
What’s in a Theorem Name? (Rough Diamond)

David Aspinall1 and Cezary Kaliszyk2

1 LFCS, School of Informatics, University of Edinburgh, UK.
2 Institut für Informatik, University of Innsbruck, Austria.

Abstract. ITPs use names for proved theorems. Good names are either
widely known or descriptive, corresponding to a theorem’s statement.
Good names should be consistent with conventions, and be easy to re-
member. But thinking of names like this for every intermediate result
is a burden: some developers avoid this by using consecutive integers
or random hashes instead. We ask: is it possible to relieve the naming
burden and automatically suggest sensible theorem names? We present
a method to do this. It works by learning associations between existing
theorem names in a large library and the names of defined objects and
term patterns occurring in their corresponding statements.

1 Introduction

How do we name theorems? Science has a tradition of historical reference, attach-
ing names by attribution to their discoverer. HOL Light contains fine examples
such as RIEMANN_MAPPING_THEOREM:

∀s. open s ∧ simply_connected s ⇐⇒ s = {} ∨ s = (:real^2) ∨
∃f g. f holomorphic_on s ∧ g holomorphic_on ball(0, 1) ∧

(∀z. z IN s =⇒ f z IN ball(Cx(&0), &1) ∧ g(f z) = z) ∧
(∀z. z IN ball(Cx(&0),&1) =⇒ g z IN s ∧ f(g z) = z)

Mere lemmas are seldom honoured with proper names. Papers and textbooks use
localised index numbers instead (“see Lemma 5.7 on p. 312”) which is succinct
but unhelpful. For practical proof engineering, working with large developments
and libraries, we are quickly swamped with intermediate lemmas. Despite search
facilities in some ITPs, users still need to name statements, leading to the pro-
liferation of less profound descriptive names such as:

ADD_ASSOC : ∀m n p. m+(n+p)=(m+n)+p
REAL_MIN_ASSOC : ∀x y z. min x (min y z)=min (min x y) z

SUC_GT_ZERO : ∀x. Suc x > 0

Descriptive names are convenient and mnemonic, based on the statement of a
theorem, and following conventions due to the author, library or system. But
inventing names requires thought, and remembering them exactly later can be
tricky. Unsurprisingly, people complain about the burden of naming, even in-
venting schemes that generate automatic names like (in Flyspeck [4]):



2 D. Aspinall, C. Kaliszyk

HOJODCM LEBHIRJ OBDATYB MEEIXJO KBWPBHQ RYIUUVK DIOWAAS

Such (fuzzy) hashes of theorem statements or sequential numbers give no clue of
content, and we are back to old-fashioned indices. Some readers may be happy,
accepting that names should have “denotation but not connotation” (as Kripke
recalled the position of Mill [6]). But like Kripke, we see value in connotation:
after all, a name is the handle for a potentially much longer statement.

So we wonder: is it possible to relieve theorem naming burden by automatically
naming theorems following established conventions? Given that we have large
corpora of carefully named theorems, it is natural to try a learning approach.

2 Parts of names and theorems

To start, we examine the form of human-generated descriptive theorem names.
These are compound with separators: l0_ . . ._lm, where the li are commonly
used stem words (labels). Examples like REAL_MIN_ASSOC show a connection
between names of constants (MIN), their types (REAL), and the structure of the
statement (ASSOC). Using previous work on features for learning-assisted auto-
mated reasoning [5], we extract three characterizations of theorem statements:

– Symbols: constant and type names (including function names);
– Subterms: parts of the statement term where no logical operators appear;
– Patterns: subterms, with abstraction over names of defined objects.

Patterns allow us to model certain theorem shapes, such as commutativity, as-
sociativity, or distributivity, without the actual constants these properties talk
about [2]. For examples like SUC_GT_ZERO, we see that where the name parts
occur is important. So we also collect:

– Positions: for each feature f , a position p(f), normalised so that 0 ≤ p(f) ≤
1, given by the position of f in the print order of the statement.

The leftmost feature has position 0 and the rightmost 1; if only a single feature
is found, it has position 1

2 . Names are treated correspondingly: for l0_ . . ._lm,
the stems are assigned equidistant positions p(l0) = 0, . . . , p(lm) = 1.

3 Learning associations between names and statements

We investigate two schemes for associating theorem statements with their names:

– Consistent: builds an association between symbols (e.g., constant and type
names) and parts of theorem names;

– Abstract: uses patterns to abstract from concrete symbols, building a match-
ing between positions in statements and name parts.



What’s in a Theorem Name? 3

We hypothesise that the first scheme might be the more successful when used
within a specific development, (hopefully) consistently re-using the same sub-
components of relevant names, whereas the second may do better across different
developments (perhaps ultimately, even across different provers).

To try these schemes out, we implement a k-Nearest Neighbours (kNN) multi-
label classifier. A proposed label is computed together with a weighted average of
positions. The algorithm first finds a fixed number k of training examples (named
theorem statements), which are most similar to a set of features being considered.
The stems and positions from the training examples are used to estimate the
relevance of stems and proposed positions for the currently evaluated statement.
The nearness of two statements s1, s2 is given by

n(s1, s2) =
√∑

f∈f(s1)∩f(s2)
w(f)2

where w(f) is the IDF (inverse document frequency) weight of a feature f . To
efficiently find nearest neighbours, we index the training examples by features,
so we can ignore examples that have no features in common with the currently
considered statement. Given the set of k training examples nearest to the current
statement, we evaluate the relevance of a label as follows:

R(l) =
∑

s1∈N,l∈l(s1)

n(s1, s2)∣∣l(s1)
∣∣

We propose positions for a stem using the weighted average of the positions in
the recommendations; weights are the corresponding nearness values.

Feature Frequency Position IDF

(V0 + (V1 + V2) = (V0 + V1) + V2) 1 0.37 7.82
((V0 + V1) + V2) 1 0.75 7.13

(V0 + V1) 1 0.84 3.95
+ 4 0.72 2.62

num 3 0.21 1.15
= 1 0.43 0.23
∀ 3 0.15 0.03

Table 1. Selected features extracted from the statement of ADD_ASSOC.

As an example, we examine how the process works with the consistent naming
scheme and the ADD_ASSOC statement shown previously. Our algorithm uses
the statement in a fully-parenthesised form with types attached to binders:

∀num.(∀num.(∀num.((V0 + (V1 + V2)) = ((V0 + V1) + V2))))))

From this statement, features are extracted, computing their frequency, average
position and then IDF across the statement. A total of 46 features are extracted;



4 D. Aspinall, C. Kaliszyk

Theorem name Statement Nearness
MULT_ASSOC (V0 * (V1 * V2)) = ((V0 * V1) * V2) 553

ADD_AC_1 ((V0 + V1) + V2) = (V0 + (V1 + V2)) 264
EXP_MULT (EXP V0 (V1 * V2)) = (EXP (EXP V0 V1) V2) 247

HREAL_ADD_ASSOC (V0 +H (V1 +H V2)) = ((V0 +H V1) +H V2) 246
HREAL_MUL_ASSOC (V0 *H (V1 *H V2)) = ((V0 *H V1) *H V2) 246
REAL_ADD_ASSOC (V0 +R (V1 +R V2)) = ((V0 +R V1) +R V2) 246
REAL_MUL_ASSOC (V0 *R (V1 *R V2)) = ((V0 *R V1) *R V2) 246
REAL_MAX_ASSOC (MAXR V0 (MAXR V1 V2)) = (MAXR (MAXR V0 V1) V2) 246
INT_ADD_ASSOC (V0 +Z (V1 +Z V2)) = ((V0 +Z V1) +Z V2) 246

REAL_MIN_ASSOC (MINR V0 (MINR V1 V2)) = (MINR (MINR V0 V1) V2) 246

Table 2. Nearest neighbours found for ADD_ASSOC.

Table 1 shows a selection ordered by rarity (IDF). The highest IDF value is for
the feature most specific to the overall statement: it captures associativity of +.

Next, Table 2 shows the nearest neighbours for the features of ADD_ASSOC
among the HOL Light named theorems, discounting ADD_ASSOC itself. Most of
these are associativity statements. The stem AC_ is commonly used in HOL to
denote associative-commutative properties.

Finally, the first predicted stems with their predicted positions are presented
in Table 3. With ASSOC and ADD being the first two suggested stems, taking
into account their positions, ADD_ASSOC is indeed the top prediction for the
theorem name. The following predicitons are reasonable too:

AC_ADD_ASSOC, AC_NUM_ADD_ASSOC, AC_ADD, NUM_ADD_ASSOC.

Stem Positions

ADD [0.18; 0.14; 0.12; 0; 0.12]
ASSOC [1]

AC [0; 1]
NUM [0.67; 0.45; 0; 0.70]

FIXED [0]
EQUAL [0.25; 0.25]

ONE [0]

Stem Positions

MONO [0.44; 0.49]
REFL [1]

SELECT [0]
SPLITS [0]

RCANCEL [1]
IITN [0]
GEN [1]

Table 3. Stems and positions suggested by our algorithm, sorted by relevance measure.

Unsurprisingly, the consistent scheme performs less well in situations where
new defined objects appear in a statement, it can only suggest stems it has
seen before. The abstract scheme addresses this. For this, we first gather all
symbol names in the training examples and order them by decreasing frequency.
Next, for every training example we find the non-logical objects that appear, and
replace their occurrences by object placeholders, with the constants numbered
in the order of their global frequencies. For example, a name like DIV_EQ_0
becomes C0_EQ_C3, and the theorem statement is abstracted similarly.



What’s in a Theorem Name? 5

For the statement of the theorem ADD_ASSOC the first three names predicted
by the abstract naming scheme are: +_ASSOC, num_+, and num_+_ASSOC. The
use of the stem ADD is only predicted with k > 20.

4 Preliminary evaluation

We perform a standard leave-one-out cross-validation to evaluate how good
names predicted on a single dataset are. The predictor is trained on all the
examples apart from the current one to evaluate, and is tested on the features
of the current one.

For 2298 statements in the HOL Light core library, the results are presented
in Table 4. We explored four different options for the algorithm:

– Upper: names are canonicalised to upper case.
– AbsN: we use the abstraction scheme described above for naming.
– AbsT: we use abstraction in statements before training.
– Stem: we use a stemming operation to break down names.

The first option is useful in the libraries of HOL Light and HOL4 where
the capitalization is mostly uniform, but may not be desired in proof assistant
libraries where this is not the case. For example min and Min are used with
different semantics in Isabelle/HOL.

The last option allows us to model the naming convention in HOL Light
where a statement is relative to a type, but the type name does not get repeated.
For example, a theorem that relates the constants REAL_ABS and REAL_NEG can
be given the name REAL_ABS_NEG rather than REAL_ABS_REAL_NEG.

Each row in Table 4 is a combination of options. Results are split in the
columns: the number of statements for which the top prediction is the same as
the human-given name (First Choice); the number where the human name is in
place 2-10 (Later Choice); one of the ten names is correct modulo stem order
(Same Stems); the number where the human-used stems are predicted but not
combined correctly (All Stems); and the number for which at least part of the
prediciton is correct (Stem Overlap). Altogether, the human-generated names
are among the top ten predictions by some instance of the algorithm in over
50% of cases; 40% for the best performing version based on the abstract scheme.
The abstract scheme beats the consistent mechanism even in the same library.

The final column shows the number of cases that fail completely. These in-
clude cases with familiar (historical) names such as:

– EXCLUDED_MIDDLE (proposed reasonable name: DISJ_THM)
– INFINITY_AX (proposed reasonable name: ONTO_ONE).

We would not expect to predict these names, unless they are already given in
the training data. In other cases, failure might indicate inconsistency: the human
names may not always be “correct”. We uncovered some cases of inconsistency
such as where multiplication was occasionally called MULT rather than MUL, for
example.



6 D. Aspinall, C. Kaliszyk

Setup First Later Same All Stem
Options Choice Choice Stems Stems Overlap Fail

- 118 533 180 911 516 40
Upper 134 583 182 901 474 24

AbsN 187 517 222 849 474 49
AbsN+Stem 218 530 208 849 460 33
AbsN+Upper 203 461 250 888 478 18
AbsN+AbsT 172 243 125 919 755 84
AbsN+AbsT+Upper 206 387 211 771 680 43
AbsN+AbsT+Stem 214 455 178 881 532 38
AbsN+Stem+Upper 238 491 299 835 418 17
AbsN+AbsT+Stem+Upper 273 501 291 757 459 17

Combined 336 728 271 632 321 10

Table 4. Leave-one-out cross-validation on the HOL Light core dataset.

5 Conclusions

The initial results are encouraging and suggest foundations for name-recommender
systems that might be built into ITP interfaces. Even if the perfect name is not
proposed, suggestions may spark an idea for the user. We plan to go further
and look at case studies such as renaming Flyspeck, or using naming maps as
a bridge between different ITPs. Moreover, more advanced machine learning
schemes could be used to distinguish the use of the same symbol for different
operators.

Related work. This appears to be the first attempt to mine named theorems and
produce a recommender system for naming new theorems in a meaningful way.
There have been a number of non-meaningful proposals, e.g., Flyspeck’s random
8-character identifiers [4]; Mizar’s naming scheme of theory names and numbers
(examples like WAYBEL34:67 [3]); the use of MD5 recursive statement hashes [8].

Identifier naming has been studied in software engineering. Lawrie et al [7]
investigated name consistency in large developments. Deissenboeck and Pizka [1]
build a recommender similar to our consistent scheme (but using different meth-
ods). They note that programming style guides say identifiers should be “self-
describing” to aid comprehension; program obfuscators, intended to hinder com-
prehension, randomize identifiers, producing names like those in Flyspeck.

Acknowledgments. This work has been supported by UK EPSRC (EP/J001058/1)
and the Austrian Science Fund FWF (P26201).

References
[1] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software Quality

Journal, 14(3):261–282, 2006.



What’s in a Theorem Name? 7

[2] T. Gauthier and C. Kaliszyk. Matching concepts across HOL libraries. In CICM
2014, LNCS 8543, pages 267–281. Springer, 2014.

[3] A. Grabowski, A. Korniłowicz, and A. Naumowicz. Four decades of Mizar. J.
Autom. Reasoning, 55(3):191–198, 2015.

[4] T. Hales et al. A formal proof of the Kepler conjecture. CoRR, 1501.02155, 2015.
[5] C. Kaliszyk, J. Urban, and J. Vyskočil. Efficient semantic features for automated

reasoning over large theories. In IJCAI 2015, pages 3084–3090. AAAI Press, 2015.
[6] S. A. Kripke. Naming and necessity. In Semantics of Natural Language, pages

253–355. Springer Netherlands, Dordrecht, 1972.
[7] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study of

identifiers. In ICPC 2006, pages 3–12. IEEE, 2006.
[8] J. Urban. Content-based encoding of mathematical and code libraries. In Math-

Wikis 2011, volume 767 of CEUR-WS, pages 49–53, 2011.


