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Abstract12

We formally introduce a foundation for computer verified proofs based on higher-order Tarski-13

Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists.14

This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory.15

The foundation allows the co-existence of proofs based on two major competing foundations for16

formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries,17

Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do18

this by defining isomorphisms between the basic concepts, including integers, functions, lists, and19

algebraic structures that preserve the important operations. With this we can transfer theorems20

proved in higher-order logic to TG set theory and vice versa. We practically show this by formally21

transferring Lagrange’s four-square theorem, Fermat 3-4, and other theorems between the foundations22

in the Isabelle framework.23
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1 Introduction31

Various formal proof foundations combine higher-order logic with set theory [10,23,33,34].32

Such a combination offers a familiar mathematical foundation, while at the same time offering33

more powerful automation present in HOL. All the combinations have been presented without34

a model, even though models for the two separate foundations are well known and studied.35

In this paper we will give a model of such a combination and show some consequences of the36

existence of the model for practical formalizations.37

Today the libraries of proof assistants based on the two separate foundations are among38

the largest proof libraries available. The library of higher-order logic based Isabelle/HOL [43]39

together with the Archive of Formal Proofs consist of more than 100,000 theorems [9], while40

the Mizar Mathematical Library (MML) [6,15] based on set theory contains 59,000 theorems.41

A number of results in the libraries are incomparable, for example among the theorems42

present in Wiedjik’s list of 100 important theorems to formalize Isabelle has 16 theorems not43

formalized in Mizar, while Mizar has 5 theorems absent in Isabelle (64 are formalized in both).44
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23:2 Higher-order Tarski Grothendieck

The Mizar library includes results about lattice theory [7], topology, and manifolds [38] not45

present in the Isabelle library.46

A model for the higher-order Tarski-Grothendieck allows merging the results in the47

two libraries. This merging will be performed mostly manually. The reason for this, is48

that definitions for isomorphic concepts may be quite different in the usual approaches in49

these system. Consider the real numbers. In the MML their definition is performed in50

multiple steps. First, natural numbers are introduced using the set-theoretic successor. Next,51

positive rationals are created by adding fractions as pairs of irreducible naturals 〈n, k〉 (with52

k > 1). Finally, Dedekind cuts are used to obtain positive reals. The Isabelle approach is53

fundamentally different. Natural numbers are a subtype of the axiomatic type of individuals.54

Pairs of naturals are quotiented into integers and rationals. Finally, Cauchy sequences of55

rationals grant reals. The differences in the construction also imply differences in their56

behaviours. Every Mizar natural number is also an integer or real, while in Isabelle coercions57

are required. It is similar when it comes to mathematical structures (used by over 70% of the58

Mizar library). Their semantics [21] in Mizar is close to partial functions specified on named59

fields, which enables for example inheritance and this is used to realize the main algebraic60

structures. Isabelle records are quite similar, but it is type classes that are used to express61

algebra.62

We will propose a way to lift the merged elementary concepts to the more involved ones.63

By associating the Isabelle number 0 and the empty set and the corresponding successor64

operations, we will show a homomorphism between the set theoretic and higher-order natural65

numbers and later integers. We will show that this homomorphism preserves the basic66

operations, which will allow transporting basic number theorems, including Lagrange, and67

Bertrand, and cases of Fermat’s last theorem.68

We will also show that it is possible to show a mapping between the Isabelle type classes69

and the set theoretic structures corresponding basic algebra. This will allow merging the70

formalizations of groups and rings in the two libraries. We again use some merged basic71

concepts, namely functions and binary operators. This brings us to Euclidean spaces where72

we transport the Brouwer theorem for n-dimensional case (the fixed point theorem [36], the73

topological invariance of degree, and the topological invariance of dimension [37]) that are74

essential to define and develop topological manifolds.75

The rest of the paper is structured as follows. In Section 2 we review the higher-order logic76

foundations used later. Section 3 gives an axiomatization of higher-order Tarski-Grothendieck77

(HOTG). We first define it in a higher-order setting and then relate to the actual proof78

assistants based on this foundation. Section 4 presents our model of HOTG. Next, in Section79

5 we show the implications of the existence of the model for practical formalization: we align80

the proof libraries of Isabelle/HOL and Isabelle/Mizar by building isomorphisms between the81

various concepts present in these libraries and by translating theorems via the isomorphism.82

Section 6 discusses related work.83

2 Preliminaries84

We begin by reviewing the syntax and semantics of higher-order logic. The original presenta-85

tion of higher-order logic using simple type theory was due to Church [12] with a corresponding86

notion of semantics due to Henkin [18] (with an important correction by Andrews [2]). We87

largely follow the notation and presentation style used in [5].88

Let B be a set of base types. We use β to range over the types in B. We next define types89

and use σ, τ to range over types. The set T of types is given by inductively extending B to90
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include the type o (of truth values) and the type σ ⇒ τ (of functions from σ to τ) for all91

σ, τ ∈ T . We assume o /∈ B and that types are freely generated.92

For each type σ let Vσ be a countable set of variables of type σ, where we assume93

Vσ ∩ Vτ = ∅ whenever σ 6= τ . We use x, y, z to range over variables. For each type σ let Cσ94

be a set of constants of type σ, where again Cσ ∩ Cτ = ∅ whenever σ 6= τ . Furthermore, we95

assume Vσ ∩ Cτ = ∅. We use c, d to range over constants. A name is either a variable or a96

constant. We use ν to range over names.97

We now inductively define a family of sets Λσ of terms, using s, t, u to range over terms.98

For the base cases, Vσ ⊆ Λσ and Cσ ⊆ Λσ. There are two inductive cases: application99

and abstraction. If s ∈ Λσ⇒τ and t ∈ Λσ, then (st) ∈ Λτ . If x ∈ Vσ and t ∈ Λτ , then100

(λx.t) ∈ Λσ⇒τ . We often omit parenthesis with the convention that application associates to101

the left, so that stu means ((st)u). Terms of type o are also called formulas.102

We insist on the inclusion of certain constants called logical constants in the family C103

of constants. For simplicity of presentation, we take every logical constant we will use as a104

constant. In particular, we assume:105

¬ is a logical constant in Co⇒o. We write ¬(st) as ¬st.106

∧, ∨, −→ and ←→ are logical constants in Co⇒o⇒o. We use infix notation for ∧, ∨, −→107

and ←→, with priority in this order, and each one associating to the right.108

For each type σ Πσ and Σσ are a logical constants in C(σ⇒o)⇒o. We write ∀x1 · · ·xn : σ.t109

to mean Πσ(λx1. · · ·Πσ(λxn.t)) and write ∃x1 · · ·xn : σ.t to mean Σσ(λx1. · · ·Σσ(λxn.t)).110

For each type σ =σ is a logical constant in Cσ⇒σ⇒o. We write =σ s t in infix as s = t.111

For each type σ εσ is a logical constant in C(σ⇒o)⇒σ.112

It is well-known that smaller sets of logical constants would be sufficient. For example, it is113

known that in (extensional) higher-order logic equality is sufficient to define the propositional114

constants and connectives as well as the existential and universal quantifiers at each type [1].115

We next turn to a review of Henkin semantics for our language [18] closely following the116

presentation style in [5]. A frame is a family Dσ of nonempty sets such that Do = {0, 1} and117

Dσ⇒τ ⊆ (Dτ )Dσ for each σ, τ ∈ T . A frame is called standard if Dσ⇒τ = (Dτ )Dσ for every118

σ, τ ∈ T . An assignment is a function I mapping every name of type σ to an element in119

Dσ. Given a variable x ∈ Vσ and element a ∈ Dσ let Ixa be the assignment agreeing with120

I except possibly on x where Ixa (x) = a. An assignment I is logical if for each σ ∈ T the121

following conditions hold:122

for a ∈ Do I(¬)(a) = 1 if and only if a = 0,123

for a, b ∈ Do I(∧)(a)(b) = 1 if and only if a = 1 and b = 1,124

for a, b ∈ Do I(∨)(a)(b) = 1 if and only if a = 1 or b = 1,125

for a, b ∈ Do I(−→)(a)(b) = 1 if and only if a = 0 or b = 1,126

for a, b ∈ Do I(←→)(a)(b) = 1 if and only if a = b,127

for f ∈ Dσ⇒o I(Πσ)(f) = 1 if and only if f(a) = 1 for all a ∈ Dσ,128

for f ∈ Dσ⇒o I(Σσ)(f) = 1 if and only if there is some a ∈ Dσ such that f(a) = 1,129

for a, b ∈ Dσ I(=σ)(a)(b) = 1 if and only if a = b, and130

for f ∈ Dσ⇒o f(I(εσ)(f)) = 1 if and only if there is some a ∈ Dσ such that f(a) = 1.131

In other words, I is logical if it interprets the logical constants appropriately.132

We lift an assignment I to be a partial function Î on terms as follows:133

For names ν, Î(ν) = I(ν).134

For s ∈ Λσ⇒τ and t ∈ Λσ, Î(st) = f(a) if Î(s) = f ∈ Dσ⇒τ and Î(t) = a ∈ Dσ.135

For x ∈ Vσ and t ∈ Λτ , Î(λx.t) = f if f ∈ Dσ⇒τ and Îxa (t) = f(a) for all a ∈ Dσ.136

Note that for all s ∈ Λσ if Î(s) is defined, then Î(s) ∈ Dσ. If Î is a total function with137

domain
⋃
σ∈T , then I is called an interpretation.138
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23:4 Higher-order Tarski Grothendieck

A (Henkin) model is a pair (D, I) where D is a frame and I is a logical interpretation.139

A model is called standard if the frame is standard. We say (D, I) satisfies a formula s if140

Î(s) = 1 and say (D, I) is a model for a set A of formulas if (D, I) satisfies every s ∈ A.141

To simplify the presentation above, some dependencies were left implicit. For each set B142

of base types (with o /∈ B), we obtain a set T B of types. Additionally, for each set B of base143

types and each family C of constants indexed by T B, we obtain a family ΛB,C of terms. The144

definition of a frame above technically depends on the set B of base types and we say D is a145

frame over B when this dependency needs to be explicit. Futhermore an assignment depends146

on both B and C and we say I is an assignment over B for C when these dependencies need147

to be explicit.148

A theory is a triple (B, C,A) where B is a set of base types, C is a family of sets of149

constants (which must include the logical constants) over the types T B and A ⊆ ΛB,C
o is a150

set of formulas called the axioms of the theory. A pair (D, I) is a model of a theory (B, C,A)151

if D is a frame over B, I is a logical interpretation over B for C and (D, I) is a model of the152

set A of formulas.153

It is known that the notion of a Henkin model provides a sound and complete semantics154

for a variety of proof calculi [5, 8, 11]. Our concern in this article is not with proof calculi155

directly, but with consistency of certain axiom sets for higher-order set theory. In this paper156

we will only consider one axiomatization of higher-order Tarski Grothendieck set theory.157

Soundness implies it is sufficient to find models of these axiom sets to infer consistency, and158

for this purpose constructing a standard model is enough. In future work we plan to consider159

different axiomatizations of higher-order Tarski Grothendieck (e.g., the one in [23]) and plan160

to use soundness and completeness with respect to Henkin models to prove the two versions161

of Tarski Grothendieck are equivalent.162

3 An Axiomatization of Higher-Order Tarski Grothendieck163

In this section we give a formulation of higher-order Tarski Grothendieck (HOTG) set theory164

by giving a theory HOTG. The theory is identical to the one implemented by the first165

author in the Egal system [10]. In particular, the theory specifies an operator that explicitly166

gives the Grothenieck universe of a set [16]. In the presence of the axiom of choice, this167

is equivalent to specifying that such a universe exists for every set, which is the approach168

used in the Mizar system as specified by Trybulec [42]. In the below axiomatization and in169

the model in the next section, we will use the explicit universe operation, as it makes the170

presentation simpler, but our intention is to use it both for explicit universes and implicit171

ones, as specified in Isabelle/Mizar by Kaliszyk and Pąk [23] using Tarski’s Axiom A [41]172

and used in Section 5.173

We first describe the theory HOTG as given by the triple (B, C,A). Here B be the174

singleton {ι} and the base type ι is intended to be the type of sets. The typed constants C175

consists precisely of the logical constants and the following additional constants:176

In in Cι⇒ι⇒o. We write In s t in infix as s ∈ t.177

Empty in Cι.178

Un in Cι⇒ι.179

Pow in Cι⇒ι.180

Repl in Cι⇒(ι⇒ι)⇒ι.181

Univ in Cι⇒ι.182
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To state the axioms, we will use three abbreviations. Let Subq be the term

λX.λY.∀z : ι.z ∈ X −→ z ∈ Y

of type ι⇒ ι⇒ o. We write Subq s t as s ⊆ t. Let TransSet be the term

λU.∀X : ι.X ∈ U −→ X ⊆ U

of type ι⇒ o. Let ZFclosed be the term

λU. (∀X : ι.X ∈ U −→ Un X ∈ U) ∧ (∀X : ι.X ∈ U −→ Pow X ∈ U)
∧(∀X : ι.∀F : ι⇒ ι.X ∈ U −→ (∀x : ι.x ∈ X −→ F x ∈ U) −→ Repl X F ∈ U)

of type ι⇒ o.183

The set A of axioms consists of the following formulas:184

Extensionality: ∀XY : ι.X ⊆ Y −→ Y ⊆ X −→ X = Y .185

∈-Induction: ∀P : ι⇒ o.(∀X : ι.(∀x : ι.x ∈ X −→ Px) −→ PX) −→ ∀X : ι.PX.186

Empty: ¬∃x : ι.x ∈ Empty.187

Union: ∀X : ι.∀x : ι.x ∈ Un X ←→ ∃Y : ι.x ∈ Y ∧ Y ∈ X.188

Power: ∀XY : ι.Y ∈ Pow X ←→ Y ⊆ X.189

Replacement: ∀X : ι.∀F : ι⇒ ι.∀y : ι.y ∈ Repl X F ←→ ∃x : ι.x ∈ X ∧ y = Fx.190

UnivIn: ∀N : ι.N ∈ UnivN191

UnivTransSet: ∀N : ι.TransSet (UnivN).192

UnivZF: ∀N : ι.ZFclosed (UnivN).193

UnivMin: ∀N U : ι.N ∈ U −→ TransSet U −→ ZFclosed U −→ UnivN ⊆ U .194

4 A Model of Higher-Order Set Theory195

We will make heavy use of the von Neumann hierarchy (see for example [27]). By ordinal196

induction we define the set Vα for ordinals α as V∅ = ∅, Vα+1 = ℘(Vα) and Vλ =
⋃
α<λ Vα.197

Since we work in a well-founded set theory, for every set X there is some ordinal α such that198

X ⊆ Vα (and so X ∈ Vα+1).199

A cardinal κ is inaccessible if it is regular and λ < κ implies 2λ < κ. A cardinal κ is200

2-inaccessible if it is a regular limit of inaccessible cardinals. Note that if κ is 2-inaccessible,201

then for every λ < κ there is some inaccessible κ′ with λ < κ′ < κ. It easily follows every202

2-inaccessible is also inaccessible.203

The following proposition can be found in Kanamori (see Proposition 2.1 in [26]).204

I Proposition 1. Let κ be inaccessible.205

1. x ⊆ Vκ implies x ∈ Vκ iff |x| < κ.206

2. Vκ |= ZFC207

We define universes following Grothendieck [16].208

I Definition 2. Let U be a set. We say U is a universe if four conditions hold:209

U is transitive.210

If x, y ∈ U , then {x, y} ∈ U .211

If X ∈ U , then ℘(X) ∈ U .212

If I ∈ U and Xi ∈ U for each i ∈ I, then
⋃
i∈I Xi ∈ U .213

The fact that every inaccessible yields a universe follows easily from Proposition 1.214

CVIT 2016
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I Proposition 3. If κ is inaccessible, then Vκ is a universe.215

The following proposition will ensure that universes satisfy the properties in the definition216

of ZFclosed.217

I Proposition 4. Let U be a universe.218

1. If X ∈ U , then
⋃
X ∈ U .219

2. If X ∈ U and f : X → U , then {f(x)|x ∈ X} ∈ U .220

Proof. Suppose X ∈ U . We know
⋃
X ∈ U since

⋃
X =

⋃
x∈X{x}. Now suppose X ∈ U221

and f : X → U . We know {f(x)|x ∈ X} ∈ U since {f(x)|x ∈ X} =
⋃
x∈X{f(x)}. J222

To interpret the constant Univ we will not only need universes, but a global function223

uniformly giving the least universe containing a given set.224

I Definition 5. Let α > 0 be an ordinal. A universe function for α is a function U : Vα → Vα225

such that for all A ∈ Vα we have A ∈ U(A), U(A) is a universe and U(A) ⊆ U for all226

universes U ∈ Vα with A ∈ U .227

I Definition 6. Let α > 0 be an ordinal and U be a universe function for α. Let Dαι be Vα,228

Dαo = {0, 1} and Dασ⇒τ = (Dατ )Dα
σ for each σ, τ ∈ T B. Note that Vα 6= ∅ since α > 0 and229

so Dα is a standard frame over B. We call Dα the standard set-theoretic frame for α. An230

assignment I over B for C into Dα is called a standard set-theoretic interpretation for α231

and U if I is a logical interpretation and the following properties hold:232

I(In)(a)(A) = 1 if and only if a ∈ A for a,A ∈ Dαι .233

I(Empty) = ∅234

I(Un)(A) =
⋃
A for every A ∈ Dαι .235

I(Pow)(A) = ℘(A) for every A ∈ Dαι .236

I(Repl)(A)(f) = {f(a)|a ∈ A} for every A ∈ Dαι and f ∈ Dαι⇒ι.237

I(Univ) = U .238

I Theorem 7. Let α > 0 be an ordinal, U be a universe function for α and Dα be the239

standard set-theoretic frame for α. If I is a standard set-theoretic interpretation for α and240

U , then (Dα, I) is a model of the theory HOTG.241

Proof. Assume I is a standard set-theoretic interpretation for α and U . We only need to242

prove I maps every formula in A to 1.243

Extensionality: The fact that

I(∀XY : ι.X ⊆ Y −→ Y ⊆ X −→ X = Y ) = 1

follows easily from the fact that A = B whenever A ⊆ B and B ⊆ A for A,B ∈ Vα.244

∈-Induction: In order to prove

I(∀P : ι⇒ o.(∀X : ι.(∀x : ι.x ∈ X −→ Px) −→ PX) −→ ∀X : ι.PX) = 1

it suffices to prove that C = Vα for every C ⊆ Vα such that A ∈ C for every A ∈ Vα with245

A ⊆ C. Let C ⊆ Vα be given and assume A ∈ C for every A ∈ Vα with A ⊆ C. Consider246

Vα \ C. Assume Vα 6= C. In this case Vα \ C must be nonempty. By regularity there is247

an element A ∈ Vα \ C such that A ∩ (Vα \ C) = ∅. Since Vα is transitive A ⊆ Vα and248

so A ∩ (Vα \ C) = ∅ implies A ⊆ C. By our assumption about C, we must have A ∈ C,249

contradicting A ∈ Vα \ C.250

Empty: We know I(¬∃x : ι.x ∈ Empty) = 1 since I(Empty) = ∅.251
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Union: We know I(∀X : ι.∀x : ι.x ∈ Un X ←→ ∃Y : ι.x ∈ Y ∧ Y ∈ X) = 1 since252

I(Un)(A) =
⋃
A.253

Power: We know I(∀XY : ι.Y ∈ Pow X ←→ Y ⊆ X) = 1 since I(Pow)(A) = ℘A.254

Replacement: We can easily prove I(∀X : ι.∀F : ι⇒ ι.∀y : ι.y ∈ Repl X F ←→ ∃x : ι.x ∈255

X ∧ y = Fx) = 1 using the fact that I(Repl)(A)(f) = {f(a)|a ∈ A} for every A ∈ Vα and256

every f : Vα → Vα.257

UnivIn: Since U is a universe function we know A ∈ U(A) for every A ∈ Vα. Hence258

I(∀N : ι.N ∈ UnivN) = 1.259

UnivTransSet: Since U is a universe function, U(A) is a universe (and hence transitive) for260

every A ∈ Vα. Hence I(∀N : ι.TransSet (UnivN)) = 1.261

UnivZF: It is easy to see I(∀N : ι.ZFclosed (UnivN)) = 1 using Definitions 2 and 5 and262

Proposition 4.263

UnivMin: Suppose A,U ∈ Vα where A ∈ U , U is transitive and I(ZFclosed)(U) = 1. We
argue that U is a universe. We know U is transitive. The fact that ℘(X) ∈ U whenever
X ∈ U follows directly from I(ZFclosed)(U) = 1. In particular, since A ∈ U , we know
℘(A) ∈ U and ℘(℘(A)) ∈ U . Let x, y ∈ U be given. Let f : ℘(℘(A))→ U be the function

f(X) =
{
x if A ∈ X
y otherwise

Since f(A) = x and f(∅) = y, we know {x, y} = {f(X)|X ∈ ℘(℘(A))}. Using264

I(ZFclosed)(U) = 1 we conclude {x, y} ∈ U . Now let I ∈ U and a family Xi ∈ U for265

each i ∈ I be given. Let g : I → U be the function g(i) = Xi. Using I(ZFclosed)(U) = 1266

we know {g(i)|i ∈ I} ∈ U and then
⋃
i∈I Xi =

⋃
{g(i)|i ∈ I} ∈ U . Hence U is a universe.267

Since U is a universe with A ∈ U , we conclude U(A) ⊆ U from Definition 5.268

J269

For a general ordinal α there will be no universe function U . For 2-inaccessible cardinals270

there is a universe function and a corresponding standard set-theoretic interpretation.271

I Theorem 8. Let κ be 2-inaccessible and Dκ be the standard set-theoretic frame for κ.272

There is a universe function U for κ and there is a standard set-theoretic interpretation I273

for κ and U .274

Proof. We first construct the universe function. For each A ∈ Vκ, let A′ be

{U ∈ Vκ|U is a universe and A ∈ U}.

We argue A′ is always nonempty. Since A ∈ Vκ there must be some α < κ such that A ∈ Vα.275

Since κ is 2-inaccessible there must be some inaccessible κ′ < κ with α < κ′. By Proposition 3276

Vκ′ is a universe and so Vκ′ ∈ A′. Since A′ is a nonempty set,
⋂
A′ is well-defined and we277

can take U(A) to be
⋂
A′. A simple inspection of Definition 2 reveals that the intersection278

of a nonempty set of universes is itself a universe. Thus U(A) is the least universe with A as279

a member and U is a universe function for κ.280

Next we turn to the interpretation I. The axiom of choice states that there is a function
e : ℘(Vκ+ω)\{∅} → Vκ+ω such that e(A) ∈ A for every A ∈ ℘(Vκ+ω)\{∅}. An easy induction
on types shows Dκσ ∈ Vκ+ω for each σ ∈ T B. Hence Dκσ ∈ ℘(Vκ+ω) \ {∅} for each σ ∈ T B

since Vκ+ω is transitive. We can simply define I(x) = e(Dκσ) ∈ Dκσ for each variable x ∈ Vσ.
For the logical constants c other than εσ we take the obvious value I(c) so that I will be a

CVIT 2016



23:8 Higher-order Tarski Grothendieck

logical interpretation. In each case this value is in Dκσ since Dκ is a standard frame. We take
I(εσ) to be the function g ∈ Dκ(σ⇒o)⇒σ such that for f ∈ Dκσ⇒o we have

g(f) =
{

e({a ∈ Dκσ|f(a) = 1}) if f(a) = 1 for some a ∈ Dκσ
e(Dκσ) otherwise.

It only remains to give values I(c) for the nonlogical constants in C. For In, Empty, Un, Pow281

and Repl there is at most one corresponding value that might possibly satisfy the conditions282

in Definition 6. Since we know Dκι = Vκ is a universe, each of these values is in Dκσ in each283

respective case. Finally we take I(Univ) to be the universe function U constructed above.284

By the choice of I it is easy to see that I is a standard set-theoretic interpretation for κ. J285

As an easy corollary of Theorems 7 and 8 we have the following relative satisfiability286

result.287

I Theorem 9. If there is a 2-inaccessible cardinal, then HOTG is satisfiable.288

5 Proof Integration289

The model defined in the previous section allows us to use the higher-order library and290

set theoretic library simultaneously. We will do this in the Isabelle logical framework, by291

importing various results from the two libraries in the same environment and define transfer292

methods between these results. This will allow us to use theorems proved in one of the293

foundations using the term language of the other.294

All the definitions and theorems presented in this section have been formalized in Isabelle295

and will be presented close to the Isabelle notation. The Isabelle environment will import296

both Isabelle/HOL [32] and Isabelle/Mizar [23] object logics along with a number of results297

formalized in the standard libraries of the two. Isabelle distinguishes between meta-level298

implication (=⇒) and object-level implication (−→) and our notation in examples below299

reflects this distinction. The remaining notations will follow first-order conventions. In300

particular the symbols =H and =S will refer to the HOL and set-theoretic equality operations301

respectively. Finally be is the Mizar infix operator for specifying the type of a set in the302

Mizar intersection type system [24].303

To combine two types we will first define bijections between these types. We will next304

show that the bijection preserves various constants and operators. This will allow us to305

transfer results using higher-order rewriting, in the style of quotient packages for HOL [19,25]306

and the Isabelle transfer package [20]. In the MML set theory it is common to reason both307

about the type of the natural numbers and the members of the set of natural numbers. This308

is necessary, since the arguments of all operations must be sets, while the reasoning engine309

allows more advanced reasoning steps for types [6]. We therefore define two operators, one310

that specifies a bijection between a HOL type and a set theoretic set and one that specified311

a bijection between a HOL type and a set theoretic type. The definitions are analogous and312

we show only the latter one here. We will define an isomorphism between a type σ and a set313

d ∈ Λι to be a pair (f, g) of functions (at the type theory level) where f maps sets to objects314

of type σ and g maps objects of type σ to sets in such a way that objects of type σ (in the315

type theory) correspond uniquely to elements of d (in the set theory).316

I Definition 10. Let σ be a type, d ∈ Λι be a set and s2h ∈ Λι⇒σ and h2s ∈ Λσ⇒ι be317

functions. The predicate beIsoS〈h2s, s2h, d〉 holds whenever all of the following hold:318

∀x : σ.s2h(h2s(x)) =H x,319
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∀x : ι.x ∈ d −→ h2s(s2h(x)) =S x,320

∀x : σ.s2h(x) ∈ d.321

In Isabelle the definition appears as follows:322

definition beIsoS(h2 s,s2h,d) ←→ ((∀ Ly. s2h(h2 s(y)) =H y) ∧323

(∀ x:Element-of d. h2 s(s2h(x)) =S x)∧ (∀ Ly. h2 s(y) in d))324

The existence of a bijection does not immediately imply the inhabitation of the type/set.325

However, as types need to be non-empty in both formalisms, we can derive this result as326

below. For space reasons we only present the statements, all the theorems have proofs in our327

formalization.328

theorem beIsoS-d:329

beIsoS(h2 s,s2h,d) =⇒ d is non empty330

5.1 Natural numbers and integers331

The Isabelle/Mizar natural numbers are defined as the smallest limit ordinal. The existence332

of this set is a consequence of the Tarski universe property. The formal definition is as333

follows:334

mdef ordinal1-def-11 (omega) where335

func omega → set means (λit.336

0S in it ∧ it be limit-ordinal ∧ it be Ordinal ∧337

(∀A:Ordinal. 0S in A ∧ A is limit-ordinal −→ it ⊆ A))338

While Isabelle naturals are a subtype of the type of individuals. In order to merge these
two different approaches we specified a functorthat preserves zero and the successor. Note
that the functor is specified only for the type of the natural numbers which in Isabelle/HOL
is implicit, but in the softly-typed set theory needs to be written and checked explicitly.
This is the reason for having an undefined case, which as we will see later, still gives an
isomorphism.

h2sN(n) =S

{
0S if n =H 0H,

SS(h2sN(k)) if n =H SH(k) for some H-natural k.

s2hN(n) =H


0H if n =S 0S ,

SH(s2hN(k)) if n =S SS(k) for some S-natural k,
undefined otherwise.

The functor and its inverse are formally defined in Isabelle as follows339

fun h2sn :: nat ⇒ Set (h2 sIN(-)) where340

h2 sIN(0 ::nat) =S 0S | h2 sIN(Suc(x)) =S succ h2 sIN(x)341

function s2hn :: Set ⇒ nat (s2hIN(-)) where342

¬x be Nat =⇒ s2hIN(x) =H undefined343

| s2hIN(0S) =H 0344

| x be Nat =⇒ s2hIN(succ(x)) =H Suc(s2hIN(x))345

Note that h2 sIN is defined only on the HOL natural numbers (nat), while s2hIN is defined346

on all sets and its definition is only meaningful for arguments that are of the type Nat. The347

soft-type system of Mizar requires us to give this assumption explicitly here, but it can348

normally be hidden in the contexts where the argument type is restricted appropriately.349
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Isabelle requires us to prove the termination of the definition, which can be done using the350

proper subset relation defined on natural numbers in the Peano sense.351

Using the two induction principles for natural numbers present in both libraries, we can352

show that beIsoS(h2 sIN, s2hIN,NAT), where NAT is the set of all Nat. In particular it gives a353

bijection (note the hidden type restriction to sets of type nat). We show also that the functors354

preserve the basic operations on the natural numbers including addition, multiplication,355

comparison operators, division, primality, etc. The formalized statement is as follows:356

theorem Nat-to-Nat:357

fixes x::nat and y::nat358

assumes n be Nat and m be Nat359

shows h2 sIN(x +H y) =S h2 sIN(x) +S IN h2 sIN(y)360

s2hIN(n +S IN m) =H s2hIN(n) +H s2hIN(m)361

h2 sIN(x ∗H y) =S h2 sIN(x) ∗S IN h2 sIN(y)362

s2hIN(n ∗S IN m) =H s2hIN(n) ∗H s2hIN(m)363

x < y ←→ h2 sIN(x) ⊂ h2 sIN(y)364

n ⊂ m ←→ s2hIN(n) < s2hIN(m)365

x dvd y ←→ h2 sIN(x) divides h2 sIN(y)366

n divides m ←→ s2hIN(n) dvd s2hIN(m)367

prime(x) ←→ h2 sIN(x) is primeS368

n is primeS ←→ prime(s2hIN(n))369

It is now possible to translate the Lagrange’s Four Squares theorem and Bertrand’s postu-370

late between the libraries. We can prove the Isabelle/Mizar counterpart of the Isabelle/HOL371

theorem only using higher-order rewriting and the above properties.372

theorem LagrangeFourSquares:373

∀n:Nat. ∃ a,b,c,d:Nat.374

a ∗S INa +S IN b ∗S INb +S IN c ∗S INc +S IN d ∗S INd =S n375

theorem Bertrand:376

∀n:Nat. 1S ⊂ n −→377

(∃ p:Nat. p be primeS ∧ n ⊂ p ∧ p ⊂ (2S ∗S IN n))378

Integers can be handled in an analogous way: the definitions are again different but it is379

straightforward to define a bijection between the two, and show that is preserves all the basic380

operators. For operators that are missing in one of the libraries, it is possible to actually lift381

their definitions. For example the exponentiation operation, which has not been considered in382

the Isabelle/Mizar library so far, can be defined as TransformHS(s2hZZ,s2hIN,h2 sZZ,(^ )), where383

definition TransformHS where384

func TransformHS(s2hX1,s2hX2,h2 sY,HFun,x1,x2 ) → set equals385

h2 sY (HFun(s2hX1 (x1 ),s2hX2 (x2 )))386

This allows translating the proved Fermat’s last theorem for powers divisible by 3 and387

4 from Isabelle/HOL to Isabelle/Mizar. The proof involved quite some computation and388

therefore has not been attempted in Mizar so far.389

theorem Fermat-divides-3-4 :390

∀ x,y,z:Integer . ∀n:Nat.391

(3S divides n ∨ 4S divides n) ∧ x |^ n +SZZ y |^ n =S z |^ n392

−→ x ∗SZZ y ∗SZZ z =S 0S393
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5.2 Polymorphic types and lists394

Isabelle/HOL lists are realized as a polymorphic algebraic datatype, corresponding to395

functional programming language lists. MML lists (called finite sequences, FinSequence)396

are functions from an initial segment of the natural numbers. Higher-order lists behave like397

stacks, with access to the top of the stack, whereas for the set theoretic ones the natural398

operations are the restriction or extension of the domain.399

To build a bijection between these types, we note that the Cons operator corresponds400

to the concatenation of a singleton list and the second argument. Since the list type is401

polymorphic (in the shallow polymorphism sense used in HOL), in order to build this bijection,402

we also need to map the actual elements of the list. Therefore the bijection on lists will be403

parametric on a bijection on elements:404

fun h2sfs :: (a ⇒ Set) ⇒ a List.list ⇒ Set (h2 sL(-,-))where405

h2 sL(h2 s, Nil) =S <∗>406

| h2 sL(h2 s, Cons(h, t)) =S ((<∗h2 s(h)∗>) ^ (h2 sL(h2 s, t)))407

The converse operation needs to separate the first element of a sequence from the rest408

and shift it by one. We define this operation in Isabelle/Mizar and complete the definition.409

Isabelle will again require us to show the termination of the function, which can be done by410

induction on the length of the list/sequence:411

function s2hl :: (Set ⇒ a) ⇒ Set ⇒a List.list (s2hL(-,-)) where412

¬ x be FinSequence =⇒ s2hL(s2h,x) =H undefined413

| s2hL(s2h,<∗>) =H Nil414

| x be FinSequence =⇒ x 6= <∗> =⇒415

s2hL(s2h,x) =H Cons (s2h(x.1S), s2hL(s2h,x/^1S ))416

For the transformation introduced above, we can show that if we have a good homomor-417

phism between the elements of the lists, then lists over this type are homomorphic with finite418

sequences.419

We can again show that this homomorphism preserves various basic operations, such as420

concatenation, the selection of n-th element, length, etc.421

theorem s2hL-Prop:422

assumes p be FinSequence and q be FinSequence423

and n be Nat and n in len p424

shows size(s2hL(s2h,p)) =H s2hIN(len p)425

s2hL(s2h,p^q) =H s2hL(s2h,p) @ s2hL(s2h,q)426

s2hL(s2h,p) ! s2hIN(n) =H s2h(p. (succ n))427

Another polymorphic type that we need to map are functions. Set theoretic functions428

(sets of pairs) correspond to higher-order functions and this homomorphism preserves function429

application.430

theorem HtoSappl:431

assumes beIsoS(h2 sd,s2hd,d) and beIsoS(h2 sr,s2hr,r)432

shows h2 sf (s2hd,h2 sr,d,f ).h2 sd(x) =S h2 sr(f (x))433

5.3 Algebra434

The structure representations used in higher-order logic and set theories are usually different.435

This will be particularly visible when it comes to algebraic structures. In the Isabelle/HOL436

formalization algebraic structures are type-classes while in set theory a common approach437
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would be partial functions. We will illustrate the difference on the example of groups. A type438

α forms a group when we can indicate a binary function on this type that will serve as the the439

group operation satisfying the group axioms. On the other hand, in the usual set-theoretic440

approach a group in set theory would consist of an explicitly given set (the carrier), and441

the group operation. With an intersection type system, the fact that the given set with442

an operation is a group is specified by intersecting the type of structures with the types443

that specify their individual properties (i.e. a group is a non-empty associative Group-like444

multMagma)445

There are two more differences in the particular formalizations we consider, that we446

will not focus on, but we will only hint them in this paragraph and consider them only in447

the formalization. First, the existence and uniqueness of the neutral element can be either448

assumed in the group specification or derived from the axioms. Will not focus on that, as449

this is only the choice of a group axiomatization. Second, in the Mizar library there are450

two theories of groups: additive groups and multiplicative groups. Rings and fields inherit451

the latter, while some group-theoretic results are derived only for the former. Even if the452

Isabelle/HOL group includes a field for the unit, we will ignore it in the morphism, since the453

set theoretic definition does not use one. The neutral element along with the other properties454

is however necessary to justify that the result of the morphism is a group in the set theoretic455

sense.456

definition h2sg (h2 sG(-,-,-,-)) where457

h2 sG(s2hc,h2 sc,c,g) =S [#458

carrier 7→ c;459

multF 7→ h2 sBinOp(s2hc,h2 sc,c,mult(g)) #]460

definition s2hg (s2hG(-,-,-)) where461

s2hG(s2hc,h2 sc,g) =H Igroup(462

Collect(λx. h2 sc(x) in the carrier of g),463

s2hBinOp(s2hc,h2 sc,the multF of g),464

s2hc(1 .g))465

For the dual morphism, we indicate the result of the operation selecting the neutral466

element (1 .g) as the element needed in the construction of the type-class element. With its467

help, we can justify that the fields of the translated structure are translation of the fields.468

theorem s2hg-Prop:469

assumes beIsoS(h2 sc,s2hc,c) and g be Group470

and the carrier of g =S c471

and x ∈ carrierI (s2hG(s2hc, h2 sc, g))472

y ∈ carrierI (s2hG(s2hc, h2 sc, g))473

shows one(s2hG(s2hc,h2 sc,g)) =H s2hc(1 .g)474

x ⊗s2hG(s2hc,h2 sc,g) y =H s2hc(h2 sc(x) ⊗g h2 sc(y))475

group (s2hG(s2hc,h2 sc,g))476

A number of proof assistant systems based both on higher-order logic (including Is-477

abelle/HOL) and set theory (including Mizar) support inheritance between their algebraic478

structures. As part of our work aligning the libraries we also want to verify that such479

inheritance is supported in the combined library. For this, we align the ring structures480

present in the two libraries. The isomorphism between the structures is defined in a similar481

way to the one for groups, we refer the interested reader to our formalization.482

We can show that the morphisms form an isomorphism and derive some basic preservation483

properties. The most basic one is the fact that the isomorphism preserves being a ring.484
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theorem s2hr-Prop:485

assumes beIsoS(h2 sc,s2hc,c) and r be Ring486

and the carrier of r =S c487

and x ∈ carrierI (s2hR(s2hc,h2 sc,r))488

y ∈ carrierI (s2hR(s2hc,h2 sc,r))489

shows zero(s2hR(s2hc,h2 sc,r)) =H s2hc(0 r)490

one(s2hR(s2hc,h2 sc,r)) =H s2hc(1 r)491

x ⊕s2hR(s2hc,h2 sc,r) y =H s2hc(h2 sc(x) ⊕r h2 sc(y))492

x ⊗s2hR(s2hc,h2 sc,r) y =H s2hc(h2 sc(x) ⊗r h2 sc(y))493

ring (s2hR(s2hc,h2 sc,r))494

Finally, we introduce the equivalent of the definition of the integer ring introduced in the495

MML in [40]. We show that s2hR and h2 iR determine an isomorphism between the fields of496

the rings developed in Isabelle/HOL and the Mizar Mathematical Library.497

mdef int-3-def-3 (ZZ-ring) where498

func ZZ-ring → strict(doubleLoopStr) equals [#499

carrier 7→ INT ;500

addF 7→ addint;501

ZeroF 7→ 0S ;502

multF 7→ multint;503

OneF 7→ 1S#]504

theorem H-Zring-to-S-Zring:505

h2 sR(s2hZZ, h2 sZZ,INT,Z) =S ZZ-ring506

s2hR(s2hZZ, h2 sZZ, ZZ-ring) =H Z507

6 Related Work508

As proof assistants based on plain higher-order logic lack the full expressivity of set theory,509

the idea of adding set theory axioms on top of HOL (without a model) has been tried multiple510

times. Obua has proposed HOLZF [33], where Zermelo-Fraenkel axioms are added on top511

of Isabelle/HOL. With this, he was able to show results on partisan games, that would be512

hard to show in plain higher-order logic. Later, as part of the ProofPeer project [34], the513

combination of HOL with ZF became the basis for an LCF system, reducing the proofs in514

higher-order logic part to a minimum (again, since there was no guarantee, that combining515

the results is safe). Kunčar [29] attempted to import the Tarski-Grothendieck-based library516

into HOL Light. Here, the set-theoretic concepts were immediately mapped to their HOL517

counterparts, but it soon came out that without adding the axioms of set theory they system518

was not strong enough. The first author, Brown [10] proposed the Egal system which again519

combines a specification of higher-order logic with the axioms of set theory. The system uses520

explicit universes, which is in fact the same presentation as given in this work. This work521

therefore also gives a model for the Egal system. Finally, second and third authors [23] have522

specified and imported [22] significant parts of the Mizar library into Isabelle. In this work523

we only use the specification of Mizar in Isabelle and the re-formalized parts of the MML.524

The idea to combine proof assistant libraries across different foundations also arose in the525

Flyspeck project [17] formalizing the proof of the Kepler conjecture. There, the dependency526

on Coq has been eliminated and an ad-hoc justification for the concepts moved between527

Isabelle and HOL was specified. Logical frameworks allow importing multiple libraries at the528

same time, again without a model. In the Dedukti framework, Assaf and Cauderlier [3,4]529

have combined properties originating from the Coq library and the HOL library. Both530
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were imported in the same system, based on the λΠ calculus modulo, however the two531

parts of the library relied on different rewrite rules. Krauss and Schropp [28] specified and532

implemented a translation from Isabelle/HOL proof terms to set theoretic proved theorems.533

The translation is sound and only relies on the Isabelle/ZF logic, however it is too slow to be534

useful in practice, in fact it is not possible to translate the basic Main library of Isabelle/HOL535

into set theory in reasonable time. It also possible to deep embed multiple libraries in a536

single meta-theory. Rabe [39] does this practically in the MMT framework deep embedding537

various proof assistant foundations and providing category-theoretic mappings between some538

foundations.539

Most implementation of set theory in logical frameworks could implicitly use some higher-540

order features of the framework, as this is already used for the definition of the object logic.541

The definition of the Zermelo-Fraenkel object logic [35] in Isabelle uses lambda abstractions542

and higher-order applications for example to specify the quantifiers. This is also the case in543

Isabelle/TLA [30]. These object logics are normally careful to restrict the use of higher-order544

features to a minimum, however the system itself does not restrict this usage.545

The second author together with Gauthier [14] has previously proposed heuristics for546

automatically finding alignments across proof assistant libraries. Such alignments, even547

without merging the libraries can be useful for conjecturing new properties [31] as well as to548

improve proof assistant automation [13].549

7 Conclusion550

We have defined a model of higher-order Tarski-Grothendieck. The model relies on a 2-551

inaccessible cardinal, which is the same assumption as the one required for a model of a TG552

set theory. This model shows that it is safe to combine higher-order features with the axioms553

of set theory, which has already been done by a number of developments [10,23,33,34].554

Moreover, thanks to the model we can safely combine results proved in TG set theory555

with ones proved in plain higher-order logic. We benefit from this, by combining two of the556

largest proof assistant libraries: the Mizar Mathematical library and the Isabelle/HOL library.557

Above the theorems and proofs coming from both, we define a number of isomorphisms that558

allow us to translate theorems proved in of these part of the library and use them in the559

other part.560

As part of the library merging we have formally defined and proved in Isabelle the561

necessary concepts. This involved 18 definitions and 135 theorems, which amounts to 2667562

lines of proofs. The formalization is available at:563

http://cl-informatik.uibk.ac.at/cek/itp19merge/564

Apart from higher-order and set-theoretic foundations, the third most commonly used565

foundation is dependent type theory. The most important future work would be to investigate566

the consistency of a theory that imports such foundations as well.567
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