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Abstract. Recent years have seen increasing success in building large
formal proof developments using interactive theorem provers (ITPs).
Some proofs have involved many authors, years of effort, and resulted
in large, complex interdependent sets of proof “source code” files. De-
veloping these in the first place, and maintaining and extending them
afterwards, is a considerable challenge. It has prompted the idea of Proof
Engineering as a new sub-field, to find methods and tools to help. It is
natural to try to borrow ideas from Software Engineering for this.

In this paper we investigate the idea of defining proof metrics by anal-
ogy with software metrics. We seek metrics that may help to monitor
and compare formal proof developments, which might be used to guide
good practice, locate likely problem areas, or suggest refactorings. Start-
ing from metrics that have been proposed for object-oriented design,
we define analogues for formal proofs. We show that our metrics enjoy
reasonable properties, and we demonstrate their behaviour with some
practical experiments, showing changes over time as proof developments
evolve, and making comparisons across between different ITPs.

1 Introduction

Interactive formal proof has advanced to make some impressive achievements,
demonstrating that large software and hardware systems can be verified and
that large mathematical proofs can be completely captured on machine, giving
very high degrees of confidence each case. Some examples are:

– Hales’s FlySpeck formalisation of his proof of the Kepler Conjecture [13],
which includes about 510,000 lines of code proving 27,451 lemmas in the
HOL Light interactive theorem prover. This involved a team of 22 people,
and an estimated total of 20 person-years of work [14].

– Klein’s verification of the seL4 microkernel [20], the core of which consists of
almost 400,000 lines of code with 59,000 lemmas, which verifies around 9,000
lines of C and assembler code in the Isabelle ITP. This project involved a
team of 13 people, and an estimated total of 20 person-years of work.

– The Compendium of Complex Lattices book formalized in Mizar, performed
by a team of 15 people led by Bancerek [3]: it consists of 57 articles with
2,566 theorems and 124,628 lines of proof; it took over 5 person-years.
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In each case, the result consists of instructions written in a dedicated formal
proof language which direct the proof engine to check a formal proof of some
logical statement; these instructions are sometimes called a (formal) proof script.

To give further background for those unfamiliar: a proof script is somewhat
like a program written in an ordinary programming language; like a program it
is usually stored in a plain text file. In interactive theorem proving, one works
intensively with the machine’s help to build the proof script; the system checks
progress at intermediate points. There are several currently successful ITP sys-
tems in which large proofs have been constructed, including the three mentioned
above, and others such as HOL4, Coq, ACL2 and PVS. Some ITPs are concep-
tually similar and use related logics, but each implementation has its own formal
proof language so proofs scripts from one cannot be used in another; there are
few, if any, useful tools that work for more than one system. This is like the sit-
uation with different programming languages, but the user community for each
ITP is small. Learning an ITP requires expertise and typically takes months.

Despite the fragmentation, ITPs have continually advanced so that multi-
person developments are more common. Leaders of large proof projects have
become concerned about the engineering aspects of building and then main-
taining large proof scripts, motivating a new sub-field of study: Proof Engineer-
ing [6,10,19]. There are many questions which we do not yet know how to answer.
For example: How should a large proof be broken into separate modules? Given
a large proof, how can we tell if it is well-structured or in need of improvement,
perhaps to improve understanding or maintainability? If a basic definition needs
to be changed, how much of the rest of the development will break? These are
similar to the concerns of software engineering, so it is natural to ask if software
engineering research and practice can provide ideas that transfer.

1.1 From software metrics to proof metrics

In this paper we make some first steps to investigate proof metrics, deliberately
making a connection to software metrics that have been studied extensively and
found utility in practice. Certainly it would be useful to get a handle on the size
and complexity of a formal proof and its change over time. It would also be useful
to understand how well-structured a formal proof is; one of the most painful proof
engineering activities is refactoring existing proofs to change structure [11]; so
much so that it is often avoided [12]. So the classic software design goals for
modularity of high coherence (a module should contain related things) and low
coupling (connected modules should only have a few connections) are equally
applicable to formal proof development.

As our starting point, we take inspiration from the landmark metrics for
object-oriented design that were introduced by Chidamber and Kemerer [7]
(“C&K”). Although the C&K metrics have since been criticised and modified
in a myriad of ways, they still stand as a plausible starting point for a new
application area. In particular, they are appropriate because they have simple
definitions and motivations and also because there is a rough analogy between the
static structure of an object-oriented design and the structure of proof scripts.
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class proof module
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Fig. 1. A loose analogy between object-oriented programming and formal proof

Just as with programs, large formal proofs are broken up into modules. Vari-
ous sorts of module have been studied and are adopted in different systems, sup-
porting both in-the-small structuring (e.g., capturing the notion of an algebraic
structure with its operations and axioms: locales in Isabelle) and in-the-large
(e.g., capturing a whole collection of definitions and properties about groups).
Here we are concerned with in-the-large modules which form the basic top-level
decomposition of a formal proof. In Isabelle modules are called theories, in Mizar
they are called articles; in HOL Light, modules are identified with files.

Top-level modules contain statements to be proved and their proofs, which
we (and most ITPs) call theorems. A formal proof also needs to define the sub-
ject of its concern: whether some mathematics or a proof of software correctness,
declarations and definitions are needed to introduce types and constants of dis-
course. Although specific mechanisms differ, top-level modules have some import
mechanism to allow access to other modules. Scoping mechanisms for restricting
visibility are currently either primitive or little used; hence visibility of imported
theorems usually extends transitively through imported modules, just as class
inheritance extends member visibility transitively through the class hierarchy.
(Section 2 shows some small example proofs and import graphs, along with the
abstraction that we use to define metrics.)

This leads us to the loose analogy shown in Fig. 1. Classes in OO design
or programming are like proof modules. Theorems are somewhat like methods:
both have complex bodies that describe their implementation. In OO, instance
variables capture the nature of what a class models; methods inspect and ma-
nipulate the variables. In ITP land, theorem statements describe properties of
(immutable) types and constants. Proofs may refer to further types and constants
and to other theorems: usually ones proved earlier in some well-founded ordering.
This is analogous to methods that invoke other methods in their implementa-
tion. (As an aside: ITPs grudgingly admit theorems without proof: assumptions
or axioms taken as given; this allows a form of top-down development, but does
not really make up for the lack of any modeling language or technology.)

The plan is now clear. Using the analogy, size metrics that consider the
number of methods in a class can be recast as metrics counting the number of
theorems in a theory. Metrics based on the class hierarchy relationships can be
recast to examine dependencies among proof modules. And so on; how we recast
the C&K metrics is defined precisely and discussed in Section 3. We can also
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show that our metrics satisfy some analytical properties which have been studied
in software metrics; this is covered in Section 4.

There is a risk that the investigation may be futile. Despite good properties,
naive translations of software metrics using Fig. 1 could result in functions that
are uninteresting or meaningless in the setting of formal proof. Our analogy is
rough: the structuring mechanisms differ, and programs have dynamics which
is the whole purpose of their construction. But the dynamics of a completed
formal proof is a one-shot check and annotation: a black-box operation in which
the ITP emits compilation errors if the developer made a mistake or a “QED”
acknowledgement in the case of success.

To demonstrate that our metrics may be actually interesting in practice, we
examine several large repositories of formal developments, taken from three dif-
ferent ITPs. Our metrics confirm some expected “folklore” aspects of the system
differences. Looking at some version control history, we are able to correlate
certain changes in formal proof files with changes in the expected metrics, and
vice-versa. Our practical experiments are described in Section 5.

Contributions. We believe this is the first attempt to adapt ideas from software
metrics to formal proof that goes beyond size-based metrics. We contribute:

1. a simple abstract model definition for formal proofs;
2. a precise definition of a set of proof metrics using this model;
3. (informal) proofs that our metrics satisfy some reasonable properties;
4. an implementation of the metrics for three different ITPs;
5. demonstration of metrics for various large proof corpora;
6. demonstration of the historical change of the metrics on 38 versions taken

from the version control history of HOL Light.

As well as size measurements, our metrics include complexity against relation-
ships and positions within a proof development and estimates of interdependence
between parts of a formal proof.

Related work. There is a large literature on software metrics concerning their
definition and empirical study as well as (often) debating their utility. Despite
any debate, metrics continue to be studied and used in practice. For exam-
ple, metrics are used in cost estimations models (e.g., COCOMO and variants;
see Trendowicz and Jeffrey for a recent overview [29]). They can also be used
to implement heuristics to detect “bad smells” in code that may suggest when
refactorings may be desirable [27] or where they have occured in the past [9].

On the side of formal proof, the topic is quite new. Researchers in the seL4
project have set out an agenda similar to ours [17] and empirically demonstrated
a relationship between theorem statement size and proof size [23] in seL4 and, to
a restricted extent, other Isabelle proofs (see Sects. 5 and 6 for more remarks).
Also for Isabelle, Blanchette et al [5] studied the dependencies and size of whole
formalization libraries in the AFP contributed library. They found little entry
reuse based on the import graph and showed that the size distribution of the
entries follows the power law. Working with Mizar proofs, Pąk investigated ways
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of improving proof readability using notions of legibility based on locality of
reference, taking inspiration from models of cognitive perception [26]; this is
similar to the software engineering idea of cohesion, which is a metric we define.
We mention some other related work in the body of the paper.

2 Programming formal proofs

Languages of different ITPs vary considerably, but all provide the user with a way
to express theorem statements and give proofs, which the system verifies. There
are two predominant styles of proof script: procedural, where user instructions
(tactics) are transformations that successively refine a state backwards from the
goal; and declarative, where instructions drive the ITP forwards to its target,
providing justifications “by” that gives the ITP hints. Some systems support
both styles. Often, procedural proofs are easier to write and declarative proofs
are easier to read. To give a flavour, Fig. 2 shows two formal proof excerpts.

In both styles, instructions used in a theorem’s proof take arguments that are
theorems themselves, creating dependencies between theorems. Circular depen-
dencies are not allowed: to prove a theorem P using another theorem Q, Q must
be provable itself without P . As proof libraries grow larger, theorems are col-
lected together into modules; a well organised library collects related theorems
together. Modules also have a cycle-free dependency ordering, as new modules
are built from older ones. Fig. 3 shows the dependencies between modules and
theorems in the first part of the HOL Light library.

let REAL_INV_SGN = prove
(‘∀x. real_inv(real_sgn x)

= real_sgn x‘,
GEN_TAC THEN
REWRITE_TAC[real_sgn] THEN
REPEAT COND_CASES_TAC THEN
REWRITE_TAC[REAL_INV_0;

REAL_INV_1;
REAL_INV_NEG]

);;

lemma abs_triangle_ineq2:
" |a | - |b | ≤ |a - b |"

proof -
have " |a | = |b + (a - b) |"

by (simp add: algebra_simps)
then have " |a | ≤ |b | + |a - b |"

by (simp add: abs_triangle_ineq)
then show ?thesis

by (simp add: algebra_simps)
qed

Fig. 2. A HOL Light procedural proof (left) and an Isabelle declarative proof (right).

2.1 Formal proof developments, abstractly

We now model this situation. Suppose two sets of identifiers: the module names
M and the theorem names T . For simplicity (to avoid considering notions of
scope) but without loss of generality, we assume that theorem names are globally
unique. So each theorem belongs to a module: the mapping mn : T →M returns
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TRUTH

bool/
IMP_DEF

bool/
AND_DEF

Fig. 3. Module dependencies and theorem dependencies in HOL Light.

the module name of a given theorem. We use “theorem” in a general sense,
in reality ITP modules can contain declarations or definitions of various other
things (axioms, constants, types, syntax, etc.); we are agnostic whether these
are included in the abstract notion of “theorem” or not.

Definition 1 (Proof module and proof development).

– A proof module is a pair (M,T ) of a module name M ∈M and a finite set
of theorem names T ⊂ T such that mn(t) =M for all t ∈ T .

– A proof development P = {(M,TM )} is given by a finite set of proof modules
having distinct module names M .

Formal mathematics is a well-founded endeavour: later definitions or theorems
may only depend on ones that have been given earlier. Theorem dependency
relations have been investigated in practice before for real systems (e.g., [25,1])
but the next definition has not been spelled out before.

Definition 2 (Proof development dependency).

– A module dependency (uses) relation →M is a well-founded relation on a
subset ofM. We write ≤M for the reflexive, transitive closure of →M.

– A theorem dependency (uses) relation →T is a well-founded relation on a
subset of T . We write ≤T for the reflexive, transitive closure of →M.

– A dependency for a proof development P is given by a module dependency
relation →M on the module names of P , together with a theorem dependency
relation →T on all of the theorem names in P , which respects →M in the
sense that t1 →T t2 =⇒ mn(t1) ≤M mn(t2).

Thus, a proof development forms a DAG of modules which overlays a set of
DAGs of theorems. Note that we distinguish direct or “immediate” dependencies
from indirect ones: a theorem t3 may use a theorem t2, in its proof which in turn
uses t1 (t3 →T t2 and t2 →T t1); but t3 may have a different proof that uses
both t2 and t1 directly (t3 →T t1 and t3 →T t2). In both cases t3 ultimately
depends on t1, so t3 ≤T t1.

Module dependencies suggest the proof checking (or compilation) order: we
suppose that proofs of theorems in each module are checked together, and mod-
ules are checked in some defined or inferred order. Then M2 ≤M M1 says that
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M2 is the later module that may build on concepts and lemmas, etc., given in
M1. So whenever t2 →T t1, we require that t1 has been checked in the same or
an earlier module (perhaps transitively earlier) than t1.

The converse implication need not hold; module dependencies can be “loose”
in that they may not reflect any (direct or transitive) theorem dependencies; a
bit like “redundant imports” in programming languages. We call a module de-
pendencyM1 →M M2 between different modules strict only when there is indeed
some t1 ≤T t2 for which mn(t1) =M1 and mn(t2) =M2. In our implementation
of the metrics to follow, we take the theorem dependency relation to be primary,
and derive →M as the minimal strict relation between modules which respects
→T. This is an implementation choice that conveniently unifies the treatment
between different systems.

The theorem dependency relationship is all that we use to model the bodies of
theorems (an axiom has no dependencies). But we need more to capture theorem
statements. To avoid any detail of the logical language for statements we suppose
that there is an abstract set of features F which capture the constants, types,
etc. that a theorem statement may refer to. We suppose, for simplicity again,
that every theorem name is associated globally with a statement, so there is a
mapping fea : T → Fin(F). Given a theorem t, fea(t) ⊂ F is the finite set of
features used in its statement. For example, the Kepler conjecture, which gives
an upper bound on ball packings in R3 with the formal HOL Light statement:

∀V. packing V =⇒ (∃c. ∀r. &1 ≤ r
=⇒ &(CARD(V INTER ball(vec 0,r))) ≤

pi * r pow 3 / sqrt(&18) + c * r pow 2)

can be characterized by the following features based on the constants and types
appearing in its formal statement:

fea(kepler_conjecture) = {packing, sqrt, ball, pi,BIT0,BIT1,NUMERAL, 0,

real_add, real_div, real_le, real_mul, real_of_num

real_pow,CARD, INTER, 3, cart, num, prod, real}.

3 Six simple proof metrics

In their landmark paper [7], now over 20 years old, Chidamber and Kamerer
proposed metrics for object-oriented design which are also applicable to im-
plementations in object-oriented programs. They consolidated earlier work and
aimed to set their metrics on a rigorous footing. They designed six metrics for
OOD: each metric is a function on a class. The metrics were evaluated by check-
ing analytically that they possess reasonable properties and by examining the
result of their application in two real software projects.

Here we revisit C&K’s metrics and recast them for formal proof develop-
ments. There have been many criticisms, variants and improvements on C&K’s
work, and empirical studies providing varying degrees of external validation. In
this first study, we cannot expect to find perfect metrics for formal proof so we
start off with a “straw-man” proposal inspired by this indisputably key work.
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3.1 WTM: Weighted Theorems Per Module

WTM is our analogue of C&K’s WMC, Weighted Methods per Class, which is
a basic size assessment of a module. Let the theorems of a proof module M be
TM = {t1, . . . , tn}. Then WTM is defined by:

WTM(M) =

n∑
i=1

c(ti)

where c is some complexity function applied to theorems ti in the theory T .
The idea of the complexity function is that it allows more complex theo-

rems to be given a higher weighting. For example, we could measure the size of
the theorem statement (perhaps counting distinct constants unwinding defini-
tions recursively [6,23]), or, we could instead measure proof size by counting the
number of lines-of-code in the proof script for the theorem’s proof. The simplest
choice (and common in OOP studies) is to take c to be the identity, so WTM=n,
the number of theorems in the theory.

3.2 DIT: Depth in Tree

The metric DIT calculates the maximum depth of the proof module in the mod-
ule dependency graph; it corresponds to the DIT metric for a class in OOP which
measures the depth of a class in the inheritance tree. Intuitively, higher DIT val-
ues in a proof development suggest modules that are potentially more complex
since they rely on more levels of previously constructed proofs. We define:

DIT(M) = depthP (M)

where depthP (Mn) is the length n of the longest pathMn →M Mn−1 · · · →M M0.

3.3 NOC: Number of Children

The Number of Children, NOC, for a proof module is the number of immediate
descendent modules that depend upon it. This is defined as:

NOC(M) = | {M ′ |M →M M ′} |
In OOP, this is a measure of scope of a class: how many other classes immedi-

ately depend on this one. Intuitively, modules with higher NOC values may incur
greater cost to change, since a local change will have a broader effect. But at the
same time, a higher NOC shows a greater reuse, indicating that the module is
actually used in many places, demonstrating that it is good or important.

C&K suggest that too many children may indicate “improper” abstraction:
superclasses should not be overly general. They found a case of this in a project
they examined. In proof developments, we expect the core library modules to
have many children. OOP languages often have a separate import mechanism for
library functions, independently of subclassing. This is a tension in our analogy:
class inheritance is arguably more akin to theories in-the-small, but in-the-small
proof modules are less widely used and harder to compare across systems.
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3.4 CBM: Coupling between Modules

C&K define a metric called Coupling Between Object classes (CBO) which is a
complexity measure on the class hierarchy. Two classes are coupled if one uses
member functions or instance variables of the other. Our analogous metric is:

CBM(M) = | {M ′ |M →M M ′ ∨ M ′ →M M} |

Intuitively, coupling refers to the degree of interdependence between parts of a
design: it means dependency as ancestor or child. Modules with higher coupling
values are more closely bound into the proof development hierarchy, meaning
that they may be difficult to understand in isolation. The simple definition above
doesn’t account for a multiplicity of couplings between modules. Later work on
OOP coupling metrics addressed this; we might similarly consider a metric which
counts the number of strict theorem dependencies that cross module boundaries.

3.5 TDM: Total Dependencies for Module

C&K’s next metric is RFC, Response For a Class, which counts the number of
methods that could be executed in response to a message received by an object
of that class. Intuitively this may estimate the potential (dynamic) complexity
of behaviours of objects in the class; high RFC values might suggest classes that
are harder to test. We re-interpret this using theorem dependency:

TDM(M) = | { t′ | t→T t′ ∧ t ∈ TM} |

There is no analogue of “response” for a theorem, but just as invoking a method
m() leads to invoking other methods mentioned in the body of m, our metric
counts the number of theorems depended on in the definition of a given theorem.
Notice that this includes internal dependencies which do not cross the module
boundary, as well as external ones.

In the proof setting, we hypothesise that this metric may suggest the overall
brittleness of a theory: if (too) many other theorems are used in the construction
of a module, it may break easily if the statements of those other theorems change.

3.6 LCOM: Lack of Cohesion in Module

The final metric given by C&K is LCOM, originally Lack of Cohesion of Methods
in a class. Cohesion refers to internal consistency within a module; a high LCOM
value suggests a module that gathers together many unrelated things. C&K’s
metric is defined as the difference between the number of pairs of methods which
that entirely different instance variables (p), and the number of pairs of methods
that access some of the same attributes (q); LCOM was taken to be p − q or
zero if q > p. Early on, LCOM was criticised for failing to fit empirical data [4],
spawning a slew of alternatives (for partial surveys, see e.g. [2,22]).

As a first proposal for the formal proof setting, we suggest a metric based
on theorem statement dissimilarity counted using features: two theorems are
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similar if they concern the same concepts, and so mention the same constant
names, types, etc.3 An overall measure of similarity for the module is given by
summing up the Jaccard index for each pair of theorem statements:

sim(M) =

n∑
i=1

n∑
j=i+1

| fea(ti) ∩ fea(tj) |
| fea(ti) ∪ fea(tj) |

Then we compute LCOM as the average dissimilarity:

LCOM(M) = 1− sim(M)
1
2 (n

2 − n)
.

(this is similar to CC, among others [2]). Unlike the preceding metrics which are
on an interval scale with no maximum, LCOM is a ratio in the range 0 to 1.

4 Properties of proof metrics

Weyuker [31] proposed desirable analytical properties for structured program
metrics, six of which were adapted by C&K to OOD, again, generating much
subsequent discussion and criticism. Here we briefly revisit the properties and
their connection to our metrics.

Several properties relate to combinations of programs; for structured pro-
gramming this meant, essentially simple juxtaposition of source code P ;Q. Com-
position in OOP is more complicated. But for our simple model of formal proof
languages, we suppose that the operation M +M ′ stands for (disjoint) combi-
nation of modules.

Proposition 1. Properties of formal proof metrics.

W1 Non-coarseness. Given a module M and a metric µ, one can always find
a module M ′ st µ(M) 6= µ(M ′). This is satisfied by all of our metrics.

W2 Non-uniqueness. There can be distinct modules M and M ′ with µ(M) =
µ(M ′). This is satisfied by all of our metrics.

W3 Design is important. Two modulesM andM ′ may have the same meaning
without µ(M) = µ(M ′) holding. If we take the semantics of an abstract
module to be the set of (named) theorems it proves, then this property is
not satisfied by the basic size metric WTM metric or the cohesion metric
LCOM, which only consider the (number of) theorem statements and don’t
relate to design-in-the-large. Of course the property holds if we consider the
full proof language, which has a complex concrete syntax, so many ways to
describe the same module.

W4 Monotonicity. For allM andM ′, µ(M) ≤ µ(M+M ′) and µ(M ′) ≤ µ(M+
M ′). This is true for all of our metrics except LCOM, since it is normalised
for comparison between modules; LCOM can be reduced by adding theorems
to a module that have an average greater similarity to those already there.

3 A similar idea was in fact suggested by Matichuk et al [23] as future work.
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W5 Combination can cause interaction. ∃M1,M2,M3 such that µ(M1) =
µ(M2) does not imply µ(M1 +M3) 6= µ(M1 +M3). This property can be
satisfied for all the dependency related metrics, but not the size measure
WTM. It can be satisfied by LCOM since this is non-compositional.

W6 Interaction can increase complexity. ∃M1,M2 such that µ(M1)+µ(M2) <
µ(M1 +M2). This opposite of the triangle inequality fails for all of our met-
rics except LCOM. C&K argued against it; all of their metrics failed it and
it prevents µ being a distance metric in the mathematical sense.

5 Experimental study

To test our metrics, we implemented a tool to make calculations using fea-
ture and dependency data exported from (suitably modified) ITPs during proof
checking. Then we investigated the metrics on a range of existing formal proof
developments and their version histories.

5.1 Large proof development examples

We investigated large developments in three systems:
1. The Kepler formal proof, FlySpeck: we focused on the final version of the text

formalization [13] together with the underlying core library of HOL Light
and the formalization of Multivariate Analysis [15] (SVN revision 245).

2. The Isabelle HOL Main (core library) theory together with three formaliza-
tions: cryptographic protocols, Auth [24]; Java bytecode, Bali; and Proba-
bility theory [16] (Isabelle 2015 release version).

3. The Mizar Mathematical Library. We focused on the basic libraries of for-
malized topology and theory of lattices [3] (Mizar version 7.11.07, MML
version 4.156.1112).

In each case, information was exported in a uniform format, containing theorem
dependencies and statement features. To be as similar as possible across provers,
we used symbol features (i.e., names of constants and types present in the the-
orem statement, as shown in Sect. 2.1), rather than more complex notions.

For HOL Light, we used the HOLyHammer proof advice tool [18] by Kaliszyk
and Urban. For the Isabelle formalizations we used the Blanchette’s TPTP/-
Mash_Export [21], which can compute dependencies and MaSh features for a
given set of Isabelle/HOL theories. For Mizar, used the data available in the
MPTP2078 challenge by Urban [30]. The challenge includes the proof depen-
dencies and statements for the selected Mizar articles. We extracted symbol
features using standard TPTP tools [28].

Space precludes a complete breakdown of metric values, but the summary
in Fig. 4 shows the averages for each development. From theorem count totals
we can see, for example, how large Flyspeck is; but metrics give an idea of the
form of its structure: it has a large number of modules with comparatively fewer
theorems, compared to library code. This likely contributes to the better cohesion
score. For module hierarchy, the development is, on average, almost twice as deep
as the next deepest, Isabelle’s highly structured Main HOL library.
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#mods #thms TDM WTM NOC CBM DIT LCOM%

HOL Light
Core 21 2618 391 125 7.4 14.8 6.8 75.2

Multivariate 19 11093 3091 584 7.0 34.9 7.6 75.6
Flyspeck 237 12999 1582 55 12.6 44.1 27.6 62.0

Isabelle

Main 73 12731 357 174 8.9 17.9 17.6 72.2
Auth 38 4282 202 209 2.9 12.7 3.9 57.1
Bali 25 6946 261 502 4.7 16.8 4.2 66.8

Multivariate 50 7821 245 287 2.1 16.5 3.9 61.0
Probability 45 5928 460 246 4.7 26.5 7.7 62.7

Mizar MPTP2078 33 3646 270 110 9.3 26.3 10.2 73.8

Fig. 4. The overall statistics for the considered proof libraries together with the mean
values of the proposed proof metrics computed on these libraries.

5.2 Distribution of cohesion and coupling
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Fig. 5. Cohesion (top) and coupling (bottom) distributions across modules in the three
ITPs. Coupling is normalized to [0; 1] for comparison.

In general, the metrics differ widely across modules in the same formal library,
so it is interesting to examine their distributions. Fig. 5 shows the distributions
of cohesion and coupling across the three considered ITPs. Cohesion shows a
similar distribution across the systems, with slightly higher values for Mizar.
For Mizar we focused on a more advanced part of the library without including
all the foundational modules; perhaps suprisingly we see high dissimilarity scores
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within those modules. In HOL Light we see a peak on the histogram for the zero
bracket. This is because of a few Flyspeck modules that export precisely one
theorem with a large complicated proof. When it comes to coupling, we see that
coupling is generally low, but higher for the Mizar case: this is to be expected
because we considered a self-contained development in isolation.

5.3 LCOM, TDM, and WTM over time
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Fig. 6. The values of the metrics for the HOL Light core library compared to the
number of lines of code over five years of HOL Light development.

We compared metrics for the HOL Light core library over the last five years
of HOL Light development, by exporting the data from 38 selected SVN revi-
sions. The values of selected metrics for these revisions are depicted in Fig 6. In
general, the library has grown to prove more theorems over time without chang-
ing its modular structure. The average WTM and TDM both increase, showing
the growing average number of theorems per module and complexity of the de-
pendency relationship. The jump in LCOM and TDM between revisions 200 and
205 can be traced back to the removal of a module called ind_defs, the only
change in modular structure that we see. As the library becomes more dense,
similar theorems added to the same modules may decrease LCOM, which is seen
around version 145. LCOM can also change because of library restructuring; we
show an example of this next.

5.4 Case study: HOL Light refactoring

On Dec 1, 2011 John Harrison slightly reorganised the HOL Light library. He
moved definitions of supremum and infimum of a set along with all the properties
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real sets infsup misc Ave.

LCOM (%) before 68.8 90.5 - 84.7 81.3
after 68.7 90.3 - 87.4 82.1

separate 68.7 90.5 49.6 87.4 74.0

TDM before 286 501 - 503 430.0
after 292 542 - 482 438.7

separate 292 501 237 482 376.5

WTM before 286 468 - 155 303.0
after 289 517 - 103 303.0

separate 289 468 49 103 227.3

Fig. 7. The impact of a library reorganization on the proof metrics.

of these concepts from Multivariate/misc to sets. Three basic Archimedian
properties moved from Multivariate/misc to real. Finding this history in the
version control logs, we examined the impact on our metrics.

Fig. 7 shows the results for LCOM, TDM and WTM. The latter metrics
reflect moves but averages do not change, since the theorems proved and their
proofs stay the same. For LCOM, there is small reduction for real and sets
by the moves, reflecting that relocated theorems enjoyed similarity and/or were
similar to those of their destination modules. But the misc module was left with
a poorer score; less similarity remained among what was left. As an experiment
we tested what would happen if a separate module infsup was added to hold the
relocated theorems about infimum and supremum; the new module introduces
few cross-module dependencies decreasing TDM and has a much better cohesion
score which brings down the average LCOM value for the whole development.

5.5 Theorem size and the number of dependencies

In a striking recent result, Matichuk et al showed that proof size increases
quadratically with statement size (measured by recursively unfolding constant
names) in the seL4 verification [23]. This is potentially useful as a predictor of
effort, in connection to earlier work that shows a relation between human effort
and proof size in seL4.

As a related comparison with a different ITP, and to investigate potential
ways of measuring statement size, we compared the number of dependencies with
the number of theorem features, the number of subterms in a statement and the
size of the theorem statement in MPTP2078. The scatter plots in Fig. 8 show our
results. Although increasing numbers of dependencies tend to correspond with
larger statement sizes, there are no clear relationships, and plenty of outliers.
This is not surprising: we are in a very different setting, with mathematical
proofs constructed using an automation strategy, which is rather powerful for
the considered domain.
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Fig. 8. The number of dependencies compared to three notions of theorem statement
size on the Mizar/MPTP2078 proof library.

6 Conclusions
This is the first (to our knowledge) investigation of formal proof metrics which
considers both the modular structure of a proof development and its size profile.
We also gave the first implementation and experimental data for metrics applied
to proofs in more than one theorem proving system, raising intriguing questions
of whether such measures can be used to compare developments across systems.

There are many caveats for this initial study. It is easy to imagine improve-
ments to our definitions, or to spot potential flaws (e.g., one issue: we count
dependencies manifested in final proofs, rather than ones the user mentioned).

Nevertheless, we are believe that our results give evidence of potential value
for proof metrics. A central question around metrics — can we show that they
actually measure something? — is perhaps even more thorny than for software.
Notions of formal proof quality are not yet developed and there are questions
over what to assess empirically. Defect prediction is not an obvious aim; bugs
as such do not exist in formal proof. If a proof is found by the system, it must
be correct! (Saying this, definitions and theorem statements can be wrong, even
inconsistent, which is serious; dependency metrics might provide hints on that.)
Effort prediction in general cannot be feasible: ITPs work in undecidable proof
systems, which means that there are profound theorems that have short state-
ments but will need immensely long proofs. The Kepler statement shown in
Sect. 2.1 is (almost certainly) just such an example. So it is hard to imagine a
mathematical analogue of “function points”. Software or hardware verification
is a more hopeful domain: where a body of proofs exists about some complex
system, we may hope to see correlated scaling effects in proof size or effort as
the system evolves, or as more properties are proven; Matichuk et al [23] have
demonstrated a case of this, as mentioned above. And a different, perhaps more
transferable, use of proof metrics may be for stability tracking, to see where a
development seems to be proceeding to an optimal design. This was found to be
effective in a study of a particular object-oriented framework [8].

Even without general predictive models, we suspect that proof metrics will
find a valuable use inside a range of future tools that provide monitoring of proof
development progress, and perhaps hints of “bad smells” in a development. We
look forward to their further investigation and application.
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