UITP 2006

Web Interfaces for Proof Assistants

Cezary Kaliszyk!

Radboud University Nigmegen, The Netherlands

Abstract

This article describes an architecture for creating responsive web interfaces for proof
assistants. The architecture combines current web development technologies with
the functionality of local prover interfaces, to create an interface that is available
completely within a web browser, but resembles and behaves like a local one. Se-
curity, availability and efficiency issues of the proposed solution are described. A
prototype implementation of a web interface for the Coq proof assistant [8] created
according to our architecture is presented. Access to the prototype is available on
http://hair-dryer.cs.ru.nl:1024/.

Key words: Proof Assistant, Interface, Web, Coq, Asynchronous
DOM modification

1 Introduction

1.1 Motiwation

Nowadays people are more and more accustomed to having a connection to the
Internet all the time. Thus the network becomes a part of the computer one
uses. As a consequence a tendency has emerged to provide services available
just by accessing certain web pages. In this way people do not themselves need
to install software for such services on their computers any more. Examples
include web interfaces to e-mail, calendars, chat clients, word processors and
maps.

Commercial services are often available through web-interfaces. On the
other hand, in the scientific domain, examples are not so abundant. In partic-
ular there are no real implementations of web interfaces for proof assistants.

To use a proof assistant, one needs to install some software. Often the
installation process is complicated. For example to install Isabelle [17], which
is one of the most popular proof assistants, on a Linux system, one needs
a particular version of PolyML, a HOL heap and Isabelle itself. To use an

1 Email: cek@cs.ru.nl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

CEZARY KALISZYK

interface to access the prover, one needs ProofGeneral [4] and one of the
supported Emacs versions. With Debian we had to downgrade the Linux
kernel to support PolyML. The process described above is already complicated,
not to mention other operating systems and architectures, additional desirable
patches and libraries, or less commonly used provers.

This is a problem. It happens that computer scientists prefer to stick
with installed old versions of provers, not to go through the same process
to upgrade. Mathematicians may even stay away from computer assisted
proving, just because of the complexity of installation.

We want a fast interface, that is available with just a web browser. We
want to access various proof assistants and their versions, in a uniform manner,
without installing anything, not even plugins. The interface should look and
behave like local interfaces to proof assistants.

We want the possibility to create web pages, that show tutorials and proofs,
but that are bound to the prover itself, where the user can interact with the
real system. The provider of the server may install patched versions of provers,
allowing an easy way for the users to try out their features. We want libraries
for proof assistants to be available centrally, so that users who want to see
them do not need to download or install anything. The interface should allow
developing proofs and libraries centrally, in a wiki-like [11] way.

1.2 Our Approach

The solution is a client-server architecture with a minimal lightweight client in-
terpreted by the browser, a specialized HT'TP server and background HTTP
based communication between them. The key element of our architecture
is the asynchronous DOM modification technique (sometimes referred to as
AJAX - Asynchronous JavaScript and XML or Web application). The client
part is on the server, and when the user accesses the interface page, it is down-
loaded by the browser, which is able to interpret it without any installation.

The user of the interface, accessing it with the browser, does not need to
do anything when a modification is done on the server. Every time the user
accesses a prover, the version of the prover that is currently installed on the
server is used. The user can access any of the provers installed on the server,
even a prover which does not work on the platform from which the connection
is made.

Saving the files on the central server allows accessing them from any lo-
cation, by just accessing the interface’s page with a web browser. A central
repository simplifies cooperation in proof development, by replacing version-
ing systems like CVS, which keeps a remote and a local copy, by a wiki-like
mechanism, where the only copy is the remote one.

Our approach is presented as an architecture to create web interfaces to
proof assistants, but it is not limited to them. The problems solved are rele-
vant to creating web interfaces programs that have a state, include an undo

2

CEZARY KALISZYK

mechanism, and their interfaces can be buffer oriented. Our architecture may
be applied for example to buffer oriented programming languages, like Epi-
gram [15].

1.3 Related work

There have been some experiments with providing remote access to a prover.
None of them allowed efficient access without installing additional software.

LogiCoq [18] is a web interface to Coq [8]. It offers a window where one
can insert the contents of whole Coq buffer and submit them for verification.
It sends the whole buffer with standard HTTP request and refreshes the whole
page. Therefore one can work efficiently only with tiny proofs.

The web interface to the Omega system [7], requires the Mozart interpreter
to be installed on the user’s machine. The use of the web browser is minimal,
the whole interface is written in Mozart. Installation of Mozart is possible
only for certain platforms which also makes the solution limited.

There are Java applets having built-in proof assistant functionality. Ex-
amples may include G4IP [19] or Logic Gateway [12]. The installation of
a browser plug-in to support Java is not simple in a Unix environment and
limiting provers to Java applets is undesired.

Web interfaces related to proof assistants and displaying mathematics on
the web are worth mentioning. In particular:

e Helm [3] - (Hypertextual Electronic Library of Mathematics) A web inter-
face that allows visualisation of libraries available for proof assistants.

o Whelp [2] - A content based search engine for finding theorems in proof
assistants libraries, that supports queries requiring matching and/or typing.

o ActiveMath [16] - A web-based framework for learning mathematics that
uses Java applets to communicate with a central server using OMDoc [13].

There are some commercial web interfaces and frameworks that use asyn-
chronous DOM modification in non scientific domains.

The novelty of our architecture in comparison with existing web interfaces
for theorem provers is that it allows the creation of an interface to a prover,
that can look and behave very much like the ones offered by state-of-the-art
local interfaces, but is available just by accessing a page with a web browser
without installing any additional software, not even plugins. Because of the
architecture, the network used to transfer information does not slow down the
interaction. The idea to use asynchronous DOM modification to create an
interface to a proof assistants has never been applied before.

1.4 Contents

In the rest of the paper we present the techniques for creation of web interfaces,
that we will use (Section 2) and the internals of a local prover interfaces

3

CEZARY KALISZYK

which we try to imitate (Section 3), followed by the presentation of the new
architecture (Section 4) and a description of its security and efficiency (Section
5). We present our implementation prototype (Section 6). Finally we conclude
and present a vision of future work (Section 7).

2 The Concept of Asynchronous DOM Modification

As the web is becoming more commonly used, web page designers and browser
implementers add new functionality to web pages. Text files have been re-
placed by hyper-linked files, later including images, language-specific and
mathematical characters, styles and dynamic elements. The W3C Consor-
tium, which is the organization responsible for the standardization of the Web,
defines these elements as standards, and in consequence they are implemented
in a similar ways in all browsers.

Since the late nineties browsers have started supporting the following tech-
nologies relevant to our research: JavaScript, DOM [14] and XmlHttp [20].
Combined use of these three technologies has became popular in recent years,
since they allow one to create responsive web interfaces. In this document
we refer to the combined usage of these three technologies as “Asynchronous
DOM Modification.” One can find other names describing this technique, like
AJAX or Web Application.

JavaScript is a scripting programming language, created by Netscape in
1995, for adding certain dynamic functionality to pages written in HTML. It
has been quickly adopted by most browsers and nowadays it is supported even
by some text mode browsers like w3m and Links, and mobile phone browsers.
It is very often used on Internet websites.

DOM (Document Object Model) [14] is an API (Application programming
interface) for managing HTML and XML documents that allows modifications
of their structure and content. Recent browsers support W3C DOM accessi-
bility by JavaScript. It is often used on web pages to add dynamic elements,
for example drop-down menus or images that change when the mouse moves
over them.

XmlHttp [20] is an API accessible by web browser scripting languages to
transfer data to and from a web server. It internally uses HTTP requests.
XmlHttp requests are sent to the server without the knowledge of the user of
the web browser. For every XmlHttp request a callback has to be provided,
to be executed when the response from the server is received. The sending
of the request can be optionally asynchronous. XmlHttp has been available
in most browsers for some time, and has been recently described in a W3C
specification draft.

Asynchronous DOM modification is a web development technique that
uses the three technologies described above to create responsive web inter-
faces. Such interfaces are web pages, where particular events (key presses
and mouse movement) are captured by JavaScript events. The minimal client

4

CEZARY KALISZYK

part encoded in JavaScript processes the local events, like menu opening or
typing in a buffer. Events that require additional information from the server
are sent in asynchronous XmlHttp requests. Since the request is done in the
background, it does not interrupt the user from working locally. When the
response arrives, it is used to modify the DOM of the page.

In comparison with classical web pages, the usage of asynchronous DOM
modification makes it possible to send minimal information to the server, to
receive only the information required, and to refresh small parts of the web
page. Network overhead and page refreshing are minimized, thus creating
interfaces which work many times faster then classical web-based ones. This
way, the interface can closely resemble local interfaces, if network latency is
reasonable. In case of high network latency, asynchronous requests allow the
user to work locally, while additional data is requested.

Examples of usage of the asynchronous DOM modification are: webmails
and calendars which operate within a single page, maps which download re-
quired parts as they are dragged, and web chat clients. Such web interfaces
are supported by all standard web browsers, in particular all Gecko based
browsers, Microsoft Internet Explorer versions from 5, Opera from version
8, Konqueror from version 3.2, Safari from version 1.2 and even Nokia S60
browser from version 3. It is not supported by text mode browsers and
browsers for visually impaired people.

3 Generic Interface for Proof Assistants

In this section we describe the internals of local interfaces for proof assistants.
We chose for this ProofGeneral [4] for two reasons. First, it is a prover-
independent interface to proof assistants. Second, it is popular, since it is
universal and since it is built on the highly configurable Emacs text editor.

ProofGeneral’s interface provides the user with two buffers: an editable
buffer containing the proof script and the prover state buffer. ProofGeneral
relies on the proof assistant to process the commands incrementally. It does
not distinguish tactic-mode proofs from declarative-mode proofs. State chang-
ing and non-state-changing Coq commands are distinguished to make only the
relevant ones part of the proof script and to allow queries.

The interface colors keywords according to the above distinctions, and
additionally marks parts of the buffer with a background color, to indicate
the status of verification. Possible states include: Expression that has been
accepted by the prover, expression that is now being verified, and editable
non-verified expression.

ProofGeneral provides a proof replying mechanism. The prover itself has
to provide an undo mechanism. Users may choose a point in the buffer to go
to, and ProofGeneral issues a number of proof steps and undo steps to the
prover in order to reach that point.

ProofGeneral is responsible for providing the proof script from files on

bt

CEZARY KALISZYK

the disc to the prover and saving the buffers state. Other disc operations that
exist in some provers, like proof compilation, program extraction or automated
creation of documentation are not handled by ProofGeneral.

The current version of ProofGeneral is implemented mostly in Emacs Lisp,
and is strongly tied with the editor itself. It is easy to adapt ProofGeneral to
new proof assistants, by setting a number of variables. If this is not sufficient
ELisp code can be used.

Other interfaces to provers offer mostly similar functionality. In some
interfaces, like PCoq [1] or IsaWin, additional visualisation mechanisms are
available, for example term annotations. Some of these mechanisms are not
available in ProofGeneral; this limitation comes from the Emacs editor.

4 General Architecture

The two core elements of our architecture are: a specialized Web server and
a communication mechanism (Fig. 1).

User of the interface

A

y
Web Presented page
Browser y
v
handling of DOM
keypresses
and clicks Callback
JavaScript XmiHttp
\ /
\ /
User's User's Web
Session Session Server
A A
\4 Y
User's User's
Prover Prover

Fig. 1. General architecture.

The Web server serves normal files and it is able to respond to special
HTTP requests (see 4.2). The main interface is available as a normal HTML
file on the server. When a user accesses the page with a browser, the page
requires certain JavaScript files, which are then downloaded and interpreted
by the browser. This serves as the client part.

6

CEZARY KALISZYK

The communication between the client part and the server is done with
the mechanism described in Section 2. HTTP requests are created in the
background. The results are used to update the page in place. Only a small
amount of information is transferred between the client and the server. The
transfer is done asynchronously, making the interface responsive.

4.1 The Client Part

The client part offers a web page that initially presents the user with an
editable buffer and an empty response buffer. (Also a menu or a toolbar is
necessary for interaction, but they are normal elements of web pages). Buffers
are implemented as HTML IFrames?. All keys that modify the IFrame are
assigned to a special function. Locking of parts of the buffer is implemented
by disallowing changes to locked parts of the buffer in this function.

When the user wants to verify a part of the buffer, this part is locked and
sent to the server. Since the request is a background one, even if it takes
a moment the user may continue working. When the response arrives, the
contents of the two buffers are modified. The response may be a success, and
then the part of the editable buffer is marked ‘verified” and the response buffer
shows the new prover state. If the command failed, the part of editable buffer
is unlocked and the error shown. Parts of the editable buffer are marked, as
their state changes, by using background colors, as it is done in ProofGeneral.

The interface includes a proof replaying mechanism, created in a similar
way that it is done in local interfaces. When the user wants to go to a partic-
ular place in the buffer, this information is passed to the server. The server
sends the commands to the client’s prover session and informs the interface
about the results. In a similar way the interface includes a break mechanism
that allows stopping the prover’s computation.

The interface includes functionality for file interaction. Files can be loaded
and saved on the server. For interoperability downloading files and upload-
ing files from the local computer may be provided. For proof development
efficiency, insertion of templates and queries may be provided.

4.2 The Server Part

The server includes standard HTTP file serving functionality. With it the
user’s browser downloads the client part. The server can also handle special
messages available for users, that have logged in. Session mechanism is used to
support multiple clients. A session is created when a user logs in to the system
and is sustained with a cookie mechanism. Every user’s session is associated
with a particular prover session. The server runs provers as subprocesses and
communicates with them through standard input and output. Prover sessions

2 An IFrame is an HTML tag that includes a floating frame within a page, that can be
optionally editable.

CEZARY KALISZYK

are terminated after a long period of inactivity (if the user did not close the
page, the client part can replay the proof script from the beginning).

The special messages, mentioned above, include: passing a given complete
expression to verify to the prover, issuing an undo command in the prover,
saving a file, loading a file, and break (stopping the prover computation). The
commands from the client for the prover are passed first to the server, which
transmits them to the prover. Prover replies are analysed by the server and
only state changes are sent to the client. The state changes consist of two
parts: changing of the markings of the edit buffer and the new contents of the
prover state buffer.

Replies from the server are passed back to the client in an asynchronous
way. This means, that the server does not answer HT'TP requests from the
client immediately, but when an answer from the prover is received or a time-
out is reached. The server keeps a pool of provers that have been asked to
process data, and waits for an answer from any of them. The waiting process
does not block the server, that is, other clients’ requests can be processed in
the meantime.

5 Security and Efficiency

5.1 User side

All code that the user runs is interpreted within the web browser. Thus a
malicious or virus infected prover can influence the client only by exploiting
system or browser errors.

The efficiency of code execution on the user’s side is dependent on the
efficiency of the browser’s internal web page and scripts interpretation, and
the speed of HTML rendering.

Our experiments show that client-side DOM changes with Internet Ex-
plorer are approximately twice as fast as with Mozilla Firefox (still usually
invisible for the user). It is hard to say whether this is due to less security
checks or the worse quality of the rendered page (no anti-aliasing) in Internet
Explorer.

5.2 Server side

In any centralized environment security, availability and efficiency of the server
are important. Standard security measures include a backup server prepared
to take over network traffic in case of a primary server failure and regular
backing up of user files. In this subsection we will describe only the issues and
solutions particular to a server that runs a web interface to a prover.

Three kinds of issues arise: security, availability and equal sharing of re-
sources. First, exploiting bugs in our architecture could lead crackers to take
control of the server. Second, in a centralized environment the only copy of
files is on the server. Unavailability of the server makes users not only unable

8

CEZARY KALISZYK

to work, but also unable to access their files. Last, when users access the same
server its resources are shared. If a particular prover uses all the memory or
CPU, other users are unable to work.

To provide security, the server is run in a chrooted?® environment, as a
non-privileged user. The permissions include only reading server files and
executing the provers. Every prover type is run as a different user (using the
file setuid mechanism), that has read rights only to the prover’s library, and
write rights only to a directory where the prover’s proof scripts are stored. To
disallow storing overly large amounts of data, filesystem quota may be used.

For provers that allow system interaction, this functionality can be some-
times disabled. In particular, for ML based provers, dropping to the toplevel
can be disabled. If the server administrator doesn’t trust the prover’s im-
plementation, a secure version of the kernel can be used to disable irrelevant
system calls. In this case even a language that is implemented inside ML can
be available without changes to the prover itself.

To ensure equal sharing of resources, prover processes can be run with
Cpu quota and memory quota mechanisms. The scheduling policy can be
changed (for example with the nice system call) to provide the server process
with priority over prover processes. Different provers have different CPU and
memory requirements, which should be taken into account while setting the
limits.

When many users want to access the interface, the resources of a single
server may be insufficient. It is simple to run the server on a set of machines,
by calling provers as subprocesses through ssh on separate computers. A load
balancing mechanism can be implemented.

The communication between the server part and the client part can be
secured by providing the interface through HTTPS.

6 Implementation of a Prototype

We have implemented a minimal prototype of a web interface that follows the
proposed architecture. The interface allows using the Coq proof assistant [8]
with just a web browser, but it looks and behaves (Fig. 2) like the ones offered
by Coqlde and ProofGeneral.

Our server is a 400 line OCaml program, that serves two HTML files and
a number of JavaScript files. It additionally supports special POST requests
for verifying and for undoing commands as well as for loading and saving of
files. It uses the OCamlHttpd library, for web-server functionality.

Our client consists of 10kB of JavaScript and 2kB of HTML. Most of the
client-side code is responsible for the locking of the buffer and recognition of
Coq expressions.

3 chroot is a system call preventing a process to access any files outside of a special root

directory.

CEZARY KALISZYK

v Cog webinterface prototype - Firefox g
Eile Edit View Go Bookmarks Tools Help
<::| @ = @ @ | http://hair-dryer.cs.ru.nl: 1024/ j @ Go |@,coq—club archive

<3 IZ> File Templates MNavigation Help/Readme Coq documentation|
Delnition trans :— forall Xy Z :

Terms,

RxyANRyz->Rxz

=11 subgoal

HA : forallx y: Terms, Rxy = Ryx
HB :forallxyz: Terms, RxyARyz
->Rxz

HC : Terms

IIj:frlng?-a W7 2 : sym -> trans -> }I{-I::TI?IEHCS N

Definition refl if := forall x : Terms,
(exists y : Terms, Rxy) -> Rx x.

RHCxNARx HC

unfold sym.
unfold trans.
unfold refl_if.
intros HA HB HC HD. 4 0
inversion_clear HD.
apply HB with x.
split.
assumption.
rewrite HA. -
assumption.

< |]

| Done Adblock

[«]

Fig. 2. Screenshot of the prototype, that shows working with a Coq proof. The
verified part of the edit buffer is colored and locked. The state buffer shows the
state of the proof, there are no Coq warnings.

To secure our prototype the server is run as nobody in a minimal chrooted
environment. The prover sub-processes are reniced not to interfere with the
main server process. Dropping from Coq to OCaml toplevel is disabled. The
access to the interface is password protected, to avoid creating prover sessions
for web-spiders. Web spiders are able only to see the saved proof scripts.

Our prototype includes a 1kB file, that is supposed to create a uniform layer
that works with different browsers. We have not yet made it as general, as
the asynchronous DOM modification is. In particular our prototype works
well with Gecko-based browsers (Mozilla, Firefox, Galeon, ...). It works
with Internet Explorer 6 and Opera 9, with some key-bindings missing (these
browsers have them assigned to internal functions). It does not yet work with
KHTML based browsers (Konqueror, Safari) and older versions of the above.
We have tested our implementation’s efficiency, by trying to use the server
from other locations. Although measuring responsiveness to user’s actions
is hard to be done objectively, our experiments show, that with reasonable
network latency, its responsiveness is very good.

The prototype is a Coq web interface, but there is not much code specific
to Coq. The client part includes recognition of Coq comments and whole
expressions to send. The server part includes recognition of successes and
failures as well as the undo mechanism. For all ELisp code from ProofGen-

10

CEZARY KALISZYK

eral equivalent JavaScript regular expression handling can be provided. Thus
adapting these three things to other provers should be simple, which is why
we believe that implementing an interface according to our architecture that
would support different provers can be easily done.

The client part has to overcome the minor differences between browsers.
In particular it includes functions that create a uniform layer for XmlHttpRe-
quest creation, event binding, and DOM that work the same way on all cur-
rently supported browsers.

6.1 Possible Uses

Our interface can be used to create interactive tutorials presenting proof assis-
tants. We have created a special proof script, that includes a slightly modified
version of the official Coq tutorial. The descriptive parts have been put inside
comments (including the HTML formatting), and commands to the proof as-
sistant have been left outside comments. A user that enters such a page may
just read the tutorial and execute the commands in Coq environment, but
may also do own experiments with it.

Non-trivial proof scripts that use tactics are unreadable without interme-
diate proof states. Thus proofs presented on the web are usually accompanied
with some of the proof states usually automatically generated by Coqdoc or
TeXmacs [6]. A web interface can be used (even in a read-only mode) to
present such proofs interactively. In this way, the user reading the proof
chooses which proof states to see.

External proof assistant libraries can be included on the server. With our
server we included C-CoRN (Constructive Coq Repository at Nijmegen) [10].
Such libraries can be developed on the server. In such an approach visitors can
always see and test the current version, without downloading and compiling
the library.

Modified and experimental versions of provers usually require patching
a particular version of the source of the proof assistant. Presenting such a
modified version to others is easily possible with the given infrastructure. The
server offered includes the Declarative Proof Language extension for Coq [9].

7 Conclusion

We presented an architecture to create simple, lightweight and fast web in-
terfaces to proof assistants. Such interfaces are a novelty in the domain. Our
solution works with modern web browsers without installing any additional
software. The installation and updating process is done only on the server,
the users do not need to do anything. It is therefore completely platform
independent.

The communication mechanism makes the usage of the network minimal,
therefore making the interface comparably responsive to local ones. In com-

11

CEZARY KALISZYK

parison with other client-server solutions, the only limitation is the depen-
dency on the web browser. Fortunately web browsers include full scripting
languages, allowing implementation of nearly all possible functionality of the
interface on the client side. In particular the browser’s internal editors are
weak in comparison with local editors. One can implement in JavaScript the
handling of more key bindings to make the editor similar to a local one. Most
features of state-of-the-art local interfaces for proof assistants can be imitated
this way. The efficiency of an editor implemented in JavaScript would depend
on the browser interpreting it. We have not been able to find any such editor.

We believe that a centralized environment, with provers accessible through
a web interface, is not limited in comparison with local interfaces, and that
the architecture we have proposed is in the spirit of the current trends of
development in computer science.

7.1 Future Work

Our primary focus is to extend the proposed architecture to a complete wiki-
like architecture. This requires a versioning mechanism and merging of users’
changes on the server. Additionally proof displaying and searching mecha-
nisms are mandatory. Editing conflicts can be resolved in similar way as it is
done in wiki software. For example if the file was changed and a user wants
to save over it, differences are presented.

We would like to see how well our solution fits with the general prover
interaction protocol PGIP [5]. The protocol is XML-based, so parts of it
may even be passed by the server directly to browsers, since they are already
able to parse XML. On the other hand the protocol may include too much
information, since it was designed as a local one.

Finally we would like to create an implementation that includes all the
features of our proposed architecture. Ideas include: providing other provers,
making it compatible with all browsers that support asynchronous DOM mod-
ifications, implementing the break mechanism, compiling Coq files automati-
cally, adding syntax highlighting, and providing better security.

References

[1] Amerkad, A., Y. Bertot, L. Pottier and L. Rideau, Mathematics and proof
presentation in PCoq, Rapport de Recherche 4313, Inria, Sophia Antipolis
(2001).

[2] Asperti, A., F. Guidi, C. S. Coen, E. Tassi and S. Zacchiroli, A content based
mathematical search engine: Whelp., in: J.-C. Filliatre, C. Paulin-Mohring and
B. Werner, editors, TYPES, Lecture Notes in Computer Science 3839 (2004),
pp- 17-32, URL: http://www.bononia.it/~zack/stuff/whelp.pdf.

[3] Asperti, A., L. Padovani, C. S. Coen and I. Schena, Helm and the semantic
math-web., in: R. J. Boulton and P. B. Jackson, editors, TPHOLs, Lecture

12

http://www.bononia.it/~zack/stuff/whelp.pdf

CEZARY KALISZYK

Notes in Computer Science 2152 (2001), pp. 59-74,
URL: http://helm.cs.unibo.it/smweb.ps.gz.

[4] Aspinall, D., Proof General: A generic tool for proof development., in: S. Graf
and M. I. Schwartzbach, editors, TACAS, Lecture Notes in Computer Science
1785 (2000), pp. 38-42.

[5] Aspinall, D., C. Liith and D. Winterstein, A framework for interactive proof, in:
D. Aspinall, editor, Proceedings of the ETAPS-05 Workshop on User Interfaces
for Theorem Provers (UITP-05), Edinburgh, 2005, p. 15,

URL: http://proofgeneral.inf.ed.ac.uk/Kit/docs/pgipimp.pdf.

[6] Audebaud, P. and L. Rideau, Texmacs as authoring tool for formal
developments., Electr. Notes Theor. Comput. Sci. 103 (2004), pp. 27-48.

[7] Benzmiiller, C., L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. H. Siekmann
and V. Sorge, Omega: Towards a mathematical assistant., in: W. McCune,
editor, CADE, Lecture Notes in Computer Science 1249 (1997), pp. 252-255.

[8] Coq Development Team, “The Coq Proof Assistant Reference Manual
Version 8.0,” INRIA-Rocquencourt (2005),
URL: http://coq.inria.fr/doc-eng.html.

[9] Corbineau, P., Declarative proof language for Cogq (2006),
URL: http://www.cs.ru.nl/~corbineau/mmode.en.html.

[10] Cruz-Filipe, L., H. Geuvers and F. Wiedijk, C-CoRN, the constructive Coq
repository at Nigmegen., in: A. Asperti, G. Bancerek and A. Trybulec, editors,
MKM, Lecture Notes in Computer Science 3119 (2004), pp. 88-103.

[11] Davies, J., “Wiki Brainstorming and Problems with Wiki Based Collaboration,”
Master’s thesis, University of York (2004).

[12] Gottschall, C., Logic gateway (2005),
URL: http://logik.phl.univie.ac.at/~chris/gateway/.

[13] Kohlhase, M., Omdoc: Towards an internet standard for the administration,
distribution, and teaching of mathematical knowledge., in: J. A. Campbell and
E. Roanes-Lozano, editors, AISC, Lecture Notes in Computer Science 1930
(2000), pp. 32-52.

[14] Le Hors, A., P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion and
S. Byrne, Document Object Model (DOM) Level 3 Core Specification, Version
1, W3C Recommendation (2004).

[15] McBride, C., Epigram: Practical programming with dependent types., in: V. Vene
and T. Uustalu, editors, Advanced Functional Programming, Lecture Notes in
Computer Science 3622 (2004), pp. 130-170.

[16] Melis, E., J. Biidenbender, G. Goguadze, P. Libbrecht and C. Ullrich, Knowledge
representation and management in activemath., Ann. Math. Artif. Intell. 38
(2003), pp. 47-64.

13

http://helm.cs.unibo.it/smweb.ps.gz
http://proofgeneral.inf.ed.ac.uk/Kit/docs/pgipimp.pdf
http://coq.inria.fr/doc-eng.html
http://www.cs.ru.nl/~corbineau/mmode.en.html
http://logik.phl.univie.ac.at/~chris/gateway/

CEZARY KALISZYK

[17] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL - A Proof Assistant
for Higher-Order Logic,” Lecture Notes in Computer Science 2283, Springer,
2002.

[18] Pottier, L., LogiCoq (1999),
URL: http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq.

[19] Urban, C., Implementation of proof search in the imperative programming
language pizza., in: H. C. M. de Swart, editor, TABLEAUX, Lecture Notes
in Computer Science 1397 (1998), pp. 313-319.

[20] Web APIs Working Group, The XMLHttpRequest Object, Technical report,
W3C (2006), URL: http://www.w3.org/TR/XMLHttpRequest/.

14

http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq
http://www.w3.org/TR/XMLHttpRequest/

	Introduction
	Motivation
	Our Approach
	Related work
	Contents

	The Concept of Asynchronous DOM Modification
	Generic Interface for Proof Assistants
	General Architecture
	The Client Part
	The Server Part

	Security and Efficiency
	User side
	Server side

	Implementation of a Prototype
	Possible Uses

	Conclusion
	Future Work

	References

