
Differentiable Inductive Logic Programming in
High-Dimensional Space

Stanisław J. Purgał2[0009−0000−1198−9430], David M. Cerna1[0000−0002−6352−603X],
and Cezary Kaliszyk3[0000−0002−8273−6059]

1 Czech Academy of Sciences Institute of Computer Science, Prague, Czechia
dcerna@cs.cas.cz

2 University of Innsbruck, Innsbruck, Austria
sjpurgal@gmail.com

3 University of Melbourne, Melbourne, Australia
cezarykaliszyk@gmail.com

Abstract. Synthesizing large logic programs through symbolic Inductive Logic
Programming (ILP) typically requires intermediate definitions. However, clut-
tering the hypothesis space with invented predicates typically degrades perfor-
mance. In contrast, gradient descent provides an efficient method to find solu-
tions within high-dimensional spaces; a property not fully exploited by neuro-
symbolic ILP approaches. We propose extending the differentiable ILP frame-
work by large-scale (extending its small-scale) predicate invention to emulate
search through a high-dimensional space, and thus allowing us to exploit the ef-
ficacy of gradient descent. We show that large-scale predicate invention is bene-
ficial to differentiable inductive synthesis and results in learning capabilities be-
yond existing neuro-symbolic ILP systems. Furthermore, we achieve these results
without specifying the precise structure of the solution within the inductive bias.

Keywords: Inductive Logic Programming · Differentiable Logics · Predicate In-
vention

1 Introduction

Neuro-symbolic ILP is quickly becoming one of the most important research domains
in inductive synthesis [3]. Such systems can aid explainability research by providing
logical representations of what was learned and providing noise-handling capabilities
to symbolic learners. Systems such as δILP can consistently learn solutions for many
standard inductive synthesis problems [11,25]. Nonetheless, searching through the hy-
pothesis space remains a challenging task. To deal with this difficulty, inductive learn-
ers introduce problem-specific restrictions that reduce the size of the respective search
space [26,24]; what is commonly referred to as language bias. While this is conducive
to solving simple learning tasks, more complex synthesis tasks or tasks where the re-
quired language bias is not easily specifiable remain a formidable challenge.

Predicate invention (PI) is a technique that enables the creation of new predicates
thereby adding shortened programs to the hypothesis space and circumventing the lim-
itations imposed by the user provided background knowledge. However, in purely sym-

2 S.J. Purgał et al.

bolic inductive synthesis, reliance on large-scale PI is avoided, as it is time- and space-
wise too demanding [19], and has only been used effectively in very restricted set-
tings [16].

This paper introduces a novel approach to neuro-symbolic inductive synthesis, com-
patible with large-scale predicate invention, that leverages the power of the highly influ-
ential differentiable ILP [11]. We show that a few changes to the original architecture is
enough to train models using a reduced language bias that tests with significantly higher
success rate. Our extension synthesizes a user-provided number of invented predicates
during the learning process. Large-scale PI is either intractable for most systems due
to memory requirements or results in a performance drop as it clutters the hypothesis
space. In contrast, gradient descent methods generally benefit from large search spaces
(high dimensionality). Thus, we propose introducing a large number of invented predi-
cates to improve performance. We evaluate the approach on several standard ILP tasks
(many derived from [11]), including several which existing neuro-symbolic ILP sys-
tems find to be a significant challenge (see Hypothesis 1).

Solutions found by our extension of δILP, in contrast to the usual ILP solutions,
include large numbers of invented predicates. We posit the usefulness of large-scale PI
for synthesizing complex logic programs. While adding many invented predicates can
be seen as a duplication of the search space and, therefore, equivalent to multiple initial-
izations of existing neuro-symbolic ILP systems, we demonstrate that our extension of
δILP easily outperforms the re-initialization approach on a particularly challenging task
(see Hypothesis 2). We compare to the most relevant existing approach, δILP (presented
in [11]).

Unlike the experiments presented in [11], which specify the solution’s precise struc-
ture, we assume a generic shape for all predicate definitions. Thus, our experiments
force the learner to find both the correct predicates to reference within an invented
predicate’s definition and the structure of the definition. In this experimental setting,
our approach is on par with δILP and, for challenging tasks, outperforms it. In particu-
lar, we outperform δILP on tasks deemed difficult in [11] such as 0=X mod 3 and 0=X
mod 5.

Furthermore, we propose an adjusted measure of task difficulty. In [11], the authors
proposed the number of learned predicate definitions as a measure of learning com-
plexity. While our results do not contradict this assertion, it is more precise to focus on
the relation between input variables and body-only variables, i.e. we solve 0=X mod 5
(requires learning four predicate definitions) consistently, but performing poorly on the
seemingly simpler task Y = X +4 which requires learning two predicates (Hypothesis
3). Improving our understanding of task difficulty will aid future investigations.

Our contributions are as follows: (i) an extension of δILP capable of large-scale PI
(Hypothesis 1)4, (ii) experimental verification of improved performance on challeng-
ing tasks (Hypothesis 1), (iii) experimental verification that large-scale PI differs from
weight re-initialization (Hypothesis 2), (iv) proposing a novel complexity criterion and
experimentally validating it (Hypothesis 3).

4 Our implementation can be found at the following repository: github.com/Ermine516/DILP2.

https://github.com/Ermine516/DILP2

Differentiable Inductive Logic Programming in High-Dimensional Space 3

2 Related Work

We briefly introduce Inductive logic programming [3], cover aspects of δILP [11] di-
rectly relevant to our increase in dimensionality, and compare our approach to related
systems inspired by δILP. We assume familiarity with basic logic and logic program-
ming; see [23].

2.1 Inductive Logic Programming (ILP)

ILP is traditionally a form of symbolic machine learning whose goal is to derive ex-
planatory hypotheses from sets of examples (denoted E+ and E−) together with back-
ground knowledge (denoted BK). Investigations often represent explanatory hypothe-
ses as logic programs [4,5,13,21,22]. A benefit of this approach is that only a few ex-
amples are typically needed to learn an explanatory hypothesis [7].

The most common learning paradigm implemented within ILP systems is learning
from entailment [23]. The systems referenced above, including δILP, use this paradigm
which is succinctly stated as follows: A hypothesis H explains E+ and E− through the
BK , if

∀e ∈ E+,BK ∧H |= e and ∀e ∈ E−,BK ∧H ̸|= e

Essentially, the hypothesis, together with the background knowledge, entails all
the positive examples and none of the negative examples. In addition to the learning
paradigm, one must consider how to search through the hypothesis space, the set of
logic programs constructible using definitions from the BK together with the predicates
provided as examples. Many approaches exploit subsumption (≤sub), which has the fol-
lowing property in relation to entailment: H1 ≤sub H2 ⇒ H1 |= H2 where H1 and
H2 are plausible hypotheses. Subsumption provides a measure of specificity between
hypotheses and, thus, is used to measure progress. The FOIL [22] approach (top-down)
iteratively builds logic programs using this principle. Bottom-up approaches, i.e. Pro-
gol [17], build the subsumptively most specific clause for each positive example and
use FOIL to extend more general clauses towards it.

The ILP system Metagol [5] implements the meta-learning approach to search. It
uses second-order Horn templates to restrict and search the hypothesis space. An ex-
ample template would be P (x, y):-Q(x, z), R(z, y) where P,Q, and R are variables
ranging over predicate symbols. This approach motivates the template representation
used by δILP and our work.

2.2 Differentiable ILP

Given that δILP plays an integral role in our work, we go into some detail concerning
the system architecture. We refer the reader to paper introducing δILP [11] for more
details.

The δILP system provides a framework for differentiable learning from entailment
ILP. Logic programs are represented by vectors whose components encode whether a
particular code fragment is likely to be part of the solution. Such programs are “exe-
cuted” in fuzzy logic, using a weighted average of fuzzy evaluations of code fragments.

4 S.J. Purgał et al.

The hypothesis space consists of all possible combinations of these code fragments
captured by user-provided templates, a generalization of metarules [5]. In our setting
metarules take the following form:

Definition 1 (V -Metarule). Let x, y, z1, z2, z3, z4 be first-order variables, V a set of
first-order variables such that x, y ∈ V and z1, z2, z3, z4 ̸∈ V , and P,Q, and R second-
order variables ranging over predicate symbols. Then P (x, y):-Q(z1, z2), R(z3, z4) is
a V -metarule.

Unlike standard metarules, V -Metarules can have various instances.

Definition 2 (V -Metarule Instance). Let M be a V -Metarule of the form P (x, y):-Q1(
x1, x2), R1(x3, x4). Then P (x, y):- Q1(y1, y2), R1(y3, y4) is an Instance of M if
y1, y2, y3, y4 ∈ V .

Essentially V -metarules are a generalization of metarules allowing for different
variable configurations. A (V, p)-template is defined using V -Metarules as follows:

Definition 3 ((V, p)-template). Let p be a predicate symbol, M = P (x, y):- Q1(x1, x2),
R1(x3, x4) and M ′ = P ′(x, y):- Q2(x1, x2), R2(x3, x4) be V -metarules. Then the
(V, p)-template constructed from M and M ′ is (M{P 7→ p},M ′{P ′ 7→ p}).

An instance of a (V, p)-template (M1,M2) is the pair (M ′
1,M

′
2) where M ′

1 and M ′
2

are V -Metarule Instances of M1 and M2.
An instantiation of a (V, p)-template (M1,M2) is (M ′

1σ, M
′
2σ) where (M ′

1,M
′
2) is

an instance of (M1,M2) and σ maps the second-order variables to predicate symbols.

Observe that we use templates consisting of two metarules as this is the minimal
size which allows for recursion and disjunction in the predicate definition.

In [11], additional restrictions were put on the instantiations of the second-order
variables to simplify the hypothesis space for harder tasks. The authors designed the
templates to allow precise descriptions of the solution structure, thus simplifying the
search. We took a more general approach allowing us to define templates uniformly.
This results in a larger hypothesis space and, thus, a more challenging experimental
setting.

Example 1. Consider a ({x, y, z}, p)-template. Possible instances of the contained
({x, y, z})-metarules include

p(x, y):-Q1(x, y), R1(x, y) p(x, y):-Q2(x, z), R2(x, z)

A program fitting this template would be the following:

p(x, y) : -succ(x, y) p(x, y) : -succ(x, z), p(x, z)

where R2 maps to p and Q1, R1, and Q2 map to succ.

Templates are generalizable to higher-arity predicates; learning such predicates is the-
oretically challenging for this ILP setting [18]. It is common to restrict learning to
dyadic predicates. Reducing template complexity is important when introducing many
templates (up to 150). From now on, by template, we mean (V, p)-template.

Differentiable Inductive Logic Programming in High-Dimensional Space 5

As input, δILP requires a set of templates T (using pairwise distinct symbols,
p1, · · · , pn) and BK. From the input, it derives a satisfiability problem where each dis-
junctive clause Ci,j denotes the range of possible choices for clause j given template
t ∈ T , i.e. over all instantiations of t. The logical models satisfying this formula denote
logic programs modulo the clauses derivable using the template instantiated by the BK
and the symbols p1, · · · , pn. Switching from a discrete semantics over {0, 1} to a con-
tinuous semantics allows the use of differentiable logical operators when implementing
differentiable deduction. Solving ILP tasks, in this setting, is reduced to minimizing
loss through gradient descent.

δILP uses E+ and E− as training data for a binary classifier to learn a model at-
tributing true or false to ground instances of predicates. This model implements the
conditional probability p(λ|α,W, T, L,BK), where λ ∈ {true, false}, α is a ground
instance, W a set of weights, T the templates, and L the symbolic language used to
describe the problem containing a finite set of atoms.

Each ({x, y, z}, pi)-template (t1, t2) ∈ T is associated with a weight matrix whose
shape is d1×d2 where dj denotes the number of clauses constructible using the BK and
L modulo the constraints of tj . The number of weights may be roughly approximated
(quintic) in terms of the number of templates (considering possible instances and the
four second-order variables to instantiate). The weights denote δILP’s confidence in an
instantiation of a template being part of the solution; so-called per template assignment.
We provide a detailed discussion of weight assignment in Section 3.

δILP implements differentiable inferencing by providing each clause c with a func-
tion fc : [0, 1]

m → [0, 1]m whose domain and range are valuations of grounded instan-
tiations of templates. Note, m is not the number of templates; rather, it is the number of
groundings of each template, a much larger number dependent on the BK, language bias,
and the atoms of the symbolic language L. Consider a template (t1, t2) admitting the
clause pair (c1, c2), and let the current valuation be EVi and g : [0, 1] × [0, 1] → [0, 1]
a function computing ∨-clausal (disjunction between clauses). Assuming we have a
definition of fc, then g(fc1(EVi), fc2(EVi)) denotes one step of forwards-chaining.
Computing the weighted average over all clausal combinations admitted by (t1, t2),
using the softmax of the weights, and finally performing ∨-step (disjunction between
inference steps) between their sums, in addition to EVi, results in EVi+1. This process
is repeated n times (the number of forward-chaining steps), where EV0 is derived from
the BK .

The above construction still depends on a precise definition of fc. Let

cg = p(x, y):-Q1(y1, y2), Q2(y3, y4)

where y1, y2, y3, y4 ∈ {x, y, z}. We want to collect all ground predicates pg for which
a substitution θ into Q1, Q2, y1, y2, y3, y4 exists s.t. pg ∈ {Q1(y1, y2)θ,Q2(y3, y4)θ}.
These ground predicates are then paired with the appropriate grounding of the left-
hand side of cg . The result of this process can be reshaped into a tensor emphasizing
which pairs of ground predicates derive various instantiations of p(x1, x2). In the case
of body-only variables, there is one pair per atom in the language. Pairing this tensor
with some valuation EVi allows one to compute ∧-literal (conjunction between literals
of a clause) between predicate pairs. As a final step, we compute ∨-exists (disjunction

6 S.J. Purgał et al.

between variants of literals with body-only variables) between the variants and thus
complete computation of the tensor required for a step of forward-chaining.

Four operations parameterize the above process for conjunction and disjunction. We
leave discussion to section 4.

2.3 Related Approaches

To the best of our knowledge, three recent investigations are related to δILP and build
on the architecture. The Logical Neural Network (LNN) [24] uses a similar templat-
ing, but only to learn non-recursive chain rules, i.e. of the form p0(X,Y):-p1(X,Z1),
· · · , pn(Zn, Y); this is simulatable using δILP templates, especially for the short rules
presented by the authors. They introduced particular parameterized, differentiable, log-
ical operators optimizable for ILP.

Another system motivated by δILP is αilp [25]. The authors focused on learning
logic programs that recognize visual scenes rather than general ILP tasks. The authors
restricted the BK to predicates explaining aspects of the visual scenes used for evalua-
tion. To build clauses, the authors start from a set of initial clauses and use a top-k beam
search to iteratively extend the body of the clauses based on evaluation with respect
to E+. In this setting, predicate invention and recursive definitions are not considered.
Additionally, learning a relation between two variables is not considered.

Feed-Forward Neural-Symbolic Learner [6] does not directly build on the δILP
architecture but provides an alternative approach to one of the problems the δILP inves-
tigation addressed, namely developing a neural-symbolic architecture that can provide
symbolic rules when presented with noisy input. In this work [6], rather than softening
implication and working with fuzzy versions of logical operators, compose the Induc-
tive answer set programming learners ILASP [13] and FASTLAS [12] with various pre-
trained neural architectures for classification tasks. This data is then transformed into a
weighted knowledge for the symbolic learner. While this work is to some extent rele-
vant to the investigation outlined in this paper, we focus on improving the differentiable
implication mechanism developed by the authors of δILP rather than completely replac-
ing it. Furthermore, the authors focus on tasks with simpler logical structure, similar to
the approach taken by αilp.

Earlier investigations, such as NeuraILP [29], experimented with various T-norms,
and part of the investigation reported in [11] studied their influence on learning. The
authors leave scaling their approach to larger, possibly recursive programs as future
work, a limitation addressed herein.

In [26], the authors built upon δILP but further restricted templating to add a sim-
ple term language (at most term depth 1). Thus, even under the severe restriction of at
most one body literal per clause, they can learn predicates for list append and delete.
Nonetheless, scalability remains an issue. Neural Logical Machines [9], in a limited
sense, addressed the scalability issue. The authors modeled propositional formulas us-
ing multi-layer perceptrons wired together to form a circuit. This circuit is then trained
on many (10000s) instances of a particular ILP task. While the trained model was ac-
curate, interpretability is an issue, as it is unclear how to extract a symbolic expression.
Our approach provides logic programs as output, similar to δILP.

Differentiable Inductive Logic Programming in High-Dimensional Space 7

Some related systems loosely related to our work are Logical Tensor Networks [8],
Lifted Relational Neural Networks [27], Neural theorem prover [15], and DeepProbLog
[14]. While some, such as Neural theorem prover, can learn rules, it also suffers from
scaling issues. Overall, these systems were not designed to address learning in an ILP
setting. Concerning the explainability aspects of systems similar to δILP, one notable
mention is Logic Explained Networks [2], which adapts the input format of a neural
learner to derive explanations from the output. Though, the problem they tackle is only
loosely connected to our work.

3 Contributions

The number of weights used by δILP is approximately quintic in the number of tem-
plates used, thus incurring a significant memory footprint (See Section 2.2). This is-
sue is further exacerbated as computing evaluations requires grounding the hypothesis
space. As a result, experiments performed in [11] use task-specific templates precisely
defining the structure of the solution; this is evident in their experiments as certain tasks,
i.e. the even predicate (See Figure 1), list multiple results, with different templating.
These restrictions result in only a few of the many possible solutions being present in
the search space. Furthermore, this language bias greatly influences the success rate of
δILP on tasks such as length; the authors report low loss in 92.5% of all runs, which sig-
nificantly differs from our reduced language bias experiments, i.e. 0% correct solutions
and 0% achieving low loss.

e (A, B) : − i 7 (B , B) , i 7 (B , B)
e (A, B) : − i 7 (B ,A) , i 7 (A, B)
i 7 (A, B) : − z (C , B) , z (C , B)
i 7 (A, B) : − i 1 3 (A, C) , s (C , B)
i 1 3 (A, B) : − s (C , B) , i 7 (C , C)
i 1 3 (A, B) : − z (A, B) , z (C ,A)

e (A, B) : − i 2 (C , B) , i 2 (C , B)
e (A, B) : − i 1 8 (B , C) , i 2 (C ,A)
i 2 (A, B) : − i 2 (C , C) , i 1 8 (B , C)
i 2 (A, B) : − z (A, B) , z (A, B)
i 1 8 (A, B) : − z (C ,A) , z (A,A)
i 1 8 (A, B) : − s (B , C) , s (C ,A)

e

i7 i13

sz

e

i2 i18

sz

Fig. 1: even (e above) solutions trimmed to used templates. Note, s denotes successor,
and z denotes zero.

To achieve low loss, in addition to the chosen language bias, δILP’s authors assign
weights per template resulting in a large vector v of learnable parameters, see Section 4.
This seems to imply high dimensionality; however, intuitively, softmax is applied to v

8 S.J. Purgał et al.

during differentiable inferencing and thus transforms v into a distribution, effectively
reducing its dimensionality.

Our investigation aims to: (i) increase the dimensionality of the search space while
maintaining the efficacy of the differentiable inferencing, and (ii) minimize the bias re-
quired for effective learning. We proceed by adding many ({x,y,z},p)-templates (each
with a unique symbol p) as discussed in subsection 2.2; this largely reduces the bi-
ases towards solutions of a particular shape. Nonetheless, given the significant number
of weights required, large-scale PI remains highly intractable. Thus, we amend how
weights are assigned to templates (See Section 4).

Assigning weights per template is the main source of the significant memory foot-
print. The authors discuss this design choice in Appendix F of [11]. In this Appendix,
the authors describe assignment per clause, i.e. the weight denotes the likelihood of a
given instantiation of a metarule instance occurring within an instantiation of a tem-
plate. This approach was abandoned as it was “incapable of escaping local minima on
harder tasks”. Assigning weights per clause results in roughly a quadratic reduction in
the number of weights.

Our system (δILP2), assigns weights per literal, i.e. the weight denotes the likeli-
hood of a given literal occurring within an instantiation of a template. Assignment per
literal results in another roughly quadratic reduction in the number of assigned weights.

We observed that the most challenging tasks require learning a binary relation
whose solution requires using a third (non-argument) variable, an additional body-only
variable. This observation differs from the observations presented in [11] where com-
plexity was measured purely in terms of the number of learned predicate definitions
required. For example, consider 0=X mod 5-hard and Y=X+4; our approach solves the
former 61% of the time and the latter 4% of the time. Note, 0=X mod 5-hard requires
four learned predicate definitions while Y=X+4 requires two, yet unlike 0=X mod 5-
hard, both predicates relate two variables through a third non-argument variable.

We test δILP2 and support our observation through experimentally testing the fol-
lowing hypotheses (see Section 5):

– Hypothesis 1: Differentiable ILP benefits from increasing the number of templates
used during training.

– Hypothesis 2: The benefit suggested by hypothesis 1 is not solely due to the rela-
tionship between increasing the number of templates and training a multitude of
times with a task-specific number of templates.

– Hypothesis 3: Learning binary predicates using body-only variables remains a chal-
lenge regardless of weight assignment approach.

4 Methodology

We now outline the methodological differences between our implementations of dif-
ferentiable inferencing and δILP; We (i) assign weights per literal, (ii) use slightly
different logical operators, (iii) use more precise measures of training outcomes, and
(iv) use a slightly different method of batching examples.

Differentiable Inductive Logic Programming in High-Dimensional Space 9

Weight assignment To exploit the benefits of large-scale PI, we need to reduce the
large memory footprint incurred by δILP’s weight assignment, per template assignment.
We distinguish three types of weight assignment:

– per template: weight encodes the likelihood that a pair of clauses is the correct
choice for the given template.

– per clause: weight encodes the likelihood that a clause occurs in the correct choice
of clauses for the given template.

– per literal: weight encodes the likelihood a literal occurs in one of the correct
clauses for the given template.

Per literal assignment is the coarsest of the three but also has the least memory footprint
thus allowing for large-scale PI. Our system, δILP2, implements per Literal assignment.

T-norm for fuzzy logic Differentiable inferencing (Section 2) requires four differ-
entiable logic operators. The choice of these operators greatly impacts overall perfor-
mance. The Author’s of δILP experimented with various t-norms, continuous versions
of classical conjunction [10], from which continuous versions of other logical operators
are derived. The standard t-norms are max (x∧y ≡ max{x, y}), product (x∧y ≡ x ·y)
and Łukasiewicz (x∧ y ≡ max{x+ y− 1, 0}). For simplicity, we refer to all operators
derived from a t-norm by the conjunctive operator, i.e. x∨ y ≡ min{x, y} is referred
to as max when discussing the chosen t-norm.

δILP δILP2

∧-Literal product product
∨-Exists max max

∨-Clausal max max
∨-Step product max

When computing many inference steps, product produces vanishingly small gradients.
Large programs require more inferencing, see Figure 3, thus, we use max for ∨-step.

Batch probability We require computing values for all predicates over all combina-
tions of atoms, thus motivating an alternative approach to typical mini-batching. Instead
of parameterization by batch size, we use a batch probability – the likelihood of an ex-
ample contributing to gradient computation. When computing the loss, the example sets
E+ and E− equally contribute. Regardless of the chosen examples, the loss is balanced
(divided by the number of examples contributing). If batching results in no examples
from E+ (E−), we set that half of the loss to 0 (with 0 gradient). Performance degrades
when the batch probability is near 0.0 or 1.0. In our experiments, we used 0.5.

4.1 Considered outcomes

The experiments outlined in section 5 (See Table 1A & 1B) allow for five possible
outcomes: Correct on Test (C), Fuzzily Correct on Test (F), Correct on Training (CT),
Fuzzily Correct on Training (FT), and FAIL. We differentiate between test and training
to cover the possibility of overfitting and differentiate between correct and fuzzy to
cover the possibility of learning programs only correct using fuzzy logic.

10 S.J. Purgał et al.

Overfitting δILP avoids overfitting as the search space is restricted enough to exclude
overfitting programs. However, this is no longer the case when 100s of templates are
used. For example, when learning even, it is possible, when training with enough in-
vented predicates, to remember all even numbers provided in E+. Thus, we add a vali-
dation step testing our solutions on unseen data (i.e. numbers up to 20 after training on
numbers up to 10). Given the types of tasks we evaluated and the structure of the result-
ing model, a relatively large number of unseen examples is enough to validate. Learning
over-fitting solutions for large, unseen input is highly unlikely as the programs would be
very large. During experimentation, we observed that δILP2 rarely overfits, even when
it clearly could. A plausible explanation is that shorter, precise solutions have a higher
frequency in the search space.

Fuzzy solutions Another class of solutions observed in both our and earlier experimen-
tal designs is fuzzy solutions; that is, programs that made correct predictions using fuzzy
logic, but incorrect predictions when evaluated using classical logic (selected predicates
with the highest weight). Typically, fuzzy solutions are worse at generalizing – they are
correct when tested using the training parameters (for example, inference steps) and
break on unseen input. Entirely correct solutions for even are translatable into a pro-
gram correct for all numbers, while a fuzzy solution fails to generalize beyond training.

5 Experiments

We compare δILP2 (per Literal) to δILP (per Template) on tasks presented in [11]5 plus
additional tasks to experimentally test Hypothesis 2 & 3. The tasks are separated into
four domains, numeric, list, ancestors, and graphs. Results are shown in Table 1A & 1B.
Tasks annotated by easy contain extra background knowledge simplifying the learning
process, while hard versions do not use the extra background knowledge. Concerning
experimental parameters, we ran δILP2 (Per Literal assignment) using 150 templates
to produce Table 1. For δILP (Per Template assignment) [11], we ran it with the precise
number of templates needed to solve the task. Using more templates was infeasible for
many tasks due to the large memory footprint of per template assignment. In both cases,
we used ({x, y, z}, pi)-templates with pairwise distinct pi.

Other parameters are as follows: 2k gradient descent steps, early finish when loss
reaches 10−3, differentiable inference is performed for 25 steps, batch probability of
0.5, weights are initialized using a normal distribution, output programs are derived by
selecting the highest weighted literals for each template.

We ran the experiments producing Figure 2 on a computational cluster with 16
nodes, each with 4 GeForce RTX 2070 (with 8 GB of RAM) GPUs. We ran the exper-
iments producing Table 1A & 1B on a GPU server with 8 NVIDIA A40 GPUs (46GB
each). We implemented both δILP and δILP2 using PyTorch [20] (version 2.0). Our im-
plementation can be found at the following repository: github.com/Ermine516/DILP2.

5 Section 5 and Appendix G of [11].

https://github.com/Ermine516/DILP2

Differentiable Inductive Logic Programming in High-Dimensional Space 11

Task C F CT FT diff C diff CT

predecessor/2 100 100 100 100 +2%† +2%†

even/1 92 99 92 99 +32% +32%
(X ≤ Y)/2∗ 30 31 35 38 -70% -65%

(0=X mod 3)/1 91 97 91 97 +91% +91%
(0=X mod 5)/1-easy 77 80 97 100 +77% +97%
(0=X mod 5)/1-hard 61 65 61 65 +61% +65%

(Y=X+2)/2 99 100 99 100 -1% † -1% †

(Y=X+4)/2 4 12 5 13 +4%† +5%†

member/2∗ 17 19 37 43 -67% -67%

length/2 25 26 31 38 +25% +31%
grandparent/2 38 38 92 94 +38% +89%

undirected_edge/2 94 94 100 100 +75% +81%
adjacent_to_red/1 94 99 94 99 +48% +48%

two_children/1 74 100 74 100 +13% +13%
graph_colouring/1 83 85 96 100 -15% -2% †

connectedness/2∗ 40 41 98 99 +16% +74%
cyclic/1 19 19 90 100 +18% +89%

(A)

Task C F CT FT

predecessor/2 98 100 98 100

even/1 70 94 70 94

(X ≤ Y)/2∗ 100 100 100 100

(0=X mod 3)/1 0 0 0 0

(0=X mod 5)/1-easy - - - -

(0=X mod 5)/2-hard - - - -

(Y=X+2)/2 100 100 100 100

(Y=X+4)/2 0 0 0 0

member/2∗ 84 100 84 100

length/2 0 0 0 0

grandparent/2 0 0 3 3

undirected_edge/2 19 100 19 100

adjacent_to_red/1 46 90 46 90

two_children/1 61 100 61 100

graph_colouring/1 98 100 98 100

connectedness/2∗ 24 100 24 100

cyclic/1 0 0 1 1

(B)

Table 1: (A) Per Literal results: difference computed with respect to Table 1 (B). Sig-
nificance computed using t-test and p < e−4. We use † to denote differences that are
not significant. The arity of the learned predicate comes after the name, i.e. even has
arity 1 and length has arity 2. Problems marked with a * should be significantly easier
for per template as the entire hypothesis space fits in one weight matrix.
(B) Per Template result. Due to significant memory requirements, neither (0=X mod 5)
task fits in GPU memory (46GB). Problems annotated with * are easy for Per template
as the hypothesis space fits in one weight matrix.

FAIL FT CT F C

0

.25

.5

.75

1

25 50 75 100
(B)

0

.25

.5

.75

1

20 40 60 80 100

FAIL FT CT F C

(A)

Fig. 2: Learning 0 = Xmod 3 (A) and X ≤ Y (B) varying the number of templates
(X-axis). The Y-axis is the proportion of solutions in each category. All considered task
show this pattern.

12 S.J. Purgał et al.

5.1 Hypothesis 1

Figure 2 illustrates the proportion of runs within each of our five categories (C, CT, F,
FT, FAIL). As the number of templates increases, the proportion of the runs categorized
as correct and generalizing increases. This pattern emerges even for tasks that remain
hard to learn. Figure 2 clearly provides strong evidence supporting Hypothesis 1.

When comparing with δILP, out of the 17 tasks we tested δILP and δILP2 on, δILP2

showed improved performance on 13 tasks, and the improved performance was statis-
tically significant for 12 of these tasks. Of the four remaining tasks, δILP showed a sta-
tistically significant performance difference on two, namely X ≤ Y and member. Both
benefit from per template assignment as the entire search space fits into one weight
matrix. Thus, δILP is essentially performing brute force search. While one would ex-
pect the same issue to occur for connectedness, there are fewer solutions to member
and X ≤ Y in the search space than in the case of connectedness; it is a more general
concept. Thus, even when δILP has an advantage, δILP2 outperforms it when training
on more complex learning tasks.

Notably, δILP2 outperforms δILP on many challenging tasks. For example, 0=X
mod 5 cannot be solved by δILP in our experimental setting. In [11], low loss was
attained only 14% of the time when +2 and +3 are in the BK [11]. In contrast, we
achieved a 61% success rate on this task even when the BK contained only successor
and zero; for the dependency graphs of a solution learned, see Figure 3.

5.2 Hypothesis 2

To illustrate that large-scale predicate invention is not equivalent to re-initialization of
weights, we ran δILP2 on the 0=X mod 6 while varying the numbers of templates used
during training (results shown in Figure 3B), i.e. improved performance is not the result
of randomly initializing a small number of templates many times. Note, 0=X mod 6 is
slightly more challenging than 0=X mod 5 and thus aids in illustrating the effect of
larger-scale PI. According to Figure 3B, when training with three templates (minimum
required), we would need to run δILP2 5000 times to achieve a similar probability of
success (F solution) as a single 50 predicate run.

When using five invented predicates, which is minimum required to avoid construct-
ing binary predicates (see Hypothesis 3), we would need to run δILP2 750 times to
achieve a similar probability of success (finding a fuzzily correct solution) as a single
50 predicate run. These results do not necessarily imply that using more predicates is
always beneficial over doing multiple runs; however, they show that repeated training
with intermediary weight re-initialization is not a sufficient explanation of the observed
benefits of large-scale PI.

5.3 Hypothesis 3

In Table 1A & 1B, one can observe that some tasks that require learning a relatively
simple program (i.e. length) are more challenging than tasks such as 0=X mod 6 that
require learning a much larger program.

Differentiable Inductive Logic Programming in High-Dimensional Space 13

Mod 5

Inv106 INV107

INV92 INV53

Succ

INV149

Zero

task C F CT FT
3 templates 0% 0.02% 0% 0.02%
5 templates 0.11% 0.13% 0.11% 0.14%

50 templates 60% 65% 60% 65%

Fig. 3: (A) Template dependency graph of a correct program learned by δILP2 for the
(0= X mod 5)-hard task.
(B) δILP2 learning 0 = X mod 6. Ran 10k times for 3 and 5 templates and 100 for 50.

As stated above, we hypothesize this is due to propagating the gradient through
an existential quantification. This results in difficulties when learning predicates that
relate two input variables through a body-only variable. The difficulty increases with
the number of such predicates required to solve the task.

We introduced an additional task explicitly designed to test this hypothesis: (Y =
X + 4). This task requires only one more predicate than Y = X + 2, yet the success
rate drops significantly with respect to Y = X + 2 (from 99% to 4%). For 0=X mod 2
(even) and 0=X mod 5, the change is not as steep (from 92% to 61%). Thus, the number
of relational predicate definitions that a given task requires learning is a more precise
measure of complexity than the number of learned predicate definition.

6 Conclusion & Future Work

The main contribution of this work (Hypothesis 1) is strong evidence that additional
templating (beyond what is necessary) improves performance. Verification of this hy-
pothesis used δILP2, our modified version of δILP. We performed our experiments using
reduced language bias compared to the experiments presented in [11]. Furthermore, we
used the same generic template for all predicate definitions learned by the system. This
choice makes some tasks significantly more difficult. Additionally, we verified that the
performance gains were not simply due to properties shared with weight re-initialization
when using a task-specific number of templates during learning (Hypothesis 2).

During experimentation, we noticed that the difficulty of the task did not correlate
well with the number of learned predicate definitions needed to solve it but rather with
the arity and the necessity of a body-only variable. Therefore, we tested this conjecture
using the tasks Y = X + 2 and Y = X + 4. While both systems solve Y = X + 2,
performance drastically drops for Y = X+4, which only requires learning two invented
predicates. Note, 0=X mod 5 requires learning four invented predicates and is easily
solved by δILP2. This observation highlights the challenging tasks for such synthesis
approaches (Hypothesis 3) and suggests a direction for future investigation.

14 S.J. Purgał et al.

As a continuation of our investigation, we plan to integrate ILP with Deep Neural
Networks as a hybrid system that is trainable end-to-end through backpropagation. The
Authors of δILP presented the first steps in [11]. One can imagine the development
of a network inferring a discrete set of objects in an image [1], or integration with
Transformer-based [28] language models that produce atoms δILP2 can process. This
research direction can lead to a network that responds to natural language queries based
on a datalog database. Also, as part of planned investigations, we consider an ablation
study to show that the improved perform is indeed due to large-scale predicate invention
and a scalability analysis to test the limits of the approach.

Acknowledgments. Supported by the ERC starting grant no. 714034 SMART, Czech Science
Foundation Grant No. 22-06414L, MathLP project (LIT-2019-7-YOU-213) of the Linz Institute
of Technology and the state of Upper Austria, Cost action CA20111 EuroProofNet, and the Doc-
toral Stipend of the University of Innsbruck. We would also like to Thank David Coufal (CAS
ICS) for setting up and providing access to the institute’s GPU Server.

Disclosure of Interests. The authors have no competing interests.

References

1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end
object detection with transformers. CoRR abs/2005.12872 (2020)

2. Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Liò, P., Maggini, M., Melacci, S.: Logic
explained networks. Artif. Intell. 314, 103822 (2023). https://doi.org/10.1016/
j.artint.2022.103822

3. Cropper, A., Dumancic, S.: Inductive logic programming at 30: A new introduction. J. Artif.
Intell. Res. 74, 765–850 (2022). https://doi.org/10.1613/jair.1.13507

4. Cropper, A., Morel, R.: Learning programs by learning from failures. Mach. Learn. 110(4),
801–856 (2021). https://doi.org/10.1007/s10994-020-05934-z

5. Cropper, A., Muggleton, S.: Metagol system (2016), https://github.com/
metagol/metagol

6. Cunnington, D., Law, M., Lobo, J., Russo, A.: FFNSL: feed-forward neural-symbolic
learner. Mach. Learn. 112(2), 515–569 (2023). https://doi.org/10.1007/
s10994-022-06278-6

7. Dai, W., Muggleton, S.H., Wen, J., Tamaddoni-Nezhad, A., Zhou, Z.: Logical vision: One-
shot meta-interpretive learning from real images. In: Lachiche, N., Vrain, C. (eds.) ILP
2017. LNCS, vol. 10759, pp. 46–62. Springer (2017). https://doi.org/10.1007/
978-3-319-78090-0_4

8. Donadello, I., Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks for semantic image
interpretation. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017. pp. 1596–1602. ijcai.org (2017). https:
//doi.org/10.24963/ijcai.2017/221

9. Dong, H., Mao, J., Lin, T., Wang, C., Li, L., Zhou, D.: Neural logic machines. In: 7th Inter-
national Conference on Learning Representations, ICLR 2019. OpenReview.net (2019)

10. Esteva, F., Godo, L.: Monoidal t-norm based logic:towards a logic for left-continuous t-
norms. Fuzzy Sets and Systems 124(3), 271–288 (2001). https://doi.org/https:
//doi.org/10.1016/S0165-0114(01)00098-7, fuzzy Logic

11. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. Journal of Artificial
Intelligence Research 61, 1–64 (2018)

https://doi.org/10.1016/j.artint.2022.103822
https://doi.org/10.1016/j.artint.2022.103822
https://doi.org/10.1016/j.artint.2022.103822
https://doi.org/10.1016/j.artint.2022.103822
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-020-05934-z
https://github.com/metagol/metagol
https://github.com/metagol/metagol
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1007/978-3-319-78090-0_4
https://doi.org/10.1007/978-3-319-78090-0_4
https://doi.org/10.1007/978-3-319-78090-0_4
https://doi.org/10.1007/978-3-319-78090-0_4
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/https://doi.org/10.1016/S0165-0114(01)00098-7
https://doi.org/https://doi.org/10.1016/S0165-0114(01)00098-7

Differentiable Inductive Logic Programming in High-Dimensional Space 15

12. Law, M., Russo, A., Bertino, E., Broda, K., Lobo, J.: Fastlas: Scalable inductive logic pro-
gramming incorporating domain-specific optimisation criteria. In: The Thirty-Fourth AAAI.
pp. 2877–2885. AAAI Press (2020)

13. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In: Proceedings
of Logics in Artificial Intelligence. pp. 311–325. Springer (August 2014)

14. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., Raedt, L.D.: Neural probabilis-
tic logic programming in deepproblog. Artif. Intell. 298, 103504 (2021). https://doi.
org/10.1016/j.artint.2021.103504

15. Minervini, P., Bosnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differentiable rea-
soning on large knowledge bases and natural language. In: The Thirty-Fourth AAAI. pp.
5182–5190. AAAI Press (2020)

16. Muggleton, S.H.: Supplementary material from "hypothesizing an algorithm from one
example: the role of specificity" (Apr 2023). https://doi.org/10.6084/m9.
figshare.c.6607461.v1

17. Muggleton, S.: Inverse entailment and progol. New Generation Computing 13(3&4), 245–
286 (December 1995). https://doi.org/10.1007/BF03037227

18. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order
dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015). https:
//doi.org/10.1007/s10994-014-5471-y

19. Muggleton, S.H., Raedt, L.D., Poole, D., Bratko, I., Flach, P.A., Inoue, K., Srinivasan, A.:
ILP turns 20 - biography and future challenges. Mach. Learn. 86(1), 3–23 (2012). https:
//doi.org/10.1007/s10994-011-5259-2

20. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative
style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)

21. Purgal, S.J., Cerna, D.M., Kaliszyk, C.: Learning higher-order logic programs from failures.
In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI 2022. pp. 2726–2733. ijcai.org (2022). https://doi.org/10.
24963/ijcai.2022/378

22. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266 (1990).
https://doi.org/10.1007/BF00117105

23. Raedt, L.D.: Logical and relational learning. Cognitive Technologies, Springer (2008).
https://doi.org/10.1007/978-3-540-68856-3

24. Sen, P., de Carvalho, B.W.S.R., Riegel, R., Gray, A.G.: Neuro-symbolic inductive logic pro-
gramming with logical neural networks. In: Thirty-Sixth AAAI. pp. 8212–8219. AAAI Press
(2022)

25. Shindo, H., Pfanschilling, V., Dhami, D.: αilp: thinking visual scenes as differen-
tiable logic programs. Machine Learning (2023). https://doi.org/10.1007/
s10994-023-06320-1

26. Shindo, H., Nishino, M., Yamamoto, A.: Differentiable inductive logic programming for
structured examples. In: Thirty-Fifth AAAI. pp. 5034–5041. AAAI Press (2021)

27. Sourek, G., Svatos, M., Zelezný, F., Schockaert, S., Kuzelka, O.: Stacked structure learn-
ing for lifted relational neural networks. In: Lachiche, N., Vrain, C. (eds.) Inductive
Logic Programming - 27th International Conference, ILP 2017, Revised Selected Pa-
pers. LNCS, vol. 10759, pp. 140–151. Springer (2017). https://doi.org/10.1007/
978-3-319-78090-0_10

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. CoRR abs/1706.03762 (2017)

https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.6084/m9.figshare.c.6607461.v1
https://doi.org/10.6084/m9.figshare.c.6607461.v1
https://doi.org/10.6084/m9.figshare.c.6607461.v1
https://doi.org/10.6084/m9.figshare.c.6607461.v1
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.24963/ijcai.2022/378
https://doi.org/10.24963/ijcai.2022/378
https://doi.org/10.24963/ijcai.2022/378
https://doi.org/10.24963/ijcai.2022/378
https://doi.org/10.1007/BF00117105
https://doi.org/10.1007/BF00117105
https://doi.org/10.1007/978-3-540-68856-3
https://doi.org/10.1007/978-3-540-68856-3
https://doi.org/10.1007/s10994-023-06320-1
https://doi.org/10.1007/s10994-023-06320-1
https://doi.org/10.1007/s10994-023-06320-1
https://doi.org/10.1007/s10994-023-06320-1
https://doi.org/10.1007/978-3-319-78090-0_10
https://doi.org/10.1007/978-3-319-78090-0_10
https://doi.org/10.1007/978-3-319-78090-0_10
https://doi.org/10.1007/978-3-319-78090-0_10

16 S.J. Purgał et al.

29. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base
reasoning. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vish-
wanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017. pp. 2319–2328
(2017)

	Differentiable Inductive Logic Programming in High-Dimensional Space

