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Abstract. Origami constructions have interesting properties that are
not covered by standard euclidean geometry. Such properties have been
shown with the help of computer algebra systems. Proofs performed with
computer algebra systems can be accompanied by proof documents, still
they lack complete mathematical rigorousity, like the one provided by
proof assistant checked proofs. Transforming such proofs to machine
checkable proof scripts poses a number of challenges.
In this paper we describe issues that arise when proving properties of
origami constructions using proof assistant decision procedures. We ex-
amine the strength of Gröbner Bases implementations comparing proof
assistants with each other and with the implementations provided in
computer algebra systems. We show ad-hoc decision procedures that
can be used to optimize the proofs. We show how maximum equilateral
triangle inscribed in a square construction can be formalized. We show
how a equation system solving mechanism can be embedded in a CAS
decision procedure of a proof assistant.

1 Introduction

1.1 Computational Origami

Origami is the traditional Japanese art of paper folding. In the recent years it is
becoming more popular because of its applications in science, and education. It
can also be a tool for geometrical constructions; namely it describes representing
objects using paper folds. Instead of ruler and compass in Euclidean geometry
one can use paper folding as a basis to create new points and lines on a surface.
Starting with a square area represented by four corners of an initial origami, one
can specify folds to superpose existing points or lines. Such superpositions give
rise to new lines and the intersections of the new lines with existing ones create
new points on the origami.

The traditional meaning of folds has been expressed in a rigorous way by
Huzita and Justin [7, 8, 11]. Their work has classified all the possible folds,
creating a system of operations for origami geometry (called axioms in the lit-
erature). They also show that the system is complete; this means that for the
case of folding along one line no other operations that superpose points and
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lines are possible. The origami constructable points are a superset of the points
constructable with Euclidean geometry; which also means that properties of the
constructions performed with origami can be more complicated than those per-
formed with ruler and compass.

The term computational origami has been used to refer to the branch of com-
puter science that studies various aspects of origami. It includes representation
of origami, design of origami algorithms, visualization, and geometrical theorem
proving of computational and mathematical properties of origami. Computa-
tional origami most often refers to analyzing origami with a computer; while
origami refers to an infinite virtual paper. In this paper the most important no-
tion from computational origami used is the correspondence between geometry
and algebra that allows to express the origami axiom system logically.

Recently a system for computational origami Eos has been created [15]. This
system is capable of visualizing origami constructions based on Huzita’s axioms,
analysing the origami folds algebraically, and showing properties of the construc-
tions. During the computational origami construction, geometrical constraints
are accumulated. The symbolic representation is then transformed into algebraic
forms by constraint solving using the generalized equations which describe the
axioms. The algebraic representation is a set of polynomials, which describes
the geometrical construction in a general way. The polynomials are then used to
prove properties of the construction using the Gröbner bases method and CAD
(Cylindrical Algebraic Decomposition). The proofs performed by Eos are auto-
mated; after specifying the goal, assumptions and a coordinate system, they use
Mathematica’s symbolic expression transformations and the implementations of
the above two proof methods.

A number of constructions have been performed with Eos and certain prop-
erties of those constructions have been proved with its help:

– Trisection of an angle
– Maximum equilateral triangle
– Regular Heptagon
– Morley’s Triangle
– Crane layers and sides

In this paper we use Eos as a source of computational origami problems; to-
gether with its mechanism for gathering the properties of origami constructions.

1.2 Computer Algebra functionality in Proof Assistants

Mainstream Computer Algebra Systems, for instance Mathematica and Maple,
are weakly founded. This means that the expressions processed there do not
have precisely defined semantics. The way expressions are processed in those
systems is supposed to resemble mathematics as done on paper. But the fact
that semantics are not well defined can be a reason for errors. There are various
reasons for the mistakes found in mainstream CAS systems: assumptions can
be lost, types of expressions can be forgotten [2], the system might get confused
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between branches of ‘multi-valued’ functions, and of course the algorithms of the
system themselves may contain implementation errors [21]. Simple mistakes have
been found and fixed over the years; however mistakes made when performing
more complicated computations are still found.

In1 := vector [2; 2] - vector [1; 0] + vec 1

Out1 := vector [2; 3]

In2 := diff (diff (λx. 3 * sin (2 * x) + 7 + exp (exp x)))

Out2 := λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- 12 * sin (2 * x)

In3 := N (exp (1)) 10

Out3 := #2.7182818284 + ...

In4 := x + 1 - x / 1 + 7 * (y + x) pow 2

Out4 := 7 * x pow 2 + 14 * x * y + 7 * y pow 2 + 1

In5 := sum (0,5) (λx. x * x)

Out5 := 30

In6 := sqrt (x * x) assuming x > 1

Out6 := x

Fig. 1. Example session that shows interaction with the prototype computer algebra
input-response loop. When the user inputs expressions to be processed in the In fields,
the system produces output in Out lines together with (not displayed) HOL Light
theorems that state the equality between the inputs and the outputs. Because of the
way numbers are defined in HOL Light, working with them requires coercions. To work
with multiple types in HOL Light coercions are needed and the & symbol is necessary
for some numbers; here prioritization has been assumed and the coercions were skipped.
Similarly the rest of a numerical approximation (marked as ...) is hidden in the output.

We have built a prototype computer algebra like input-response-loop inside
HOL Light [13], with the user interface designed close to the interfaces of popular
computer algebra systems. In Figure

This architecture also has drawbacks, the two main drawbacks are the com-
plexity of the implementation and the efficiency. Every simplification that one
needs to perform has to be a proof producing simplification and every equation
needs to be accompanied with a proof. Similarly all the simplifications as seen
in Figure

The formulas that show up when proving properties of origami systems can be
processed in a commercial computer algebra system; however already there it can
take a substantial amount of time. The Eos proof document describing the proof
for Morley’s theorem by Abe’s method [5] shows that the call to Mathematica’s
Gröbner bases algorithm takes 1668.12 seconds on a modern machine. Taking
into account that all operations of the prototype CAS system are much slower
than their Mathematica counterparts, and the fact that the implementations
of algorithms chosen to be certified are less efficient algorithms it is naturally
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not possible to obtain the same proof performed automatically in the prototype
system.

In this paper we show tactics that allow simplifying the goals that arise in
Eos in such a way that they can be fully formally verified with the help of
decision procedures. The tactics solve (or simplify) systems of equations. We
compare the efficiency of the implementations of computer algebra algorithms
in various proof assistants and show how the goals that arise in certain origami
constructions can be proved with the help of these tools.

1.3 Contents

The rest of this paper is organized as follows. In Section

2 Formalizing a Proof Document

When an origami construction is performed with the help of Eos and its prop-
erties are checked, optionally the system can create a proof document. It is an
output that includes all the operations performed within an origami construc-
tion along with all the steps of the proof. Every proof document starts with a
header and a copy of the user given program for constructing the origami. The
program always starts with a new origami and includes the performed folds and
unfolds and the new points and lines. For every new point and line the way it is
obtained is stored.

In the first stage of the proof document the points and lines are represented
in a geometrical way. This means that geometric relations between points and
lines are given, but no coordinates are assigned to the points.

In the second stage the points and lines are given variable coordinates and
with the help of the origami axiom system the geometrical properties (properties
that talk about points, lines and folds) are translated into algebraic properties.
The operations of origami constructions are expressed in terms of equations
(assumed as axioms) and this step is a substitution in these equations. During
this stage some precision is lost. The equations that talk about equal distances
would be expressed as equality between square roots. To avoid square roots
that are not handled by real arithmetic decision procedures, those equations are
squared.

There are two kinds of optimizations performed in the second stage. First,
same points and lines are assigned the same coordinates. Second, predicates that
are not relevant for the goal are removed. These two steps have been introduced
since Mathematica’s algorithm is not able to eliminate them automatically and
otherwise its complexity increases with a bigger number of variables and equa-
tions. In a formalization irrelevant assumptions and equal variables can be easily
removed (for example in Isabelle the clarify tactic removes both).

The last part of the proof document is the crucial one from our point of
view. The decision procedures built into Mathematica are used to verify the
large formula prepared in the previous steps. The computation performed in



Proof assistant decision procedures for formalizing origami 5

this step is done behind the scenes and as such cannot be verified independently.
This is the reason for a formalization of this step, which we describe in the
following section.

3 Equilateral triangle construction

In this section we will focus on the proof of the maximal equilateral triangle
construction performed with origami, and the formalization of the computational
part of the equilateral proof. The construction as shown in Figure
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Fig. 2. Equilateral triangle construction as performed by Eos. Only the final origami
state is shown. For the folds where more than one resulting line is possible, the system
interactively asks the user which of the lines is the intended one.

The computer-algebra decision procedure as presented in [13] is not able to
do any simplifications on a formula this big. Still parts of it can be simplifed
and this can be made the first part of the proof. We performed this first part
in three proof assistants to compare the available mechanisms for reasoning on
goals arizing from Eos; we also compare it with Mathematica’s simplification.
For the experiment we used HOL Light [6], Isabelle [19] and Coq [3].

The Gröbner bases algorithms present in the 3 proof assistants are too weak
to solve the goal without any preprocessing. In case of HOL Light and Isabelle
the mechanisms do not terminate in reasonable time (we tried one week on a
powerful server), in case of Coq after a few minutes the procedure exits with the
goal transformed in ring equations but not solved.

To perform the complete proof in HOL Light we first need to simplify the
equations. To do this manually we first solve some of the sub-equations using the
ring and field decision procedures. The COMPLEX_FIELD conversion will produce
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a1 = 0∧ (−1+ a1) ∗ (−1+ b1) = 0∧ (−1+ b1) ∗ b1 = 0∧ (−1+ a2) ∗ (−1+ b2) = 0∧ (−1+ b2) ∗ b2 =

0 ∧ (−1 + a3) ∗ (−1 + b3) = 0 ∧ (−1 + b3) ∗ b3 = 0 ∧ (−1 + a4) ∗ (−1 + b4) = 0 ∧ (−1 + b4) ∗ b4 =

0∧ (−1+ b4)∗ (b1 + c1 +2a1) = 0∧ (b1 +2∗ c1)/2 = 0∧ c1− b1 +2∗a1 +a24 ∗ b1 +a
2
4 ∗ c1 +(−2)∗a1 ∗

b4+2∗a1 ∗a24+2∗a4 ∗b1+2∗b1 ∗b4 = 0∧(−1+b3)∗(a2+c2) = 0∧c2−a2+a2 ∗a23+a
2
3 ∗c2+2∗a2 ∗

a3+2∗a2 ∗b3+2∗b2 ∗b3 = 0∧a3+b3+c3 = 0∧a4+b4+c4 = 0∧x3 = 0∧x8 = 0∧b1 ∗x1−a1 ∗y1 =

0∧c1+(a1 ∗x1)/2+(b1 ∗y1)/2 = 0∧b1 ∗(−1+x2)−a1 ∗y2 = 0∧a2 ∗y2+b2 ∗x1−a2 ∗y1−b2 ∗x2 =

0 ∧ c1 + a1 ∗ (1 + x2)/2 + (b1 ∗ y2)/2 = 0 ∧ (2 ∗ c2 + a2 ∗ x1 + a2 ∗ x2 + b2 ∗ y1 + b2 ∗ y2)/2 =

0 ∧ c1 + a1 ∗ x3 + b1 ∗ y3 = 0 ∧ c1 + a1 ∗ x4 + b1 ∗ y4 = 0 ∧ c2 + a2 ∗ x4 + b2 ∗ y4 = 0 ∧ −1 + y5 =

0∧c2+a2∗x5+b2∗y5 = 0∧a1∗(y5−y6)+b1∗(x6−x5) = 0∧c1+a1∗(x5+x6)/2+b1(y5+y6)/2 = 0∧y7 =

0∧c3+a3∗x7+b3∗y7 = 0∧c4+a4∗x8+b4∗y8 = 0∧−1+(x8−y8+x7(−1+y8)+(1−x8)∗y7)∗ξ1 = 0⇒
−((1−x7)

2)+(x7−x8)
2−(1−y7)2+(y7−y8)2 = 0∧(x7−x8)

2+(y7−y8)2−(1−x8)
2−(1−y8)2 = 0

Fig. 3. Algebraic formula to be proved. The equations arising from all the steps of the
construction have been gathered by Eos. We show it here, as an example problem to
be solved; the equation systems for other origami problems are similar, just contain of
more equations with more variables.

the rewrite rules for solving linear equations and FIX_X_ASSUM can be used to
replace the original equation assumption with the solved one. The HOL Light
goal-state is internally a sequence of implications, where the goal is implied by
all the assumptions. To rewrite all variable occurrences in the other assumptions,
a specific solved assumption is the only one kept in the assumptions list while
all other ones are moved to the goal.

Solving linear equations and performing substitutions allows reducing the
goal to a system of 5 equations. Moving the assumptions back to the goal and
generalizing over the five variables creates two subgoals, which both can be solved
by HOL Light’s built in real quantifier elimination procedure. The procedure
takes 18 seconds to prove the two goals on a modern computer. The HOL Light
proof script is 98 lines long.

The same proof can be performed in a similar way in Isabelle; with two im-
portant differences. The clarify tactic together with the simplifier is able to
substitute the value of a computed assumption in other ones and remove un-
necessary assumptions automatically. Similarly the algebra decision procedure
is able to operate on a goal with variables and assumptions introduced in the
context as well as with a goal being a conjunction of two equations. This means
that the manual proof can be cleaner than the HOL Light one; still the choice
of equations to solve and the rules to apply is left to the user. The final call to
the Gröbner bases decision procedure takes 1.4 seconds to solve the simplified
goal. The Isabelle proof script is 151 lines long.

In our experiments the nsatz tactic in Coq was too weak to solve even the
goal with five equations. This result was quite surprising, as we expected the
procedure that makes use of reflection to be stronger than the ones present in
HOL Light or Isabelle. The procedure is able to solve goals involving quadratic
equations, but for more complicated goals it transforms the goal into equations
mentioning explicitly the real ring and exits.
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4 Equations solving tactic

In this section we describe a tactic that solves or simplifies systems of equations
motivated by the manual formalization. With the help of this tactic the original
set of equations can be simplified to a much simpler formula, namely for the
problem presented in the previous section it can be simplified automatically to
the one presented in Figure

a24 + 4 ∗ a4 + 1 = 0 ∧ a23 + 4 ∗ a3 + 1 = 0 ∧ 1 + a3 − a3 ∗ x7 = 0 ∧ 1− y8 + a4 = 0 ∧ −1− xi1 ∗ y8 −
ξ1 ∗ x7 + ξ1 ∗ x7 ∗ y8 = 0⇒ −2 + y28 + x7 ∗ 2 = 0 ∧ −2 + y8 ∗ 2 + x2

7 = 0

Fig. 4. Simplified, with solved variables removed for clarity

The tactic is similar to extended Gaussian elimination; it allows the origi-
nal system to contain equations of higher degrees as well as inequalities. The
simplifications are performed in an order that takes into account the complexity
of symbolic transformations. Given a system of equations the tactic counts the
numbers of occurrences of variables in each equation. As the tactic is running
a threshold for a maximum number of variables is increasing. For the equations
that have less variables than the current threshold, all the occurrences are moved
to one side of the equation. Next the left side of the equation can be normalized,
and in case if the equation is a linear equation it can be solved.

In the following we will distinguish the assumptions and goal part of the
HOL Light goal-state, as described in Section

The tactic optionally is able to remove the variables that have been solved.
Since the equations are processed together with the goal, the variables that
have been solved have also been replaced in the goal. This means that removing
equations involving those variables does not weaken the goal.

Repeating the tactic performs a simplification of the original system of equa-
tions. For a system of linear equations the procedure is equivalent to Gaussian
elimination optimized to perform fewer operations. It also accepts higher order
equations and inequalities, performing normalization of higher degree equations.

4.1 Evaluation

We tested the tactic on four proofs. The equilateral triangle construction gives
rise to two obligations: the proof that the triangle is indeed equilateral and
the proof that it is a maximal triangle inscribed in the original square of the
origami. We also looked Eos regular heptagon construction and the Morley’s
triangle construction proofs.

We believe these are the most relevant and interesting proofs from origami
theorem proving that can be analyzed with algebra only. There are two other
important origami proofs performed with Eos that we cannot deal with our
automatic approach, namely the proof about the sides and layers of the crane
origami construction and the proofs about angle trisection constructions. The
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1. Start with threshold t equal 1.
2. If t is greater than maximum threshold exit.
3. Find assumptions with number of free variables less than t. Move

those assumptions to the assumptions part of the goal-state using
DISCH_TAC and keep the other assumptions in the goal part using
UNDISCH_TAC.

4. If there are no assumptions, increase t by 1 and go to step 2.
5. If there are no variables in the assumptions, simplify all the as-

sumptions with COMPLEX_POLY_CONV, increase t and go to step 2.
6. For each equation select a variable to normalize

(a) Choose a variable that has only one linear factor equal 1
(b) If not possible choose a variable with only linear factors
(c) If not possible choose a variable with the lowest degree

7. In every equation bring all occurrences of the variable to nor-
malize to one side and the other factors on the other and call
COMPLEX_POLY_CONV to simplify both sides.

8. If there are equations where only a linear factor remains, divide
both sides by the linear factor and simplify the goal and the other
equations with it. Set t equal 1 and go to step 3.

9. Increase t by 1 and go to step 2.

Fig. 5. The simplification algorithm performed by the tactic

reason for this is that the first kind includes three dimensional properties that
cannot be easily encoded with the same kind of algebraic formulas and the second
requires trigonometry.

In all the proofs that we have tried, the tactic did reduce the number of
equations and inequalities and the number of quantified variables. In case of
the equilateral proof it was able to reduce the 35 equations to 5 equations.
For the maximal proof it reduced 37 (in)equations to 9 (in)equations. For the
regular heptagon proof it reduced 63 equations to 12 equations. In case of the
Morley’s triangle construction the tactic would only eliminate 8 simple linear
equations but would not be able to progress further because of a bit amount of
inequalities. This construction has 27 cases and only for 9 of them the triangle
is indeed a Morley’s triangle. This means that there are 6 inequalities that limit
the effectiveness of the tactic.

For all the above examples the tactic run-time is less than one second on
a modern computer. Only in the equilateral triangle proofs the Gröbner bases
decision procedure is able to finish the proof automatically. This takes 18 seconds.

In case of the regular heptagon construction, preprocessing reduces an orig-
inal system of 63 equations to 12 equations. At this stage the Gröbner decision
procedures present in the proof assistants are still too weak to finish the goal
and additional manual solving of higher-level equations is needed. Finishing the
proof manually is complicated, since processing higher order equations manually
is cumbersome. When processing the equations in a computer algebra system,
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irrational numbers and their linear factors are automatically moved from de-
nominators to numerators by multiplying the equations by appropriate factors.

4.2 Inequalities

During the construction of an origami, some of the fold operations have a num-
ber of solutions. When the user interactively requests such a fold in an Eos
construction, the system will in turn ask which of the two of three fold lines is
the intended one. This is then turned in a geometric constraint that a point is
included in a certain segment.

Similarly inequalities may come from assumptions about points being on the
origami (some approaches to computational origami assume that the original
paper is infinite; however after performing folds the area on which points can be
considered becomes bounded) or even from the property to be proved (for exam-
ple the case of a constructed triangle being the maximal one). Such constraints
are naturally easier provided as inequalities and therefore cannot be directly
used in conjunction with the Gröbner bases algorithm.

McLaughlin and Harrison [16] have implemented a proof producing CAD al-
gorithm that follows the Hörmander’s CAD algorithm. We tested the efficiency
of the algorithm for practical problems and unfortunately it is too slow to be
used; in fact we were not able to solve problems of size 3. However the procedure
comes useful when solving second order equations. Still to be useful in a man-
ual formalization, additional tactics for normalizing equations with irrational
fractions would be needed.

5 Related Work

As a part of the ForMath project, a proof producing CAD in Coq has been
implemented [4]. Its efficiency is however not enough to perform proofs as shown
in this paper. We also tried the nsatz tactic present in Coq [20]. It has the
advantage of using reflection to obtain very efficient proofs. Still many of the
origami goals require complex numbers and the tactic does not work with those;
also for the proofs that can be performed with real numbers (for example the
simplified system of 5 equations for the equilateral triangle proof) the tactic is
not able to solve the goal.

A Common-Lisp implementation of the Buchberger algorithm has been ver-
ified in ACL2 [17]. There are numerous bridges between proof assistants and
computer algebra systems (for example [1]). Such architectures have different
degree of trust; the proof of the computer algebra is either used as an oracle or
as a hint and recomputed. In this research we aim at a complete formalization
done in a proof assistant.

There are many programs for proving geometrical properties. Certain pro-
grams are able to export goals to proof assistants to be able to formally certify
the constructions. Examples of those are GeoProof [18] or GCL [10]. We have
not known of any origami proofs performed in this way.
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6 Outlook

There are many decision procedures for real and complex arithmetic present in
proof assistant libraries and extensions. They are certainly useful, but they still
require special goal shapes and are very slow in comparison with the algorithms
present in computer algebra.

We have shown how the goals that arise in origami proofs can be automati-
cally simplified and some of those can be immediately solved by proof assistant
decision procedures possibly with minor manual interaction. We compared the
efficiency of implementations of Gröbner bases algorithm in HOL Light, Isabelle
and Mathematica.

The developed equation system simplifying tactic is available as a part of
the CAS-conversion [12]. As such it is both available in the prototype certified
computer algebra system inside HOL Light, and as a part of the general CAS
simplification procedure.

lemma equilateral triangle:
fixes

A B C D E F G H J K :: point
and k l m n :: line

assumes
a1: ”A = (0, 0)”

and a2: ”B = (1, 0)”
and a3: ”C = (1, 1)”
and a4: ”D = (0, 1)”
and a5: ”k = fold2 A D”
and a6: ”E = intersect k A D”
and a7: ”F = intersect k B C”
and a8: ”l = fold2 A B”
and a9: ”H = intersect l D C”
and aa: ”G = intersect l E F”
and ab: ”m ∈ fold5 D l A”
and ac: ”J = intersect m C D”
and ad: ”n ∈ fold5 B k A”
and ae: ”K = intersect n B C”

shows
”dist A J = dist J K”

and ”dist J K = dist A K”

Fig. 6. With a formalization of the origami axiom system, a sequence of unique folds
and intersections can be described in a goalstate.
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6.1 Future Work

In this paper we assumed the correctness of the part of the Eos system that
gathers the geometric conditions and translates them to an algebraic formula.
Origami operations are usually expressed in terms of numbers of possible fold
lines that satisfy certain constraints. For a proof assistant development, for ev-
ery operation equivalent algebraic constraints could be proved. The original con-
straints of the operations are expressed using geometry, and it is also possible
to transform those into geometrical constraints.

The principles of folding could be formalized in a proof assistant together with
the basic properties of the fold lines that are implied by particular folds. Those
properties have been proved geometrically only on paper (for example in [9]).
Creating a development like this would be a basis for a formalized origami theory.
For operations that give rise to a single possible fold line, this is straightforward;
however certain origami fold operations are known to be equivalent to solving
higher order equations. In the Equilateral triangle construction we use two of
the Huzita’s fold principles: fold2 and fold5. The first of those superposes one
point onto a different point creating only one fold line. However the latter one
superposes one point onto a line and making the crease pass through another
point (tangent from a point to a parabola) giving two possible fold lines in the
general case. When the user performs such a fold interactively, Eos presents the
user with a choice visually. In a proof assistant, one needs a formal statement
that will be known to limit the equation to a single solution.

In case of the equilateral triangle construction we can limit the result of a
fold operation by adding intersection constraints. With such a mechanism we
can imagine the formal statement in a proof assistant to look like on Figure
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