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Abstract9

Declarative proof styles of different proof assistants include a number of incompatible features. In10

this paper we discuss and classify the differences between them and propose efficient algorithms11

for declarative proof outline translation. We demonstrate the practicality of out algorithms by12

automatically translating the proof outlines in 200 articles from the Mizar Mathematical Library to13

the Isabelle/Isar proof style. This generates the corresponding theories with 15301 proof outlines14

accepted by the Isabelle proof checker. The goal of our translation is to produce a declarative15

proof in the target system that is both accepted and short and therefore readable. For this three16

kinds of adaptations are required. First, the proof structure often needs to be rebuilt to capture17

the extensions of the natural deduction rules supported by the systems. Second, the references18

to previous items and their labels need to be matched and aligned. Finally, adaptations in the19

annotations of individual proof step may be necessary.20
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1 Introduction26

Declarative proof languages have been included in many proof assistants, since they provide27

more readable and more maintainable proofs. Examples include Isabelle/Isar [9], the Mizar28

proof language [5], Lean [4], the Coq declarative proof mode C zar [3], and various declarative29

proof modes for HOL [10, 11, 6]. They all imitate natural deduction, because it has been30

developed as a minimal language capable of describing natural logical reasonings. However,31

all extend or modify natural deduction, usually depending on how they were developed or32

because of the motivations of the language creators. Some were designed to fit an existing33

infrastructure (for example an LCF prover), while some focus on imitating the mathematical34

practice. The largest example of the latter is the Mizar Mathematical Library (MML) [5, 2],35

which includes many constructs non-standard to natural deduction.36

In this paper we discuss the incompatibilities between the declarative styles and propose37

translations between the features of such languages and showcase this on a large part of the38

Mizar Mathematical Library. The particular contributions are:39

A comparison of the features present in the declarative proof styles (section 2) and efficient40

scalable translations that eliminate the features nor present inthe other styles (section 3);41

An automated translation of the declarative proof outlines of 200 articles from the Mizar42

Mathematical Library to Isabelle/Isar (section 4). The application of the translation43

gives 15301 declarative toplevel proof outlines accepted by Isabelle in the Isabelle/Mizar44

object logic [8]. The proof skeleton transformation steps are all automatically correctly45

© Cezary Kaliszyk and Karol Pąk;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8273-6059
mailto:cezary.kaliszyk@uibk.ac.at
https://orcid.org/0000-0002-7099-1669
mailto:pakkarol@uwb.edu.pl 
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Declarative Proof Translation

justified, but the justifications of the individual Mizar by steps are mostly not covered by46

the Isabelle/Mizar automation and are assumed.47

Related work. We have [7] previously translated the toplevel statements of a smaller48

part of the MML to Isabelle without any proofs. Many translations between procedural49

proofs have been proposed in the past. Adams [1] gives an overview of such translations.50

Additionally he considers the efficiency of such translations, which has been a major issue for51

proof auditing, for example in the Flyspeck project. Proof translations between declarative52

proofs and procedural proofs in a single system has been considered before [11].53

2 Declarative Proof Styles54

We first discuss the features present in the declarative proof modes of different proof assistants55

and later present a table that compares the presence of these features in the systems (Table 1).56

The two earliest declarative proof languages, the Mizar language [5] and Isabelle/Isar [9],57

differ most as they were developed quite differently. The former started as an extension58

of the Jaśkowski natural deduction. The latter tried to add declarative natural deduction59

elements to an LCF style theorem prover, which meant combining declarative proofs with60

procedural ones. These two styles have influenced declarative proof modes developed since.61

A common feature of all such systems is a set of basic natural deduction steps (also62

referred to as skeleton steps). Matching these steps with the reasoning can be done explicitly,63

using a so-called reasoning path. The reasoning path is a list of rules used in procedural64

systems, which describes the process in which the goal needs to be transformed or simplified.65

We will first discuss the use of reasoning path in the various systems and their advantages,66

and later discuss other differences that arise.67

Isabelle/Isar allows the goal to be transformed and rebuilt is a most flexible manner,68

however all transformation rules must be provided before the start of an individual reasoning.69

A drawback of such a solution is for example the treatment of the existential quantifier. In70

order to instantiate it, the suitable term needs to be available before the proof and cannot71

be constructed in the proof block. A simplification of the reasoning path that removes this72

restriction has been considered in Lean [4] where the exists.intro rule can be formulated after73

a witness is obtained.74

A further restriction of the reasoning path makes the thesis completely implicit. This75

has been considered in Mizar, C zar [3], and the two declarative modes for HOL Light76

(miz3 [10, 11] and Harrison’s Mizar Mode [6], which we will denote shortly MMH). In such77

systems the implicit thesis can be referred to as thesis. A limited procedure for transforming78

it in every skeleton step is necessary. Additionally, the order of the skeleton steps is mostly79

specified by the shape of the proved formula. A partial conclusion allows specifying the80

proved conjunct and proceed to subsequent ones. C zar is most flexible in this respect, since81

the implicit thesis can be transformed by the reconsider thesis as construction.82

Mizar is the only system that implicitly unfolds user-selected definitions to match the83

thesis to the provided skeleton steps. Unfolding definitions in all other systems is manual,84

and often all the occurrences of a given definition must be unfolded together. Isabelle/Isar85

and Lean include attributes that transform facts before their use (e.g. [simplified]).86

The proof modes also include two ways reasoning by cases are introduced. In the first87

approach, the user specifies all the cases before the reasoning and then proceeds with each88

individual case. The second approach allows the user to directly prove the necessary cases.89

At the end of the reasoning the system will build the alternative based on the explicitly given90

cases and possibly ask the user to justify that all the cases have been covered. The latter91
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Mizar Lean Isabelle/Isar C zar miz3 MMH

reason-path – + + – – –
inline ∃intro take ex.intro – take take take

unfold partial partial full full – –
cases after before, EM before, EM after after after
thesis thus/hence show show/thus thus thus thus
∃elim consider obtain obtain consider consider consider
diffuse now...end – {...} – now...end –

Table 1 Comparison of features present in the declarative proof styles of different proof assistants.
miz3 refer’s to Wiedijk’s Mizar mode for HOL and MMH refers to Harrison’s Mizar mode for HOL.
For features present, but where their semantics slightly differ, we mark this with the syntax.

approach has been considered in Mizar, miz3, MMH , and C zar. In Isabelle and Lean it is92

necessary to specify the cases (or give a formula φ for which excluded middle, EM will be93

used) before the reasoning.94

Certain declarative modes support the extraction of information from nested proof blocks95

without explicitly giving the proof goal. This is referred to as a diffuse statement and96

supported by Mizar, miz3, and Isabelle/Isar. There are minor differences in the flexibility of97

such constructions, so we mark them by the corresponding syntax (now...end and {...}) in98

Table 1. Similarly, the existential elimination construction may or may not allow linking to99

the statement about the witness. We again mark this using the corresponding syntax (obtain100

/ consider) in the table.101

3 Translations102

In this section we assume a compatibility between the foundations and the statement syntax.103

A statement syntax translation will be necessary for each pair of systems and we will use one104

in the next section. A translation between two systems comprises of: rebuilding the proof105

structure to skeleton steps provided by the systems; adapting the references to previous106

items and labels; possibly adding the annotations of individual proof steps by the reasoning107

path. We will attempt to reconstruct the proof structure by introducing a small number of108

skeleton steps supported by the target system. The skeleton steps will be annotated only with109

the justification elements necessary in the target system, such as ∀intro, ⇒intro, or explicit110

references to the conclusion (such as show). We discuss below eliminating particular features,111

if they are not supported by the target system. After the application of these transformation,112

the resulting proof text needs to be optimized to make use of the special features of the113

target system and the labels, references, and justifications updated.114

∃ introduction. If not supported by the target system, they can be eliminated by115

introducing a cut with the existential formula available as a lemma and used in the reasoning116

path or explicitly given by a command, depending on the target system.117

diffuse statement. In a similar way, diffuse statements can be eliminated from the118

proof skeleton if they are not supported by the target proof system. For this, the thesis of119

the proof block needs to be reconstructed and explicitly provided.120

cases. Proofs by cases are replaced by a case covering lemma and series of lemmas121

case→ thesis justified by the reasonings given in the source system.122

thesis reference. If the target system does not support a reference to the thesis, it is123

CVIT 2016
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scheme DrinkerParadox{P[set]}:
ex x st P[x] implies for y holds P[y]

proof
per cases;

suppose ex x st not P[x];
then consider x such that

A1: not P[x];
take x;

assume P[x];
hence for y holds P[y] by A1;

end;

suppose
A2: for x holds P[x];

take x=the set;

assume P[x];
thus for y holds P[y] by A2;

end;

end;

theorem Drinker-paradox:
∃ x. P(x) −→ (∀ y. P(y))

proof -
have cases: (∃ x.¬P(x)) ∨ (∀ x. P(x)) by auto
have case1: (∃ x.¬P(x)) −→ (∃ t. P(t) −→ (∀ y. P(y)))
proof(rule impI)
assume ∃ x. ¬P(x)
then obtain x where [ty]: x be set and
A1: ¬P(x) by auto
show ∃ t. P(t) −→ (∀ y. P(y))
proof(rule bexI[of - x],rule impI)
assume P(x)
thus ∀ y. P(y) using A1 by simp

qed auto
qed
have case2: (∀ x. P(x)) −→ (∃ x. P(x) −→ (∀ y. P(y)))
proof(rule impI)
assume A2: ∀ x. P(x)
obtain x where [ty]: x be set and
xDef: x = the set by auto
show ∃ x. P(x) −→ (∀ y. P(y))
proof(rule bexI[of - x],rule impI)
assume P(x)
show ∀ y. P(y) using A2 by simp

qed auto
qed
show ?thesis using cases case1 case2 by auto

qed

Figure 1 Drinker’s paradox in Mizar and its automated translation to Isabelle. Variables are
implicitly typed as set. The example is a schematic extension of Wenzel and Wiedijk’s example
comparing Mizar with Isar [9].

replaced by the formulation extracted from the source system. The only case where the124

target thesis is used, would be when the original thesis is not modified. For example in125

Isabelle, the use of proof- allows avoiding a repetition of the whole goal statement.126

reasoning path. If the target system does require a reasoning path, the proof needs127

to be transformed to a shape where we can provide a correct reasoning path. In particular128

we assume that before any fix/let the thesis is universally quantified, for assume it is an129

implication, and the show/thus is the formula or its first conjunct. This generates quite130

unnatural parentheses, which can be removed in a post-processing phase. Also note that in131

some systems (mostly logical frameworks) separating assume steps changes the reasoning132

path. The transformation follows the diagram:133

skeleton step new thesis additional rules
fix/let x ∀x. thesis ballI

assumeA1:α1 andA2:α2

and...andAn−1:αn−1 andAn:αn

α1 ∧ (α2 ∧ (. . .(αn−1 ∧ αn). . .) )
−→ thesis

impMI, . . . , impMI︸ ︷︷ ︸
n−1 times

, impI

show/thus α α∧ thesis conjMI
take term ∃x. thesis(term:=x) bexI[of "term"]

where impMI connects uncurry and impI; conjMI is a modification of conjI; ballI, bexI are the134

bounded quantifier introduction rules used with object-level types.135

identifier scopes and namespaces. Newly introduced identifiers (term:=x) are also not136

treated uniformly across systems (for example in Mizar, the second kinds of take construction137

may introduce a same variable). In order to avoid problems, in cases where ambiguities can138

arise (it will be only 17 cases in all the proofs in the next section), identifiers will be renamed.139

final thesis adjustment. The transformations discussed above derive for every block140

a thesis that is equivalent to the original one, but not always syntactically identical. If it141

is not identical, we introduce a cut in the target system. Finally the proof is adapted for142
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theorem :: ROLLE:4 Lagrange Theorem
for x,t be Real st 0<t

for f be PartFunc of REAL,REAL st
[.x,x+t.] c= dom f &
f|[.x,x+t.] is continuous &
f is_differentiable_on ].x,x+t.[

ex s be Real st 0<s & s<1 &
f.(x+t) = f.x + t*diff(f,x+s*t)

proof
let x,t be Real such that

A1: 0<t;
let f be PartFunc of REAL,REAL;
assume [.x,x+t.] c= dom f &
f|[.x,x+t.] is continuous &
f is_differentiable_on ].x,x+t.[;

then consider x0 be Real such that
A2: x0 in ].x,x+t.[ and
A3: diff(f,x0)=(f.(x+t)-f.x)/(x+t-x)

by...

take s = (x0-x)/t;

x0 in {r where r is Real:x<r & r<x+t} by...
then

A4: ex g be Real st g=x0 & x<g & g<x+t by...
then 0<x0-x by...
then 0/t < (x0-x)/t by...
hence 0<s by ...
x0-x<t by...
then (x0-x)/t<t/t by...
hence s<1 by...

A5: s*t+x = (x0-x)+x by...
f.x+t*diff(f,x0)=f.x+(f.(x+t)-f.x) by...
hence thesis by ...

end;

mtheorem Lagrange:
∀ x:Real. ∀ t:Real. 0M < t −→
∀ x:PartFunc of IR,IR.

([[ x,x+ t ]] ⊆ dom f ∧
f | [[ x,x+ t ]] be continuous) ∧
f is differentiable on (| x,x+t |) −→

∃ s:Real. 0M < s ∧ (s< 1M ∧
f.(x+t) = f.x+ t ∗diff(f,x+ s∗t))

proof(rule ballI,rule ballI,rule impI,rule ballI,rule impI)
fix x assume [ty]: x beReal fix t assume [ty]: t beReal
assume A1: 0M < t hence B1: t<> 0M ...
fix f assume [ty]: f be PartFunc of IR,IR
have [ty]: f be Relation ...
assume ([[ x, x+ t ]]⊆ dom f ∧ f | [[ x,x+ t ]] be continuous) ∧

f is differentiable on (| x,x+ t |)
then obtain x0 where [ty]: x0 be Real and
A2: x0 ∈ (| x,x+ t|) and
A3: diff(f,x0) = (f.(x+t) - f .x)/(x+t-x) ...
obtain s where [ty]: s be set and sDef: s = (x0-x)/t ...
have [ty]: s is Real ...
show ∃ s:Real. 0M < s ∧ (s< 1M∧

f.(x+t) = f.x + t ∗ diff(f,x+s∗t))
proof(rule bexI[of - s],rule conjMI,rule conjMI)
have x0 ∈ {rwhere r beReal : x< r∧ r< x+ t} ...
hence
A4: ∃ g:Real. (g=x0 ∧ x< g) ∧ g< x+ t ...
hence 0M < x0 - x ...
hence 0M / t< (x0 - x)/t ...
thus 0M < s ...
have x0 - x< t ...
hence (x0 - x)/ t< t / t ...
thus s< 1M ...
have A5: s ∗ t+ x=x0 - x+x ...
have f.x + t ∗ diff(f,x0) = f.x + (f.(x+t) - f.x) ...
thus f.(x + t) = f.x + t ∗ diff(f,x+s∗t) ...

qed
qed

Figure 2 The Lagrange theorem in Mizar and its automated translation to Isabelle. The individual
proof step justifications have been omitted, and are available in the accompanying formalization.

readability in the target system, removing e.g. references to previous steps if they can be143

implicit or use then etc. Further refinements of the resulting text are left as future work.144

4 Case Study145

We have implemented these transformations and applied them to the 200 articles of the Mizar146

library obtaining natural deduction proof outlines that can be expressed in Isabelle/Isar.147

Isabelle accepts all the proof outlines, however the current Isabelle/Mizar automation is not148

able to handle most of the individual proof steps justifications yet, and these are assumed149

so far. In this section we showcase two original and translated lemmas. For details on the150

Isabelle/Mizar object logic and its notations we refer to [8].151

In Figure 1 we present a simple proof that showcases the transformations the four different152

kinds of skeleton step reconstruction, variable rename in take, and uses existential intro-153

duction. In the proof automatically translated according to the introduced transformations154

Isabelle/Mizar’s mauto works as a justification of every step. Every take step requires an155

additional obtain and type calculation. The proof by cases uses excluded middle, which is156

supported by Isabelle. Among the 3236 proofs by cases, 1354 required a justification that157

the considered cases are complete, and the most complex proof involves 16 cases.158

Figure 2 showcases a more advanced MML proof, where automated thesis adjustments are159

CVIT 2016



23:6 Declarative Proof Translation

also necessary. Also the Isabelle/Mizar automation does not support Mizar’s term generation160

for properties, so the individual proof step justification required additional facts. These were161

symmetry a+b = b+a, reductions a+b−a = b, and the reflexivity of ≤. Last was for example162

necessary to derive B1: t<>0M from A1. All other steps were successfully proved by mauto.163

Among the 20233 subproofs in MML200, we need the additional cut to transform the164

thesis in 14827 cases (large majority are the same modulo parentheses). When it comes to165

definition unfolding, the unfolded definition needs to be explicitly provided. This occurs in166

5144 subproofs. Inline existential introduction steps introduce 13027 additional proof blocks.167

5 Conclusion168

We proposed translation techniques for the various features present in declarative proof169

languages and we automatically translated the proof outlines from 200 articles of the MML170

to Isabelle/Isar. Isabelle accepts all the translated proof outlines and the increase in the171

proof size imposed by our translation is relatively small. Future work includes extending the172

translation to Mizar structures and proof schemes which would allow applying the techniques173

to a large subsequent part of the Mizar library. Finally, developing a more powerful Mizar-174

like automation would be necessary to verify all the individual proof steps. The translated175

formalization is available at:176

http://cl-informatik.uibk.ac.at/cek/itp19mml200/177
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