have shown
some theoretical improvements, the simpler algorithms training for the partic-
ular theories developed by users, give a larger practical advantage to the users.
As such, we focus on the modified k-NN in this work. Standard k-NN starts by
calculating the distance between a new proof state and all known proof states in
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the database. The distance is measured by the similarity between the features
of the proof states, usually using tree walks in the AST of the proof state [16].
The dependencies of such selected neighbours, with additional scaling by their
distances, inclusion of the neighbours themselves, and further modifications ex-
hibit commendable empirical performance [24], and are therefore the default
algorithm both in Tactictoe and Tactician.

3 Background Knowledge

To utilize ILP, we need to appropriately define the background knowledge. We
start this section by encoding the nodes of AST as representation predicates.
Then we propose new feature predicates that will allow leveraging the power of
ILP. We finally add predicate anonymization, already very useful in automated
reasoning systems, to representation and feature predicates.

3.1 Representation Predicates

Every node in the AST of the proof state is converted to a fact. There are
two categories of nodes: identifiers of existing objects and constructors of Coq’s
datatype. A node in the goal is converted to goal_node(name, nat, goal_idx).
The argument name refers to the value of the node. A unique natural number
is assigned to every proof state to identify it. The argument goal_idx uses a se-
quence of natural numbers to specify the position of the node in the goal. A node
in a hypothesis is converted to a fact hyp_node(name, nat, hyp_name, hyp_idx).
Compared to a goal_idx, a hyp_idx starts with the name of a hypothesis so that
two hyp_idx from different hypotheses have different prefixes. The goal_node
and hyp_node predicates are called representation predicates in this work.

3.2 Feature Predicates

We also define two categories of feature predicates which represent the properties
of AST based on the representation predicates.

Positional Predicates represents the relative relationships between nodes’ posi-
tions. The predicate goal_left(Goal_idx1, Goal_idx2) and goal_above(Nat,
Goal_idx1, Goal_idx2) respectively checks whether the node is left (above) to
another node in the goal. They are inspired by the horizontal features and vertical
features used in previous works [4,31]. Similarly, we define hyp_left(Hyp_idx1,
Hyp_idx2) and hyp_above(Nat, Hyp_idx1, Hyp_idx2). Previous works have
confirmed the usefulness of using the occurrence numbers of features in feature
characterization, which inspires us to develop the predicate dif(Goal_idx1,
Goal_idx2). It denotes that the same node multiply occurs in different posi-
tions in the goal.
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Equational Predicates check the equality between two terms. The predicate
eq_goal_term(Nat, Goal_idx1, Goal_idx2) checks that the two subterms in
the goal are the same. The root nodes of the two subterms are located in the
positions Goal_idx1 and Goal_idx2, respectively. It pertains to reflexivity
which proves a goal of the equation if the equality holds after some normalization.
Thus, it can prove x = x and inspires us to develop eq_goal_term. The pred-
icate eq_goal_hyp_term(Nat, Goal_idx, Hyp_idx) is inspired by a number
of tactics that check the equality between the goal and the hypotheses, such as
assumption, apply, and auto. For instance, assumption proves a goal if it equals
a hypothesis. Assume a proof state H1 : Q x,H2 : P x → Q x ⊢ Q x which can
be proved by assumption. The predicate eq_goal_hyp_term checks the equal-
ity between the goal and Q x in a hypothesis. The predicate is_hyp_root(Nat,
Hyp_idx) ensures the node is the root of a hypothesis. Thus, it can show the
equality only holds between the goal and H1 instead of H2. With a reason akin
to that of is_hyp_root, we define is_goal_root(Nat, Goal_idx). The equal-
ity between two terms in different hypotheses is checked by eq_hyp_term(Nat,
Hyp_idx1, Hyp_idx2). It is useful for tactics that can apply hypotheses several
times, e.g., auto. Assume a proof state H1 : P x,H2 : P x → Q x ⊢ Q x. First,
auto applies H2 to the goal and changes the goal to P x. Then, it applies H1 to
prove the new goal. The description of the operation requires to show that H1

equals to the premise of H2.

3.3 Anonymous Predicates

We also substitute identifiers with more abstract descriptions to facilitate the
generalization ability of ILP. The substitution is similar to that in ENIGMA
anonymous [13]. The predicates that accept original nodes and abstract nodes
as their first arguments are called original predicates and anonymous predicates,
respectively. We substitute identifiers with their categories, consisting of induc-
tive types, constants, constructors, and variables. Besides the abstract nodes, we
also include the original nodes as arguments in goal_node and hyp_node. We
need them because when checking the equality, we want to compare the original
nodes. Afterward, the anonymous predicates of nodes change to
goal_node(anonym_name, nat, goal_idx, origin_name) and
hyp_node(anonym_name, nat, hyp_name, hyp_idx, origin_name). Some ba-
sic identifiers are not substituted, which consist of logic_false, logic_true,
and, or, iff, not, eq, bool_true, and bool_false. There are both logic and
boolean values of true and false because Coq can represent objects in logic or
programs. Concerning the constructors of Coq’s datatypes, we only retain four
important constructors: rel, prod, lambda, and evar.

4 Method

Figure 2 presents an overview of our learning framework. During the training,
we first perform orthogonalization, a technique introduced in TacticToe, to clean
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training dataset orthogonalization example selection rule generation

prediction proof state tactic prediction by k-NN prediction reordering by rules

optimization reordered predictions evaluation rule optimization

Fig. 2. An overview of the procedures of the learning framework.

the dataset. Then, we select examples and apply ILP to generate rules. To make
predictions, first, k-NN predicts a sequence of likely helpful tactics. Afterward,
the rules are used as a filter to reorder the predictions. The optimization pro-
cedure denotes removing some low-quality rules. This is achieved by evaluating
the reordered predictions in the validation dataset and removing the low-quality
ones. In the next subsections, we describe these parts.

4.1 Orthogonalization

In some cases, different tactics could transform the same proof state in the same
way. This raises ambiguity and makes learning difficult. Orthogonalization is
used to reduce such ambiguity. In the orthogonalization, we only focus on four
very popular tactics in the Coq standard library: assumption, reflexivity,
trivial, and auto. We denote the sets of proof states which can be closed by
assumption, reflexivity, trivial, and auto as AS, R, T , and AT , respec-
tively. There exist the relations AS ⊊ T , R ⊊ T , and T ⊊ AT . For each proof
state ps to which the tactic t is applied, the above four automation tactics are
sequentially tried. If ps can be finished by the automation tactic t′, we replace
t by t′. If none of the four tactics can finish the proof state, the original t is
preserved. The orthogonalization procedure is simpler than in TacticToe, which
orthogonalizes all tactics. This is because our current predicates can only capture
a part of the usage of tactics. We leave full orthogonalization as future work.

4.2 Example Selection

Choosing appropriate training examples is crucial for learning reasonable rules.
For a specific tactic tac, the proof states to which it is applied are regarded as
the positive examples. The proof states to which the tactics different from tac
are applied are regarded as the negative examples. We experimentally determine
the number of positive and negative examples for learning rules. We develop a
clustering mechanism to split positive examples into roughly equal-sized clusters.
We experimentally evaluate the combinations of different numbers of negative
examples and different numbers of positive examples.

We choose an implementation of a constrained k-means algorithm [19] to
split positive examples into clusters of roughly the same size. The original k-
means algorithm [11] can only split examples into a certain number of clusters.
In contrast, constrained k-means can also specify the lower bound and the upper
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Algorithm 1 Preselection Reorder
Input: a sequence of tactics tac1..50 preselected by k-NN for a proof state
Output: a sequence of tactics which is a reorder of the preselection
goods← [ ]
bads← [ ]
for all i ∈ {1..50} do

if taci is accepted by learned rules then
append taci to the end of goods

else
append taci to the end of bads

end if
end for
reorder ← the sequence of appending bads to the end of goods
return reorder

bound of the size of the clusters, which is important to give good sizes of training
examples for each ILP learning task.

We apply k-NN to discover negative examples for each positive example. As
this pre-processing step is not theorem-proving specific, we use the general k-
NN from the scikit-learn library [23]. We use the same features as Tactician [31].
For each positive example, k-NN calculates the distance between it and every
negative example in the training data. Then, we rank the negative examples in
an ascending order of distance.

4.3 Training and Prediction

For each tactic, we use Aleph to generate ILP rules for each cluster of positive
examples and its associated negative examples. Afterwards, all the rules are
merged together, and duplicated rules are removed. Finally, we remove the rules
of tactics that are logically subsumed by other rules of the same tactic.

Algorithm 1 illustrates the procedures of making predictions. We use the
state-of-the-art k-NN in Tactician. The features are the same as those used
in Section 4.2. Assume a pair of a proof state and a tactic (ps, tac). To make
predictions, first, we use k-NN to preselect a sequence of likely tactics tac1..50. For
each taci, we use the learned rules to determine whether to accept it. During the
evaluation, the prediction taci is expected (unexpected) if taci is equal (unequal)
to tac. If the rules accept (reject) a tactic, the prediction is a declared positive
(negative). If the rules reject a taci equal to tac, we regard the prediction made by
the rules as a false negative (FN). Based on the expected tactics and acceptances,
we also obtain true positives (TPs), true negatives (TNs), and false positives
(FPs).

4.4 Rule Optimization

The idea of rule optimization is to remove some low-quality rules to increase the
overall performance of rules. For the evaluation of all rules, we chose the F-1
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score as the metric, defined as 2TP
2TP+FP+FN , because it is a standard metric for

evaluating imbalanced data. As an illustration of the imbalance, given a pair of
a proof state and a tactic tac, rules make predictions for 50 preselected tactics.
However, at most one is the same as tac. If a rule is overly general, which means
that the number of FPs introduced by it is much larger than the number of TPs
introduced by it, removing it will increase the overall F-1 score.

Although a large number of negative examples prevents generating overly
general rules, using them may not produce the best rules for two reasons. First,
our background can merely capture a portion of the usage of the tactics; thus,
a significantly large number of negative examples cannot produce perfect rules
but may produce overly specific rules. Second, some negative examples in our
dataset are actually false negatives. A mathematician may be able to choose the
next step from a couple of tactics that make different proof transformations. Or-
thogonalization in Section 4.1 can only partially remove such overlaps between
tactics, thereby decreasing the number of false negatives. It is computationally
prohibitive to perform full orthogonalization of our data. Observe that, our ex-
periments still show an increase in accuracy in light of the noisy data.

Our approach allows us to learn many rules explaining a particular tactic.
Over the training set, some of these rules capture the usage of the given tactic
better than others. Before, moving to testing on unseen data, we prune the learn
rules and keep only those that performed well on the validation set.

To determine which rules to include, we evaluate the quality of each rule in
the validation dataset and remove those with low qualities. The left rules are used
for the evaluation on the test dataset. We measure the quality of each rule and
remove it if its quality is below a certain threshold. We set different thresholds
and choose the threshold leading to the highest F-1 score via experiments. For
the metric of the quality of a single rule, we use precision, defined as TP

TP+FP .
Here, FP and TP are produced by a single rule. Precision is a good metric
because if a rule is too general, its precision will be low and we will be able to
remove it to improve the overall F-1 score.

5 Experiments

We conducted the experiments on the Coq standard library, a standard dataset
for evaluating machine learning for Coq [7]. It consists of 41 theories and 151,678
proof states in total. The code for this paper is available at https://github.com/
Zhang-Liao/ilp_coq.

Most parameters of Aleph were left as default besides three parameters. We
set the maximal length of a clause to 1,000, the upper bound of proof depth to
1,000, and the largest number of nodes to be explored during the search to 30,000.
We define a cost function similar to the default cost function because, by default,
Aleph cannot learn with no negative examples or only one positive example. The
user-defined cost function was only used when there were no negative examples
or exactly one positive example. We set a timeout of ten minutes for learning.

https://github.com/Zhang-Liao/ilp_coq
https://github.com/Zhang-Liao/ilp_coq
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Fig. 3. F-1 scores of different parameters when qualt is set to 0, 0.18, or 0.30. AF, AR,
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respectively. In the x-axis caption P and N denote pos and neg, respectively.

We conducted the experiments in the transfer-theory setting, which means
different Coq theories are used for training, validation, and testing. We use this
setting because it simulates a practical application scenario of ILP. Mathemati-
cians develop new theories based on the definitions and proven theorems in the
developed theories. To be practically beneficial, ILP should also learn rules from
training theories, and the learned rules should help make tactic suggestions for
theories that do not depend on the training theories.

The training theory should be carefully chosen before conducting experi-
ments. The theory Structures was chosen for training because it has a balanced
distribution of various tactics.

To be consistent with the transfer-theory setting, the testing theories should
not depend on Structures. From the Coq standard library, we chose all theo-
ries which do not depend on Structures for testing including rtauto, FSets,
Wellfounded, funind, btauto, nsatz, and MSets. Afterward, from all the theo-
ries that do not depend on the testing theories, we randomly chose five theories:
PArith, Relations, Bool, Logic, and Lists, merged as the validation dataset.

5.1 Parameter Optimization

In Section 4, we introduced three additional hyper-parameters beyond those
already present in Aleph. They are the size of the cluster of positive examples
(pos), the number of negative examples of each positive example (neg), and the
quality-theshold (qualt) below which the rule should be removed.

We evaluated the F-1 scores of different predicate categories with different
parameters. There are four predicate categories AF, AR, OF, and OR, respec-
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tively denoting the anonymous feature predicates, the anonymous representation
predicates, the original feature predicates, and the original representation predi-
cates. AF and OF contain both representation predicates and feature predicates,
while AF and AR only contain anonymous predicates. We chose pos between 0
and 32. For neg, we chose it between 0 and 64. For all the combinations of pos
and neg, rules were generated. Afterward, the learned rules were evaluated in
the validation dataset. Finally, we calculated the F-1 scores with different values
of qualt. The range of qualt was set between 0 and 0.30, with intervals of 0.06.

Figure 3 depicts the F-1 scores when qualt = {0, 0.18, 0.30}. The significance
of qualt is evident. When qualt = 0, the best F-1 scores of all predicate categories
hover around 0.10. The best scores become significantly higher than 0.10 when
qualt = 0.18. The low F-1 scores of qualt = 0 are caused by some overly general
rules which are discussed in Section 4.4. An example of such an overly general
rule is provided below, showing the necessity of employing an appropriate qualt.

tac(A,"reflexivity") :- goal_node(coq_Init_Logic_eq,A,B,C).

The above rule denotes that reflexivity is appropriate whenever there is an
equal sign in the goal. It is too general and irrelevant to the usage of reflexivity
as explained in Section 3.2. With qualt = 0.30, the best F-1 scores decrease again.
The decline is attributed to the fact that most rules remained by a very high
qualt are excessively specific, thereby producing a limited number of TPs.

Afterward, we analyze the results obtained with qualt = 0.18 since the F-
1 scores are notably higher than those with qualt = {0, 0.30}. None of the
predicate categories obtains the highest F-1 score with pos = 32. We assume the
reason is that an overly large pos may gather many irrelevant positive examples,
which causes difficulties in choosing negative examples. If two positive examples
significantly differ, an appropriate negative example for one of them may be
inappropriate for the other. A large value of neg generally decreases the F-1
scores of all predicates except for AF . A possible explanation is that too many
negative examples cause AR, OF , and OR to learn overly specific rules. Due to
the expressivity of AF , it can still learn some reasonable rules.

Table 1 displays the optimal parameters of all predicate categories. The gen-
eralization does not work well for OF and OR, but already with AF its F-1
score peak necessitates a large neg, indicating its superior ability to distinguish
positive examples from negative examples and to learn precise rules. Perhaps
due to the reason that our background knowledge is incapable of perfectly cap-
turing the usage of tactics, AF also uses pos = 1. A small pos allows AF to learn
many rules for diverse situations. AR requires pos = 16 to achieve its peak F-1
score, possibly due to its limitation of representing AST in a highly generalized
manner.

5.2 Testing

According to parameter optimization, we choose the rules with the best param-
eter and test the performance in the test dataset.
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Table 1. The best parameters
of each predicate category.

Parameter AF AR OF OR
Precision 0.18 0.12 0.18 0.12
Positive 1 16 4 1
Negative 32 1 1 1

Table 2. The F-1 scores in the test dataset.

Theory AF AR OF OR
rtauto 0.564 0.401 0.502 0.440
FSets 0.266 0.125 0.193 0.144
Wellfounded 0.229 0.049 0.134 0.135
funind 0.545 0.0 0.0 0.0
btauto 0.339 0.125 0.162 0.122
nsatz 0.164 0.070 0.163 0.116
MSets 0.272 0.084 0.143 0.095
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Fig. 4. Top-k accuracies in the test theories. It denotes how often the label is predicted
in the first k predictions. The symbol + denotes using the rules learned by a certain
predicate category to reorder the preselections.

Table 2 shows the F-1 scores in the test dataset. Using a background knowl-
edge consisting of AF predicate definitions during training results in rules which
perform best during testing. This owes to that AF can learn precise rules to
characterize the usage of tactics. In comparison, the rules learned by AR are too
general, and the rules learned by OF and OR are too specific. In all theories,
except those consisting of only a few proof states (funind has only 14 proof
states), training with OF, OR, and AR background knowledge results in rules
that perform well on the test data F-1 scores.

We also evaluated whether the combination of ILP and k-NN can improve
the accuracy of k-NN. The algorithm of reordering is explained in Section 4.3.
Figure 4 shows the results of the top-k accuracies in different theories. In all the
theories, the combination of ILP and k-NN increases the accuracies of k-NN.
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6 Case Studies and Limitations

To illustrate that we indeed learn precise rules, besides the example of simpl
presented in Section 1, we present three more examples in this section. The
rule of trivial suits the goal A → B = B. First, trivial introduces A as a
hypothesis, changing the proof state to H : A ⊢ B = B. Next, trivial can
automatically prove B = B. The rule of auto aligns the proof state of the
structure H : B ⊢ A ∨ B. The tactic auto decomposes the disjunction, and
the goal changes to either proving A or proving B. Then, it proves B with the
hypothesis. In contrast, trivial cannot decompose the disjunction. The rule of
intuition suits the goal A ↔ A which cannot be proved by auto. In comparison,
intuition can perform stronger automation than auto and can prove it.

tac(A,"trivial") :-
goal_node(prod,A,B,C),goal_node(const,A,D,E), goal_above(A,B,D),
goal_node(const,A,F,E),goal_above(A,B,F),eq_goal_term(A,F,D).

tac(A,"auto") :-
goal_node(coq_Init_Logic_or,A,B,C),goal_node(const,A,D,E),
goal_above(A,B,D),hyp_node(const,A,F,G,E),eq_goal_hyp_term(A,D,G).

tac(A,"intuition") :-
goal_node(coq_Init_Logic_iff,A,B,C),goal_node(const,A,D,E),
goal_above(A,B,D),goal_node(const,A,F,E),eq_goal_term(A,F,D)

Albeit we can learn several reasonable rules, many tactics are difficult to
describe. There are several reasons for the difficulties. First, our current work
cannot generalize tactics with different arguments. For instance, assume there are
two tactics apply H1 and apply H2 where H1 and H2 are names of hypotheses.
They are regarded as different tactics but may have the same behavior. Second,
the usage of some tactics such as induction is inherently complicated [21].
Third, the same mathematical theorem can proved in various ways which leads
to many overlaps between the usage of tactics.

7 Related Work

There are several tasks of machine learning for theorem proving. Premise selec-
tion is probably the most well-discovered task. It studies the question of how
to predict possibly useful lemmas for a given theorem. Quite a lot of classical
learning methods [1,8] and neural networks [12] have been applied to premise
selection. The most relevant task to our work is learning-based formal theory
proving. Researchers have investigated both employing machine learning to learn
from human-written proofs [9] and guide some sophisticated software to auto-
matically construct proofs [15].

8 Conclusion and Future Work

We have developed the first application of ILP to interactive theorem proving.
For this, we have developed new feature predicates, able to dynamically calculate
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features based on the representation of AST of the proof state. We proposed a
method for using ILP effectively for tactic prediction. We experimentally evalu-
ated the rules learned by ILP and compared them to practically used prediction
mechanisms in ITPs. The experiments confirm that the method gives explain-
able tactic predictions. Our work shows the potential of applications of ILP to
improve ITP tactic suggestion methods.

Several improvements are possible. We would like to use our work with
stronger ILP systems, such as Popper. However, given that our background
knowledge includes predicates with high arity and our method builds large rules
with many variables, the underlying ASP (SAT) solver used by Popper struggles
with the generation of models. Improvements to our encoding and recent work
on improving the performance of Popper can make this research direction viable
in the near future.

Next, it is interesting to use ILP to capture the relations between arguments
of tactics and the objects to which the arguments refer. Finally, we plan to
investigate the application of ILP to other ITP tasks [30].
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