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Abstract. We investigate the basic fold operations, often referred to
as Huzita’s axioms, which represent the standard seven operations used
commonly in computational origami. We reformulate the operations by
giving them precise conditions that eliminate the degenerate and inci-
dent cases. We prove that the reformulated ones yield a finite number of
fold lines. Furthermore, we show how the incident cases reduce certain
operations to simpler ones. We present an alternative single operation
based on one of the operations without side conditions. We show how
each of the reformulated operations can be realized by the alternative
one. It is known that cubic equations can be solved using origami fold-
ing. We study the extension of origami by introducing fold operations
that involve conic sections. We show that the new extended set of fold
operations generates polynomial equations of degree up to six.

Keywords: fold operations, computational origami, conic section

1 Introduction

Origami is commonly conceived to be an art of paper folding by hand. It is not
restricted to an art, however. We see continuous surge of interests in scientific
and technological aspects of origami. It can be a basis for the study of geomet-
rical systems based on reflections, and the industrial applications can be found5

abundantly, such as in automobile industry, space industry etc.
In this paper, we focus on the algebraic and geometrical aspects of origami.

Suppose that we want to construct a geometrically interesting shape, say a reg-
ular heptagon, from a sheet of paper. We need a certain level of precision even
though we make the shape by hand. Since we do not use a ruler to measure the10

distance, nor do we use additional tools4, what we will do by hand is to construct
creases and points. The creases are constructed by folding. The creases we make
by folding are the segments of the lines that we will treat. The creases and the

4 This restriction will be relaxed in Section 7.



four edges of the initial origami form line segments. The points are constructed
by the intersection of those segments. In the treatment of origami5 in this pa-15

per, origami is always sufficiently large such that, whenever we consider the
intersections of segments, we consider the intersections of the lines that extend
the segments. The shape of the origami that we want to obtain by folding is a
(possibly overlaid) face(s) constructed by the convex set of the thus-constructed
points.20

As the crease is constructed by folding, the main question is how to specify
the fold. Since we fold an origami along the line, the question is boiled down to
how to specify the line along which we fold the origami. We call this line fold
line.

In 1989 Huzita proposed the set of basic fold operations often referred to as25

Huzita’s axiom set [4]. Later studies showed that Huzita’s set of fold operations is
more powerful than Euclidean tools, i.e. straightedge and compass (abbreviated
to SEC hereafter), in that we can construct a larger set of points of coincidence by
applying Huzita’s set of operations than by SEC [1]. More precisely, the field of
origami constructible numbers includes the field of SEC constructible numbers,30

therefore, the class of the shapes formed by connecting the coincidences is richer
than that of the shapes formed by SEC. The trisector of a given arbitrary angle is
a famous example that is constructible by origami, but not by SEC [11, 6]. This
triggered the activities of researchers who are interested in mathematical aspects
of origami such as the contribution of Martin [10] and Alperin [1]. Although35

several studies have been made to confirm the power of origami as we have
seen above, we propose a more rigorous treatment of Huzita’s set of operations.
We choose not to use of terminology of Huzita’s axiom itself as the set does
not constitute a mathematical axiom set. The need for a formal method that
can serve as a rigorous standard for the origami theory is pressing since folding40

techniques have been adapted in industry. This paper presents a preparatory
but necessary rigorous statements of Huzita’s basic fold operations towards the
formalization of origami theory in proof assistants.

In this paper we restate Huzita’s basic fold operations. We make the new
statements more precise by clarifying the conditions that enable folds. We ana-45

lyze the operations algebraically and present theorems about the finite number
of fold lines. We also introduce a general origami principle that performs all the
operations. Furthermore, we extend the capability of basic fold operations by
introducing conic sections and show that this extension is defined by equations
of degree six.50

The structure of the rest of the paper is as follows. In Section 2, we summarize
our notions and notations. In Section 3, we present Huzita’s basic fold operations.
In Section 4, we define the possible superpositions of geometrical objects of
origami. In Section 5, we reformulate the basic fold operations. In Section 6, we
introduce a general origami principle that performs all the basic fold operations.55

5 The word origami is also used to refer to a square sheet of paper used to perform
origami.
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In Section 7, we consider superpositions of points and conic sections. In Section 8,
we conclude with remarks on future directions of research.

2 Preliminaries

An origami is notated by O. An origami O is supposed to represent a square
sheet of paper with four points on the corners and four edges that is subject to60

folding. Some intersections of lines may not fit on the square paper. However, we
want to work with these points. To achieve this, we consider O to be a sufficiently
large surface so that all the points and lines that we treat are on O.

In this paper, we restrict the use of geometrical objects only to points, lines
and s-pairs (to be defined in Section 4). We use α and β to note either a point65

or a line. Points are notated by a single capital letter of the Latin alphabet
such as A, B, C, D, P , Q etc.6, and lines are notated by γ, k, m, and n. Since
we use Cartesian coordinate system in this paper, a line is represented by a
linear equation ax + by + c = 0 in variables x and y. The notation “f(x, y) :=
polynomial in x and y = 0” is used to declare that f is a curve represented by70

the equation polynomial = 0. (x, y) on the lefthand side of := may be omitted.
The sets of all points and lines are notated by Π and L, respectively. Abusing

the set notation we use P ∈ m to mean point P is on line m.
For a set S, we notate its cardinality by |S|. For two lines m and n, m ‖ n is

true when m and n are parallel or equal.75

3 Fold Principle

3.1 Basic idea

By hand we can fold the origami by tentatively making a line either to let it pass
through two points or to superpose points and lines. The former corresponds to
applying a straightedge in Euclidean construction. In practice, to construct a line80

that passes through a point we bend the paper near the point and we flatten the
paper gradually until we make the point lie on the intended fold line. The latter
is pertinent to origami. Superposition involves two points, a point and a line, and
two lines. To superpose two points, we bring one point to another, and then we
flatten the paper. To superpose a point and a line, the easy way is to bring the85

point onto the line, and then we flatten the paper. Superposition of two lines is
more complex, and we will treat the operation along with its algebraic meaning
in Section 4.

3.2 Huzita’s Basic Fold Operations

We restate the set of seven basic fold operations of Huzita. The first six were90

proposed by Huzita and below are their statements as they appear in [4]. The

6 A ∼ F , X and Y are overloaded, in fact. The meaning the symbols denote should
be clear from the context.
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seventh was proposed by Justin [7] and rephrased by us to fit in with Huzita’s
statements.

(1) Given two distinct points, you can fold making the crease pass through both
points (ruler operation).95

(2) Given two distinct points, you can fold superposing one point onto the other
point (perpendicular bisector).

(3) Given two distinct (straight) lines, you can fold superposing one line onto
another (bisector of the angle).

(4) Given one line and one point, you can fold making the crease perpendicular100

to the line and passing through the point (perpendicular footing).
(5) Given one line and two distinct points not on this line, you can fold super-

posing one point onto the line and making the crease pass through the other
point (tangent from a point to a parabola).

(6) Given two distinct points and two distinct lines, you can fold superposing105

the first point onto the first line and the second point onto the second line
at the same time.

(7) Given a point and two lines, you can fold superposing the point onto the
first line and making the crease perpendicular to the second line.

We will call this set of basic fold operations Huzita’s fold principle.110

The set of points and lines that can be constructed using the first five and
seventh operations is the same, as the set of points and lines that can be con-
structed by SEC. The sixth operation is more powerful: it allows constructing
common tangents to two parabolas which are not realizable by SEC.

Huzita and Justin carefully worked out the statements to exclude the cases115

that give infinite fold lines by imposing conditions on points and lines (e.g.
distinct points, distinct lines, etc.). However, some of these conditions are in-
sufficient or unnecessary. A thorough discussion on Huzita’s statements is given
in [9].

While these statements are suitable for practicing origami by hand, a ma-120

chine needs stricter guidance. An algorithmic approach to folding requires formal
definition of fold operations. Furthermore, we need to explicitly identify the con-
ditions that ensure the finite number of fold lines.

4 Superposition

We define a superposition pair, s-pair for short, (α, β). It is a pair of geometrical125

objects α and β that are to be superposed. An s-pair (α, β) defines a fold line
along which the origami is folded to superpose objects α and β. Depending upon
the types of the objects, we have the following superpositions.

Point-point superposition When points P and Q are distinct, the s-pair
(P,Q) defines a unique fold line that superposes P and Q. This unique line is130

the perpendicular bisector of the line segment whose start and end points are P
and Q, respectively, and is denoted by P lQ
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When points P and Q are equal, the s-pair (P,Q), i.e. the s-pair (P, P ), does
not define a unique fold line to superpose P onto itself. Points P and P are
superposed by any fold line that passes through P . Namely, the s-pair (P, P )135

defines the infinite set I(P ) of fold lines that pass through P , i.e.

I(P ) = {γ | P ∈ γ}

Here we note that two sets I(P ) and I(Q) can define a line, denoted by PQ,
passing through points P andQ, i.e. γ = I(P )∩I(Q). The straightedge operation
can even be replaced by the superpositions.

Line-line superposition When lines m and n are equal, what we do is su-140

perposing a line onto itself. This is achieved in the following way. Choose an
arbitrary point on the line, divide the line into the two half lines, and then su-
perpose the two half lines with the dividing point at the ends of the both half
lines. Geometrically speaking, we construct a perpendicular to m and fold along
that perpendicular. Any perpendicular to m superposes the line m onto itself.145

Hence, the s-pair (m,m) defines the following infinite set B(m) of fold lines.

B(m) = {X lY | X,Y ∈ m,X 6= Y }

Note that, in passing, we exclude m itself from B(m). Namely, m is not con-
sidered as the fold line to superpose m onto itself as this does not create new
lines.

To superpose two distinct lines, we assume the capability of hands that slides150

a point along a line. By the combination of superposition and of sliding, we can
achieve the superposition of two distinct lines.

Point-line superposition An s-pair (P,m) defines the following set Γ (P,m)
of fold lines that superpose P and m.

Γ (P,m) =

{
{X lP | X ∈ m} if P 6∈ m
B(m) ∪ I(P ) if P ∈ m

Here we define Γ (P,m) by cases of P 6∈ m and P ∈ m. If P /∈ m then the155

fold line that superposes P and m is a tangent to the parabola with focus P and
directrix m [7, 10, 1]. Therefore, {X l P | X ∈ m}, in the former case, denotes
the set of tangents of the parabola defined by the focus P and the directrix m.
The latter corresponds to folding along any perpendicular to m or along any line
that passes through P .160

5 Formulation of Fold

5.1 Revisit of Huzita’s Fold Principle

Table 1 shows the reformulation of Huzita’s fold principle by a superposition or
combinations of two superpositions. Each row of Table 1 corresponds to each
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basic operation given in Subsection 3.2. The second column shows the superpo-165

sitions used to formalize each fold operation. The third column summarizes the
degenerate cases of each operation. In practice, a degenerate case means infinite
folding possibilities to achieve the superpositions in the second column. Huzita
implicitly assumed P 6∈ m whenever a point P and a line m are to be super-
posed. The fourth column indicates this assumption of the incidence relation. An170

incident case is one where the s-pair (α, β) ∈ Π×L has the property α ∈ β. This
can occur in the operations where we have point-line superposition(s), namely
operations (5), (6) and (7). In the case of (6), it is enough to have only one s-pair
that has the property α ∈ β.

Propositions of incidence may cover some of degenerate configurations. In175

Table 2, redundancy of propositions is avoided in the last two columns. For
instance in the case of (5), if P = Q ∧ P ∈ m then there are infinite possible
fold lines passing through Q and superposing P and m. More precisely, any
line passing through P is a possible fold line. Or, the proposition P ∈ m of
incidence covers the degeneracy proposition. In other words, by eliminating the180

case where P ∈ m, we also eliminate the case where P = Q and P ∈ m. The
proposition P = Q∧P ∈ m is removed from degeneracy column of the operation
(5) in Table 2. The more general condition, i.e. P ∈ m, is kept in the incidence
column.

Table 1. Superpositions in Huzita’s fold principle

operation s-pairs degeneracy incidence

(1) (P, P ), (Q,Q) P = Q −
(2) (P,Q) P = Q −
(3) (m,n) m = n −
(4) (m,m), (P, P ) − −
(5) (P,m), (Q,Q) P = Q ∧ P ∈ m P ∈ m
(6) (P,m), (Q,n) (P ∈ m ∧Q ∈ n ∧ (m ‖ n ∨ P = Q))∨ P ∈ m ∨Q ∈ n

(P 6∈ m ∧Q 6∈ n ∧m = n ∧ P = Q)

(7) (P,m), (n, n) m ‖ n ∧ P ∈ m P ∈ m

The notion of superposition enable us to reformulate Huzita’s fold principle.185

We first introduce a function ζ that, given a sequence of s-pairs, computes all
the fold lines that realize all the given s-pairs (i.e. superpose the elements). The
detailed definition of ζ is beyond the scope of this paper. Function ζ has been
implemented as the core of computational origami system Eos [3, 5]. We provide
the reformulation of Huzita’s fold principle: a new set of operations that specify190

ζ. We denote this new formalization by H.

(O1) Given two distinct points P and Q, fold O along the unique line that passes
through P and Q.
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Table 2. Superpositions in Huzita’s fold principle with simpler conditions for degen-
eracy

operation s-pairs degeneracy incidence

(1) (P, P ), (Q,Q) P = Q −
(2) (P,Q) P = Q −
(3) (m,n) m = n −
(4) (m,m), (P, P ) − −
(5) (P,m), (Q,Q) − P ∈ m
(6) (P,m), (Q,n) P = Q ∧m = n P ∈ m ∨Q ∈ n
(7) (P,m), (n, n) − P ∈ m

(O2) Given two distinct points P and Q, fold O along the unique line to superpose
P and Q.195

(O3) Given two distinct lines m and n, fold O along a line to superpose m and n.
(O4) Given a line m and a point P , fold O along the unique line passing through

P to superpose m onto itself.
(O5) Given a line m, a point P not on m and a point Q, fold O along a line

passing through Q to superpose P and m.200

(O6) Given two lines m and n, a point P not on m and a point Q not on n,
where m and n are distinct or P and Q are distinct, fold O along a line to
superpose P and m, and Q and n.

(O7) Given two lines m and n and a point P not on m, fold O along the unique
line to superpose P and m, and n onto itself.205

The above statements of (O1) ∼ (O7) include the conditions that eliminates
degeneracy and incidence. These conditions correspond to the negations of the
propositions of third and fourth column of Table 2 in natural language.

Using ζ, we define origami constructible objects.

Definition 1 (Origami constructible objects). Given a set of initial objects210

S (⊆ Π ∪L), the set of origami constructible objects is inductively defined as the
least set containing origami constructible objects given in 1. ∼ 4.:

1. A point P is origami constructible, if P ∈ S.
2. An s-pair (α, β) is origami constructible if α and β are origami constructible.
3. A line γ is origami constructible if γ ∈ ζ(s) and s is a sequence of origami215

constructible s-pairs.
4. The intersection of lines m and n is origami constructible if m and n are

origami constructible.

One may wonder why the reflection of an origami constructible point across
an origami constructible line is not included in this definition. In fact, reflections220

are constructible using the operations of H [10]. In practice, however, reflections
are treated as if they were in the above inductive definition.
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5.2 Properties of Operations in H

We now study the properties of the operations in H. For each operation, we will
show the finiteness of the number of the constructible fold lines under certain225

conditions. This result is important to ensure the decidability of the fold since
otherwise we would have an infinite computation. For each of (O1), (O2) and
(O4), we have a unique fold line.

Since all the objects that we study now are origami constructible, the sets of
points and lines are now denoted by ΠO and LO (each subscripted by O) in all230

the propositions to follow. The first two are easy ones.

Proposition 1 (Fold line of (O1)).

∀ P,Q ∈ ΠO such that P 6= Q, ∃ ! γ ∈ I(P ) ∩ I(Q).

This unique γ is denoted by PQ.

Proposition 2 (Fold line of (O2)).

∀ P,Q ∈ ΠO such that P 6= Q, ∃ ! γ = P lQ.

Proposition 3 (Fold line of (O4)).235

∀ m ∈ LO ∀ P ∈ ΠO ∃ ! γ ∈ B(m) ∩ I(P )

A fold line in (O5) is determined by s-pairs (P,m) and (Q,Q) under the
condition of P 6∈ m. The fold in (O5) is impossible in certain configurations.
The following proposition more sharply describes this property.

Proposition 4 (Fold lines of (O5)).

∀ m ∈ LO ∀ P,Q ∈ ΠO such that P 6∈ m
240

| Γ (P,m) ∩ I(Q) | 6 2.

Proof. The algebraic proof of this proposition is straightforward and extendable
to the general cases of conic sections. Recall that Γ (P,m) defines the set of the
tangents of the parabolas whose focus and directrix are P and m, respectively. A
general form of an equation of the parabola is given by the following irreducible
polynomial equation245

f(x, y) := Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (5.1)

where A, B, C, D, E and F are constants, not both A and B are 0, and B2 =
4AC. The tangent to the curve f(x, y) at the point (X,Y ) is given by

g(x, y) :=
∂f

∂x
(X,Y ) · (x−X) +

∂f

∂y
(X,Y ) · (y − Y ) = 0. (5.2)
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Let Q be (u, v). As the line g passes through Q, we have g(u, v) = 0. We will
solve for X and Y of the system of equations

{f(X,Y ) = 0, g(u, v) = 0}.

Since g(u, v) is linear in X and Y , finding the solutions is reduced to solving,
in X (or in Y ), the (at most) second degree polynomial equation obtained from
f(X,Y ) = 0 by eliminating either Y or X. Obviously, the number of real solu-
tions is less or equal to 2. ut

Concerning (O7), the following proposition holds.250

Proposition 5 (Fold lines of (O7)).

∀ m,n ∈ LO ∀ P ∈ ΠO such that P 6∈ m,

| Γ (P,m) ∩ B(n) | 6 1.

Proof. The proof is similar to the proof of Proposition 4. We use the formula
(5.1) there. Instead of the condition that the tangent passes through a particular
point, we impose the condition that the slope of the tangent at point (X,Y ) is255

given, say k( 6= ∞), in this proposition. From Eq. (5.1), we have the equation
representing the tangent at (X,Y ).

h(x, y) := D + 2Ax+By + (E +Bx+ 2Cy)
dy

dx
(X,Y ) = 0 (5.3)

Since k(= dy
dx (X,Y )) is given, all we need is to solve for X and Y in the

system of equations

{f(X,Y ) = 0, D + 2AX +BY + (E +BX + 2CY )k = 0} (5.4)

It is easy to see that we have at most two real solutions for the pair (X,Y ).260

However, when B2 = 4AC, which is the case of the parabola, we have at
most one real solution by an easy symbolic computation by computer algebra
systems. ut

Most interesting case is (O6), which actually gives extra power over SEC.

Proposition 6 (Fold lines of (O6)).

∀ m,n ∈ LO ∀ P,Q ∈ ΠO such that P 6∈ m ∧Q 6∈ n
¬(P = Q ∧m = n)⇒

if m ‖ n then | Γ (P,m) ∩ Γ (Q,n) | 6 2

else 1 6 | Γ (P,m) ∩ Γ (Q,n) | 6 3. (5.5)

9



Proof. Instead of the general equation (5.1) of the conic section, we use the
following equation for the parabola defined by the focus (u, v) and the directrix
ax+ by + c = 0.

f(x, y) :=
(
a2 + b2

) (
(x− u)2 + (y − v)2

)
− (ax+ by + c)2 = 0. (5.6)

We only have to consider the cases of m 6= n and of P 6= Q∧m = n. We consider265

the former, first. Let fi(x, y) be the function given in (5.6) with all the constants
a, b, c, u and v being indexed by i.

Let P and Q be points at (u1, v1) and at (u2, v2) respectively, and m and n
be the line a1x + b1y + c1 = 0, and a2x + b2y + c2 = 0, respectively. Note that
we can give a unique representation for the same line, so that the two lines are270

equal iff each coefficient a, b and c for each equation are equal. Now, let f1 and
f2 be the parabolas defined by P and m, and by Q and n, respectively.

We distinguish the following two cases.

1. m 6‖ n
As in the proof of Proposition 5, we derive the the tangent h1 with the slope275

t at point (X1, Y1) on f1(x, y) = 0, and the tangent h2 with slope t at point
(X2, Y2) on f2(x, y) = 0. The system {f1(X1, Y1) = 0, h1(X1, Y1) = 0} yields
X1 and Y1 as functions of t. Similarly, we obtain X2 and Y2 as functions of
t. Since (Y1−Y2)− t(X1−X2) = 0, we have the polynomial equation, whose
polynomial is degree 3 in t. Hence, the number of distinct real solutions is280

1, 2 or 3.
2. m ‖ n

Similarly to case 1., we obtain the polynomial equation of degree 2 in t.
Hence we have 1 or 2 distinct real solutions.

What remains to be considered is the case of P 6= Q ∧m = n. Similarly to the
case 2, above, we obtain the polynomial equation of degree 2 in t. Furthermore,
the discriminant of the obtained equation is easily shown to be non-negative.
Hence, the relation (5.5) follows. ut

Operation (O3) is a special case of (O6) with m = n and P 6= Q. In this285

case, the fold operation is about superposing the two lines PQ and m. As the
corollary of Proposition 6.

Proposition 7 (Fold lines of (O3)).

∀ m ∈ LO ∀ P,Q ∈ ΠO P 6= Q⇒
1 6 | Γ (P,m) ∩ Γ (Q,m) | 6 2. (5.7)

6 General Origami Principle

Since the algebraic interpretation of (O6) can be expressed by a cubic equation, a
natural question is whether (O6) can do all the rest of fold operations of H with290

certain side conditions. The answer is basically, yes, but we need to carefully
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analyze the degenerate and incident cases, which will form the premise of the
implicational formula of Lemma 1 that we will prove next.

We start with the general origami principle, which we denote by G, that
consists of the following single operation.295

(G) Given two points P and Q and two lines m and n, fold O along a line to
superpose P and m, and Q and n.

Operation (G) is obtained by removing all the side conditions of (O6). Mar-
tin’s book [10] defines a fundamental fold operation that is operation (G) with
the following finiteness condition:“If for two given points P and Q and for given300

lines p and q there are only a finite number of lines t such that both P t is on p
and Qt is on q”. Martin uses the notation P t to denote the reflection of point
P . He further showed that some simpler operations (Yates postulates) can be
derived from the fundamental fold operation. We extend this by showing that all
Huzita’s fold operations can be a achieved using (G), in particular under what305

conditions a finite number of fold lines is achieved. We refine the above Martin’s
statement using the results obtained so far in this paper.

We will show how the degenerate and incident cases of (G) realize the rest of
the operations. We first consider the degenerate case of (G), i.e. m = n∧P = Q.
This case generates the infinite set of fold lines Γ (P,m). Furthermore, when310

the arguments of (O6) are more constrained, (O6) is reduced to (O2) and (O3).
Suppose (O6) is given two s-pairs (P,m) and (Q,n), and further that P ∈
n∧Q ∈ m, we have Lemmas 1 and 2 below. In the following, we denote by {Oi},
i = 1, . . . , 7, the set of fold lines that operation (Oi) can generate.

Lemma 1. ∀ s-pairs (P,m) and (Q,n) that are origami constructible, if m 6=315

n ∧ P = Q ∧ (P ∈ n ∧Q ∈ m) then {O6} ⊆ {O3}.

Proof. (Sketch) To perform (O6), P and Q have to be the intersection of m and
n. (O6) then generates the two bisectors of the angle formed by m and n. Those
lines are constructible by (O3) using m and n. ut

Lemma 2. ∀ s-pairs (P,m) and (Q,n) that are origami constructible and satisfy
(P 6∈ m∧Q 6∈ n), if m 6= n∧P 6= Q∧(P ∈ n∧Q ∈ m), then {O6} ⊆ {O2}∪{O3}.

Proof. (Sketch) Under the condition m 6= n ∧ P 6= Q ∧ (P ∈ n ∧Q ∈ m), (O6)
generates three fold lines, i.e. P lQ and the two bisectors of the angle formed
by m and n. The first one is constructible by (O2) (cf. Fig. 1(a)), and the latter
ones by (O3) (cf. Fig. 1(b)). ut

Theorem 1. ∀ s-pairs (P,m) and (Q,n) that are origami constructible,

¬((P ∈ m ∧Q ∈ n ∧ (m ‖ n∨P = Q))∨
(P 6∈ m ∧Q 6∈ n ∧m = n∧P = Q))⇒

{G} =
⋃

i=1,...,7

{Oi}.
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(a) (O2) performed by (G) (b) (O3) performed by (G)

Fig. 1. (O2) and (O3) by (G) when m 6= n ∧ P 6= Q

Proof. We first prove that (G) is reduced to (O1), (O4), (O5), (O6) and (O7)
under certain configurations of the parameters. This implies that under such320

conditions, {G} ⊆ {Oi}, where i = 1, 4, 5, 6 and 7.
We distinguish four cases.

(a) (O5) performed by (G)

when P does not move

(b) (O7) performed by (G)

when P moves

Fig. 2. Incident case of (G) for P ∈ m ∧Q 6∈ n

1. P 6∈ m ∧Q 6∈ n
If (m = n ∧ P = Q), i.e. the degenerate case, then (G) is an undefined
operation since it generates the infinite set Γ (P,m). Otherwise, (G) performs325

(O6).
2. P ∈ m ∧Q 6∈ n

We further distinguish two cases of fold; P does not move, and P moves
along m. In the former case, the fold line passes through P and superposes
Q and n, which is the case of (O5) as shown in Fig. 2(a). In the latter case,330

the fold line is a perpendicular to m and superposes Q and n, which is the
case of (O7) (cf. Fig. 2(b)).

3. P 6∈ m ∧Q ∈ n
Similarly to the case 1, we have the cases of (O5) and (O7).
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4. P ∈ m ∧Q ∈ n335

We further distinguish the following four cases:
(a) m ‖ n

The fold lines are perpendiculars common to the lines m and n. They
are infinite and form the set B(m).

(b) ¬(m ‖ n) ∧ (P = Q)340

This is the case that P is the intersection of m and n. Any line passing
through P is the fold line. Therefore, we have the set of infinite number
of fold lines I(P ). In this case neither P or Q does move by the fold.

(c) ¬(m ‖ n) ∧ (P 6= Q)
We distinguish the following three cases:345

i. P moves and Q does not move
The fold line is the perpendicular to m passing through Q that su-
perposes P and m. This is the case of (O4) (cf. Fig. 3(a)).

ii. Q moves and P does not move.
Similarly to the above case, we have the case of (O4).350

iii. Neither P or Q moves.
The fold line is PQ constructible by (O1) (cf. Fig. 3(b)).

Table 3 summarizes the relations of (G) and corresponding operations of H
for all possible combinations of the conditions.

The condition to eliminate the infinite cases are as follows.

(P ∈ m ∧Q ∈ n ∧ (m ‖ n ∨ P = Q))∨
(P 6∈ m ∧Q 6∈ n ∧m = n ∧ P = Q)

Furthermore, by Lemmas 1 and 2, (O6) can be reduced to (O2) and (O3)
under certain conditions. Therefore we obtain the following result

¬((P ∈ m ∧Q ∈ n ∧ (m ‖ n∨P = Q))∨
(P 6∈ m ∧Q 6∈ n ∧m = n∧P = Q))⇒

{G} ⊆
⋃

i=1,...,7

{Oi}.

The relation355

{G} ⊇
⋃

i=1,...,7

{Oi}

can be shown as follows. For each (Oi) we add parameters that satisfy the
constraints to (O6) operation as shown in Table 3 in the case of (O1), (O4)
- (O7) and the conditions stated in Lemmas 1 and 2 in the case of (O2) and
(O3). ut

Theorem 1 states that the principle G is as good as H, although G is much
simpler under the condition

¬((P ∈ m ∧Q ∈ n ∧ (m ‖ n ∨ P = Q))∨
(P 6∈ m ∧Q 6∈ n ∧m = n ∧ P = Q)).
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Table 3. (G) to perform (O1), (O4) - (O7)

incidence degeneracy operation movement

P ∈ m,Q ∈ n m ‖ n B(m) (↔,↔)

¬(m ‖ n) ∧ P = Q I(P ) (·, ·)
¬(m ‖ n) ∧ P 6= Q (O1) (·, ·)
¬(m ‖ n) ∧ P 6= Q (O4) (↔, ·)
¬(m ‖ n) ∧ P 6= Q (O4) (·,↔)

P ∈ m,Q 6∈ n (O5) (·, ∗)
(O7) (↔, ∗)

P 6∈ m,Q ∈ n (O5) (∗, ·)
(O7) (∗,↔)

P 6∈ m,Q 6∈ n m = n ∧ P = Q Γ (P,m) (∗, ∗)
¬(m = n ∧ P = Q) (O6) (∗, ∗)

Note:

– Expression (x, y) denotes the movements x and y of points P and Q, respectively.
– We denote movement x (or y) by symbols: “move” by “↔”, “non-move” by “·”

and “do-not-care” by “*”.

So let us define G′ as G with the above condition. Nevertheless, G′ has the fol-
lowing drawback. G′ may create lines whose geometrical properties are different.
During origami construction, a fold step may give rise to multiple possible fold
lines. The user should choose a suitable fold line among the possible ones. How-
ever, in proving geometrical properties by algebraic methods like Gröbner bases,360

this is likely to cause problems, since the property that we want to prove may be
true only for certain choices. For example, when P ∈ m and Q ∈ n, G′ generates
two kinds of fold lines whose geometrical meaning are different, namely those
by (O4) and (O1). In Fig. 3(a), the fold line γ1 is perpendicular to m, whereas
in Fig. 3(b), γ2 is not necessary perpendicular to m. Although, the user chooses365

either γ1 or γ2 to perform the construction, the proof by Gröbner bases includes
both cases. If the property that we want to prove depends on the perpendicular-
ity of the fold line and line m, then the proof fails since perpendicularity doesn’t
hold for γ2.

7 Fold with Conic Sections370

We further explore the possibility of strengthening the power of origami. We
extend Huzita’s basic operations to allow solving polynomial equations of certain
degrees while maintaining the manipulability of origami by hand. It has been
shown in [9] that an extension that combines the use of compass with origami
leads to interesting origami constructions, but does not increase the construction375

power of origami beyond what is constructible by H. The extension generates
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(a) (O4) performed by (G)

when P moves and Q does

not move

(b) (O1) performed by (G)

when neither P nor Q moves

Fig. 3. Incident case of (G) for P ∈ m ∧Q ∈ n

polynomial equations of degree 4, which can be reduced to equations of degree
3.

It is also possible to increase origami power by allowing multi-fold as sug-
gested by Alperin and Lang [2]. Although the m-fold method generates an ar-380

bitrarily high degree polynomial, accurately folding origami by m-lines simulta-
neously would be difficult even for m = 2.

We further explore the foldability involving superposition of points and more
general curves, which are still constructible using simple tools. In this section,
we study the superposition with conic sections and describe the algebraic prop-385

erties of the fold operation that superposes one point and a line, and superposes
another point and a conic section assumed to be on the origami. This operation
is realizable by hand and furthermore we expect to have a finite number of fold
lines, which ensures the foldability. We consider a fold operation that simulta-
neously superposes two points with two conic sections to be difficult to perform390

by hand. Besides, folding to superpose a point with a conic section, with other
combinations of simultaneous superpositions involving points and lines can be
reduced to a more general one: superposition of two points with a line and a
conic section.

To illustrate folding with conic sections by hand, an ellipse, parabola and395

hyperbola can be drawn on origami using pins, strings, a pencil and a straight-
edge, where only origami constructible points and lengths are used. Abstracting
from the method used to draw a particular conic section on origami, we state
the following fold operation in general:

– Given two points P and Q, a line m and a conic section C, where P is not400

on C and Q is not on m, fold O along a line to superpose P and m, and Q
and C.

With little modification of the analysis performed with (O6) in Section 5.2, we
obtain the following result, which corresponds to Proposition 6 for (O6).

Proposition 8. Given origami constructible points P at (a, b) and Q at (c, d),405

an origami constructible line m := y = 0, and a conic section C := Ax2 +Bxy+
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Cy2+Dx+Ey+F = 0, where coefficients A, B, . . . , F are origami constructible
numbers and not all A, B and C are zero. We assume that P is not on m and
Q is not on C. Let γ be the fold line to superpose P and m, and Q and C. Then
the slope t of γ satisfies the following polynomial equation of degree six in t.410

bBc+Ac2 + b2C −Bcd− 2bCd+ Cd2 + cD + bE − dE + F +

(−b2B − 2Abc− 2aBc+ 2Bc2 − 4abC + 4bcC + 3bBd+

4Acd+ 4aCd− 4cCd− 2Bd2 − bD + 2dD − 2aE + 2cE) t +

(Ab2 + 4abB + 4aAc− 4bBc− 2Ac2 + 4a2C − 2b2C −
8acC + 4c2C − 4Abd− 6aBd+ 6Bcd+ 4bCd+ 4Ad2 −

2Cd2 + 2aD + 2F ) t2 +

(−4aAb− 4a2B + 2b2B + 4Abc+ 6aBc− 2Bc2 + 4abC −
4bcC + 8aAd− 4bBd− 4Acd− 4aCd+ 4cCd+ 2Bd2 +

2dD − 2aE + 2cE) t3 +

(4a2A− 2Ab2 − 4abB − 4aAc+ 3bBc+Ac2 + b2C +Bcd−
4Abd+ 2aBd− 2bCd+ Cd2 + 2aD − cD − bE + dE + F ) t4 +

(4aAb− b2B − 2Abc+ bBd+ bD) t5 +Ab2 t6

Proof. (Sketch) Let points U and V be the reflections of P and Q respectively
across the fold line γ. Point U is on line m and point V is on the given conic
section C. Furthermore, fold line γ is the perpendicular bisector of segments PU
and QV . From the equations of these relations, with algebraic manipulation by
a computer algebra system, we can derive the above degree six equation in slope
t of line γ. ut

This equation looks laborious; one should only note that it is an equation in
t of degree six over the field of origami constructible numbers.

In the example shown in Fig. 4, we assume origami constructible points P
at (3, -4), Q at (-1, 1) and m := y = 0. The conic section C := 2x2 + 2xy+ y2 +
x+ 2y− 10 = 0 is an ellipse depicted in Fig. 4. Giving concrete numerical values415

that realize the figure, we obtain the following equation for t.

16t6 − 78t5 + 84t4 + 39t3 − 66t2 + t+ 8 = 0 (7.1)

Solving Eq. (7.1) using Mathematica 8 yields six real solutions that correspond to
six possible fold lines k1, · · · , k6 in Fig. 4. The same operation can be performed
by hand, obtaining fold lines with certain slopes. Each slope value is one real
solution to the equation.420

8 Concluding Remarks

We reformulated the Huzita’s operations giving them precise definitions with side
conditions that eliminate the degenerate and incident cases. We showed that for
each of the reformulated operations only a finite number of fold lines is possible.
We gave an alternative single operation based on operation (O6) and showed425
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Fold lines k1, · · · , k6 whose slopes are the six distinct real solutions of the
equation 16t6 − 78t5 + 84t4 + 39t3 − 66t2 + t+ 8 = 0

how each of the reformulated operations can be performed using the new one.
Furthermore, we investigated the combination of origami operations and conic
sections. We showed that finding a fold line that superposes two points, one with
a line and the other with a conic section, is reduced to solving an equation of
degree six. We can think of two directions for future work of this research.430

First, the principles of folding presented in this paper have been worked out
carefully, so that they can be formalized in a proof assistant. Starting from a
formalization of the basic geometric concepts, one can formally define the lines
(or sets of lines) that arise from particular fold operations. This can be used to
specify the superpositions that arise from the composition of fold operations,435

and the set of origami constructible points and lines. We imagine that such a
development would give a basis for a formalized origami theory. Recently, it
has been shown [8], that the decision procedures already present in modern
proof assistants combined with the symbolic computation procedures are strong
enough to solve many of the goals arising in computational origami problems.440
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Second, further investigation of fold operations involving conic sections is
required to give exact definitions of the fold operations with their degenerate and
incident cases. We showed that superposing two points onto line and conic section
gives rise to equation of degree six. However the bigger question is whether this
fold operation would solve all the equations of degree five and six. In other words,445

can we find an algorithm for translating degree five and degree six equations,
possibly with certain conditions, into origami fold problems?
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