
SIE – Intelligent Web Proxy Framework

Grzegorz Andruszkiewicz, Krzysztof Ciebiera, Marcin Gozdalik, Cezary Kaliszyk,
and Mateusz Srebrny

Institute of Informatics
Warsaw University

Banacha 2, 02-097 Warsaw, Poland

Abstract. In this paper we would like to present and describeSIE, a transpar-
ent, intelligent Web proxy framework. Its aim is to provide efficient and robust
platform for implementing various ideas in broad area of Web Mining. It enables
the programmer to easily and quickly write modules that improve pages on that
site according to personal characteristics of the particular user.SIEprovides many
features including user identification, logging of users’ sessions, handling all nec-
essary protocols, etc.SIE is implemented in OCaml – a functional programming
language – and has been released on GPL.

1 Introduction

We live in the era of information. The rapid development of computer and communi-
cation technologies enabled people to quickly exchange data at a low cost. Probably
the most popular source of information is the Internet, and the most commonly used
service is WWW. HTML pages are a universal way of publicizing knowledge, but it is
very difficult to find the exact piece of information we are looking for.

In our paper we would like to focus on one given Web site, containing various pages.
The webmaster always tries to optimize the structure of the service in order to help users
navigate. But different users have different preferences. When reading a page one user
may next want to see page X, another one page Y, etc. When typing a keyword into the
search engine, e.g. “chaos”, one user wants to read about mythology, another one about
fractals, and so on. Sometimes a user does not know which page exactly she is looking
for, because she had not visited it yet. One static structure will not fully satisfy all users’
needs.

That is whydynamic page personalizationis so important. It is often possible to
predict the interests of the user, analyzing for example the history of her choices. In this
case it would probably be helpful for the user if she was provided, on the page she is
currently using, with the most important links. It may be even more useful if she had
some links to pages similar to the current page to minimize time spent on searching. Of
course the better the algorithms topredict interestsand tofind similar pagesthe better
the page personalization process.

The main problem with algorithms which try to understand human behavior and
predict users’ actions is that it is extremely difficult to develop them only theoretically.
Humans are often irrational and their language is ambiguous. On many pages consider-
able amount of information is not only in written words but in pictures, animations or



even sounds and these are still nearly impossible to analyze automatically. That is why
most algorithms are heuristics based on empirical experiments and developed through
testing. To advance the level of research in this field, scientists need to have possibility
to test their algorithms and to tune their parameters quickly and cheaply.

Having made this observation we have decided to create a simple, yet powerful
framework for constructing intelligent Web proxies. We called itSIE– Site Improving
Engineand we wanted it not to be limited to personalizing alone – hence “Improving”
and not “Personalizing”.SIE relieves module writers from re-implementing user iden-
tification, network protocols handling, collection of statistics, etc.SIE gives users the
opportunity to focus on the concept alone and enables them to quickly and comfortably
write a new testing module.

In addition we include a few interesting modules showing the variety ofSIE fea-
tures.

It is worth mentioning thatSIE and the modules are written exclusively inOCaml
functional language. It gives the programmer many interesting possibilities characteris-
tic for functional languages and provides very good performance.SIEhas been released
on GPL. Sources can be found athttp://sie.mimuw.edu.pl .

2 Solution

We would like to present a framework supporting programmers in creating, changing,
testing and fine-tuning intelligent Web proxies – including Adaptive Web systems. Our
system –SIE– implements basic features, essential for intelligent Web proxy to func-
tion properly. In this section we will mention all these features and in the next one
we will present related work. Further we will discuss the architecture of the system.
Then we will present already implemented modules, their functionality, some theoret-
ical analysis and the way they are integrated with theSIE framework. In the last two
sections we will discuss possibilities of further development and summarize the paper.

SIE is implemented as a proxy server, transparent to the end user. It intercepts all
HTTP messages that are sent to the server (requests) and its responses to the user. Our
system interprets these messages and identifies the user. The identification process con-
sists of two stages: when the user first sends HTTP request, the system finds out if she al-
ready has special cookie set, containing a unique ID value. If she does,SIEcan identify
and associate current session with the stored history. If she does not the system provides
her with a new ID number. In the second stage, when the user fetches WWW pages,SIE
does not employ the cookie mechanism. Instead it rewrites all the links pointing to the
server, which are on the pages sent to the user, in such a way that they uniquely identify
the user and the link followed. Uniqueness is achieved by generating 256-bit numbers
and storing generated values in hash tables, which are then periodically purged of stale
entries. For example the link pointing tohttp://www.icwe2004.org could be
rewritten as:http://sie.mimuw.edu.pl?SIE_SESSION=AF387GZ2&SIE_
LINK=2YUZ19A0&SIE_ORIGINAL=www.icwe2004.org . The purpose of each
parameter is summarized in Table 1. With this method we can identify the user through-
out each session, even if her web browser does not support (or has disabled) the cookie
mechanism.

http://sie.mimuw.edu.pl


Parameter Purpose
SIE_SESSION Identifies the session (and thus the user).

SIE_LINK Identifies the exact link which has been fol-
lowed by the user – the page which contained
the link and the page the link was leading to.

SIE_ORIGINAL Original link – in case the link is followed after
appropriate hash-table is purged (e.g. if it was
stored in bookmarks)

Table 1.Parameters added bySIE

The core of the whole system is constituted by modules. A module usually consists
of two parts: offline and online. Online parts of every module is invoked whenever
a request or response is processed bySIE. Upon registration in the framework the online
part specifies:

– supported content types (e.g.text/html or image/png ) (in case oftext/html
the module may also request a parsed HTML tree instead of pure text)

– callbacks provided (request modifier, response modifier)
– priority (used to determine the order in which modules are called)

When the HTTP message contains a HTML document and there is at least one
module which requested to receive parsed HTML documents instead of pure textSIE
interprets HTML and constructs a parse tree, which is a very convenient form for further
analysis and modifications.

When modules are called back bySIE, they are provided with all the data they need
in an appropriate form:

– HTTP parameters
– parsed HTML contents (when appropriate)
– user identification
– current trail in the traversal tree of current user1

Fig. 1. Example traversal tree representing user session. Solid lines are regular clicks.
Dotted lines represent pushing “Back” button in the browser

1 Formally this would be defined as the shortest path from the root to the current node in the tree
(e.g. in Figure 2 when user visited “C” current trail would be given as list: A→ B→ C)



Modules can modify HTML tree using received information – e.g. choose an ap-
propriate model of user behavior basing on the user’s ID, find out which pages may
potentially be useful for the user and insert appropriate links into HTML tree. At the
endSIEdeparses HTML back to plain text and passes this new version of the document
to the original destination.

Other content may be modified as well – e.g. images may be scaled down to size
suitable for small, portable displays found in PDAs2 or mobile phones. Modules may
even generate responses themselves – allowing for custom pages generation.

Before processing the request all important properties of the HTTP request are
logged. Apart from the fields found in CLF3, there are two fields which together make
up the strength ofSIE. These are:

– user ID
– previous node in the traversal tree

Both of these fields are taken from the rewritten link (described above), which allows
any module written forSIE to easily obtain traversal tree similar to the one presented in
Figure 2 from logs. Constructing trees from logs is usually done by module’s periodi-
cally executed part4, which can prepare aggregated data for the online part. A traversal
tree is a natural representation of behavior of a user visiting a Web site. Many papers
dedicate whole chapters to techniques of extracting information about “user sessions”5

and “episodes”6 from a CLF-compliant log (e.g. Apache access log). Users ofSIEare
relieved from reimplementing those algorithms and can focus on their modules alone.

We are fully aware that sometimes CLF logs are the only source of information
available but we also feel that widespread use of systems likeSIE can quickly change
this situation. DeployingSIE in front of a Web site – without any additional modules
– can gather information useful for analyzing the site and testing new algorithms on
it. The next step would be implementing a module which would use data collected
previously.

SIEcan be easily scaled thanks to its cluster architecture. It is able to distribute the
servicing of different clients to separate computers in the cluster. It enables the admin-
istrator to increase performance with the growth of a Web site. In addition, thanks to the
Watchdogfunction, the system is safe and easy to maintain. It automatically disables the
parts which do not function correctly, or shuts itself down completely when the whole
cluster has broken down. In such cases the WWW service functions unhindered, but
without any additional features provided bySIEmodules.

SIEhas been tested on the server of the Programming Olympiad (http://sio.
mimuw.edu.pl ). We have collected some statistical data concerning the processing
of requests bySIE. On average the preparation of the request (HTTP parsing, creating
threads, etc.) took about 1% of the total processing time of the request. ESEE module
took 2%. Then the request has been sent to the web server and 88% of processing time

2 Portable Digital Assistants
3 Common Log Format,de factologging standard in WWW servers
4 We call these partsoffline analyzers
5 Defined in [17] as “a delimited set of user clicks across one or more Web servers”
6 Defined in [17] as “a subset of related user clicks that occur within a user session”



was spent on waiting for reply. Afterward BM used 5%, and the remaining 4% was used
by SIE to prepare the reply for BM, and to send it back to the user. These results prove
thatSIEhas a small time overhead over the web server and LAN connection.

During the tests (about 3 months) the system was stable and fully functional all the
time.

Unfortunately, due to organizational and financial constraints no tests of the “intel-
ligence” of the modules have been performed. Such tests should be done on a large Web
site, and should include some kind of opinion poll in order to estimate the effectiveness
of our ideas. We hope we will manage to realize large-scale tests shortly.

3 Similar systems

An impressive review of implementations of Web Usage Mining systems has been given
by Robert Cooley in his PhD thesis [9]. It includes a systematic classification of re-
viewed systems into five categories:

1. Personalization
2. System Improvement
3. Site Modification
4. Business Intelligence
5. Usage Characterization

SIEwith its current suite of modules (AdapterandSEE), would probably fit into “Per-
sonalization” and “Site Modification”. Adding other modules (as described in section
6) could spreadSIEalso to other categories.

In [7] authors present system called WebCANVAS which analyzes Web server’s
logs and displays visualization of navigation patterns on a Web site. It is accomplished
by automatic clustering of users and manual clustering of pages on the Web site into cat-
egories. For every cluster of users, navigational patterns between categories are shown.
These patterns represent habits of Web site’s users and can be used for improving high-
level structure of the site.

In [13] the author has presented IndexFinder – a tool which assists webmasters in
adding so-called “index pages” to the site. An index page consists of links to similar
pages. IndexFinder employsconceptual cluster miningto cluster pages not only visited
together, but also having similar content. Proposed index pages are presented to the
Webmaster which chooses if they should be added to the site.

Corin Anderson in his PhD thesis ([4]) described two systems: PROTEUSand MON-
TAGE. The former is used to adapt Web pages to the needs of electronic devices with
small displays, such as PDAs or modern mobile phones. MONTAGE, on the other hand,
does not modify content. Instead, it builds personalized web portals, consisting of con-
tent and links from sites the user had visited previously.

IBM has created its own framework for creating Web proxies called WBI – Web
Browser Intermediaries7. Currently WBI is part of the WebSphere Transcoding Pub-
lisher and the Development Kit is no longer available for download. [5] introduces

7 previously Web Browser Intelligence



concept of intermediaries as “computational elements that lie along the path of a web
transaction”. This paper also describes WBI as a framework for building and running
intermediaries. WBI supports five type of intermediaries: request editors, generators,
document editors, monitors and autonomous. WBI, being a framework for creating in-
telligent proxies is, in many aspects, similar toSIE . The main difference between them
is the placement of the system between user and the Web server. As described in [6]
WBI is placed between the user and the Internet (all servers), whereasSIE has been
thought as a proxy between the Web site and the Internet (meaning here users visiting
the site). Additionally,SIE includes several features (briefly mentioned in Section 2 and
described in more details in following sections) which would have to be implemented
as modules in WBI.

4 Architecture

Fig. 2.SIEarchitecture.

As mentioned before,SIE is divided into two parts with different functionality:

online - this part serves the client directly, analyzes the information flow between client
and server, updates the log file and invokes online parts of modules.

offline - this part is active only periodically – it performs some time-consuming analy-
ses for the online part.

SIEis just a framework to run special modules, which constitute the core of an intel-
ligent Web proxy. Usually every module consists of anonline part8, which is executed
for every request, and anoffline part– theanalyzer.

8 Sometimes we will use the termmodule– when we do, it will be clear from the context what
we are referring to.



4.1 The online part

To makeSIEas robust as possible, it is crucial to have the lowest possible overhead in
request processing and achieve maximum throughput. That is why it is very important
to make as many calculations as possible in the offline part, and to use the computed
results online.

Fig. 3.Processes in online part. Arrows indicate information flow (data, document, mes-
sage, etc.)

When a request is received bySIE it is processed byRequest Broker, which chooses
a Boxand forwards the request to it. There may be many concurrently running Boxes,
each of them on a different computer in the network. We have implemented a cluster ar-
chitecture, which means the workload is divided among several computers functioning
in parallel, all of them performing the same task. Performancewise, it is crucial to send
all requests from a particular user to the same Box during one session. Otherwise com-
puters in the cluster would have to utilize some kind of a shared memory which would
hold all information about sessions. This could easily became a bottleneck of the whole
system. Therefore we have decided that Boxes should run completely separate, and logs
they generate should then be combined into one big log periodically byGatherer(e.g.
via NFS).

Gatherer is an external program, which reads logs generated by different Boxes and
outputs a combined log. All concurrency issues emerging from accessing one shared log
file in Boxes (lock contention, network issues originating from the use of a distributed
file system, etc.) are thus avoided.

On the other hand, there has to be centralized configuration so that every module
that runs inside Box uses the same model and parameters. This task is fulfilled byOver-
seer– a simple in-memory database. Analyzers insert models, needed by online parts,
into the Overseer. Some modules may query Overseer about specific information they



need on demand and some read the current version of the model contained in Overseer
when Boxes are starting up. Later, when new models are calculated by offline analyz-
ers, a special signal is generated, which informs all Boxes that objects in Overseer have
been changed. Upon receival of that signal modules can update local copy of the model.
As a result all Boxes have up-to-date versions of model.

At the beginning of the processing of every message, the Box logs appropriate prop-
erties of request (as described in Section 2). Then the request is passed to registered
modules, which may modify it or even generate response without involving the WWW
server. SEE9 (a personalized search engine andSIE control center) takes advantage of
this functionality. SEE checks whether the request refers to Web site’s search engine.
When it does – a response is produced and returned to user. Otherwise request is for-
warded to the WWW server. Similarly, the check if the request is for theSIE control
page is conducted. Control page is a place where the user can modify individual param-
eters for different modules. For example, she can set how many links will be added by
BM to every page or set the favored search criterion described in section 5.2.

When response arrives from the WWW server, the same Box which processed the
request modifies all the links found in the HTML document sent in the response, so
they uniquely identify user and her session. Additionally a parse tree of the HTML
page is constructed if any of the modules uses this form. The tree is then passed to all
active modules. In current implementation, only module calledBetterMaker10 uses this
functionality and adds personalized links to every page. BetterMaker uses data prepared
by eXPerimenter, an offline analyzer described below.

4.2 The offline part

Offline parts are run periodically (e.g. using standard UNIXcron daemon) during
low system load or on a computer dedicated to this task. The main idea is to perform
some calculations using a log produced by Gatherer, which would be impossible or too
expensive to do online. In additionSIEprovides the modules with the current, analyzed
content of the web server. A special program calledRobotis responsible for preparing
this data.

Offline parts should analyze the log and information about all the pages on the site
in order to produce data, which would be useful for their respective online parts. For
example, running an analyzer which would generate a model of Web site users’ behavior
every night would make the site truly adaptive, as the model would be updated daily.

Currently there are two analyzers implemented:

eXPerimenter - analyzes traversal trees generated by Web site users. Then it generates
a model for BetterMaker (the online counterpart), which uses this model online to
personalize pages (by adding potentially interesting links to them).

A-SEE - analyzes features of pages which have been visited by all users. E-SEE (the
online counterpart) uses generated model to personalize search results for users by
appropriately reordering links returned by search engine.

9 Details concerning the example modules can be found in the next section.
10 See next section for more information.



Fig. 4.Offline part as a support for online part. Arrows indicate information flow.

A more detailed description of the example modules can be found in the next sec-
tion.

5 Modules

5.1 Adapter

Adapter consists of two parts

– eXPerimenter (XP) – offline analyzer
– Better Maker (BM) – online module

The most visible to the end user is a little table with links predicted to be most useful
to her. BM as an online module modifies responses sent back to the user and adds the
table to the page. To generate this table, BM uses a model prepared periodically (e.g.
daily) by XP. Model is stored as an object in Overseer and therefore when a new version
is generated by XP it is automatically updated in all computers in the cluster. Number
of links generated by system can be controlled by the user through a special control
panel. In current implementation, the number of links chosen by the user is not stored
in any persistent storage, so it is lost upon restart ofSIE.

To effectively render such table two problems had to be solved. First, basing on
previous traversal patterns of users of the Web site, given current user’s trail, the algo-
rithm has to predict which pages the user might visit next and with what probability. We
chose for that task error-pruned Selective Markov Models described in [10]. The model
containsk distinct Markov models, wherek is the maximum episode length taken into
account.k-th Markov model contains probabilities of visiting pagej, having previously
visited pagesi1, i2, . . . , ik. Fork = 0 the model reduces to unconditional probability11

11 To be exact instead of probability we use frequency – the maximum likelihood estimator.



of visiting given page in the Web site. With the growth ofk, the model would grow
enormously, sopruning technique had to be applied. Currently, it is done using a sub-
set of logs, which is not used for calculating Markov models. For details on the exact
method ofoverall error pruningplease refer to [10].

Attributing web pages with probabilities is not enough. Some pages may be buried
down in the site’s structure (i.e. to reach them user has to click on many links) whereas
some others may be easily accessible. To compensate this, BM ranks links using ex-
pected number of saved clicks, i.e. the product of probability of visiting the page the
link points to and number of clicks that would be saved had the link been put on the
current page. To estimate this value, BM uses MINPATH – a simple recursive algorithm
given in [2]. The algorithm takes as an input current user’s trail and the model gener-
ated by XP and returns list of links ranked by the expected amount of saved clicks to
the user. Carefully selected maximal recursion depth and great OCaml run-time perfor-
mance allows for executing MINPATH for every response which is sent to the user.

Currently, Adapter does not distinguish between users – i.e. the same model is used
for every user visiting Web site. Of course this approach may cause poor personalization
on large sites with many different types of users. In such situation, a more sophisticated
model needs to be used. We discuss possible improvements in the next section.

5.2 SEE

Another module is SEE – a search engine which aims at personalizing search results.
More precisely, even though all searching users receive the same list of links, they get
them in a different order. The order is set by SEE’s knowledge about a specific user.
To illustrate this, let us refer back to the example mentioned in the introduction. Let us
assume that the user is concerned about “chaos” meaning a mythological phenomenon.
Therefore she should find pages on ancient gods before those concerning fractals.

First theSEE analyzer(A-SEE) indexes the Web site’s resources rating each page
according to a number of criteria (e.g. amount of text and pictures, number of links,
etc.). The value of each criterion is represented by an integer between zero and ten. The
criteria vector which is thereby computed describes the characteristics of each page.

SIE is then employed to provide the history of the user’s searches. Not only does
SEE focus on the keywords the user is searching for, but, more importantly, it takes into
account which pages she chooses from the results suggested. This analysis shows which
criteria are important for this particular user when she is looking for this particular
keyword. It works like this: when the user looks for a word some results are provided
by SEE or by any other search engine. The user clicks on one of the links provided. SEE
assumes the user has chosen this particular page because she prefers it for some reason.
After a period of time, the analyzer computes an arithmetical mean for the criteria
values of such chosen pages. This results in SEE obtaining a set of weights for each
user-keyword combination. These weights indicate which criteria are important (and to
what extent) to this particular user when she is searching for this particular keyword.

The analyzer’s task ends here. SEE comes back into action whenever the user
searches the Web again. The resulting list of pages is sorted according to the criteria
earlier identified as the ones preferred by theSIE user. More precisely, each resource



containing the keyword has its criteria vector. For each page SEE multiplies this vec-
tor by adequate (for this particular user and keyword) weights and, thus, the ranking is
computed.

The more the user searches, the wider SEE’s knowledge about her and, thus, the
more accurate the search results the user receives.

To provide the user with more control over her searches, SEE allows her to choose
one criterion to be used individually. Should the user employ this feature, her lists of
links will always begin with pages favored by the criterion.

6 Possible improvements

SIE is in an early development stage and there are many features still to be added.
For us, it is most important to developSIE itself as a platform for building intelligent
Web proxies. However, we have also a few ideas for the improvement of the already
implemented modules and adding of new, equally interesting ones.

6.1 SIE itself

SIE is a framework created to aid the programmers. This is why it is crucial to develop
additional technical documentation, tutorials, easy and well-commented example mod-
ules, etc. to make learningSIE as easy as possible. In the future, we are planning to
create a graphical system to automatize basic tasks or to enable them to be performed
by mouse drag-and-drop operations.

On the other hand every computer system should be easy to install and maintain.
That is why we would like to add an automatic installer as well as create ready-to-
use compiled packages for MS Windows and popular Linux distributions. In addition,
a graphical user interface is needed for administrative purposes. It would be also very
useful to enable the administrator to load/unload the modules without restarting the
whole system. To accomplish this the usage of Overseer has to be enhanced. It can be
used to provide communication between central administration console and Boxes. The
infrastructure is present and working (i.e. the Overseer itself) but there is no code in
Box that would allow for remote administration and feedback (e.g. sending of warnings
and system logs describing error conditions).

In order to makeSIEused in practice, we must improve the graphical aspect of our
system. Elements added by our modules are readable, but they are behind the aesthetic
standards imposed by modern HTML documents.

6.2 Modules

New modulesWe hope to extendSIEby writing new modules ourselves and to encour-
age others to contribute their ideas as new modules as well. Currently, we see immediate
need to add two modules which would show:

1. Topk most popular pages
2. k most recently added pages



We are also developing a module to record and save user session (as in a sequence
of user clicks) as a program inWTL. WTL is a new script language, developed by us
specially for describing user behavior on a web page. Such a program can be executed
later, simulating user actions. This simulation could be used as a test, resembling real
scenarios of Web site usage allowing to measure Web server’s performance or find
broken links. It can be also used to automatize some routine tasks done using a HTML
interface.

Adapter As mentioned in section 5.1 is a fairly simple module, which was imple-
mented rather as proof of a theoretical concept than a module intended to be used in
reality. Many features can be, however, improved or added.

First of all, BM constructs – and XP uses – only one model. For large Web sites it
is obvious that no single model could be appropriate for all users. Therefore, basing on
clustering of users, Adapter has to use many models, one for every user cluster. Possible
approaches to user clustering are described e.g. in [7] and [12].

Another technique, which could prove useful for Adapter, ispage clustering. Bas-
ing on words (terms) contained in the documents from the Web site, the module could
group those documents into clusters of pages with similar content. Alternatively such
classification could be done manually or semi-automatically (with the help of some-
one, who would provide keywords for every page). Especially appealing in this context
seems to be the algorithm calledConcept Indexing(described in [11]). For every page, it
devises a list of terms (calledconcepts), which best describe the page’s content. Having
concepts attributed to every page, it is possible to create, for each user, a list of concepts
she (or cluster of users) is interested in. Such information can be valuable from the mar-
keting point of view (directing advertisements or communication to the user) and can
also help resolve the problem of new pages – when a new page is added to the Web site
it is not added to as a suggested link by BM because it is not yet seen in logs. With the
help of concepts, BM can find all users potentially interested in reading the new page,
and include link to the page on pages viewed by them.

Additionally, concepts could allow for creating models on a higher level of abstrac-
tion than URLs – namely clusters of pages. Such models could be used for visualization
of user access patterns (as in [7]) or, as noted in [3], to predict Web page entries on a dif-
ferent Web site but with similar structure.

SEE The way we developed SEE imposed on us the assumption that, before everything
else, the general mechanism was needed. Now, when the module sorts links individu-
ally for each user, the lack of strong criteria has proved to be its main flaw. The criteria
we have implemented only indicate how powerful SEE could be. They mainly test the
percentage, on each rated page, of certain HTML tags, inside which are the keywords.
The concept of semantics-driven criteria has accompanied the whole process of devel-
oping SEE. In other words, SEE could immensely benefit from clustering pages which
cover the same topics.

Another issue which SEE should deal with is the size of the model. SEE attempts to
store information in pairs: the user and a given keyword. Hence the need for grouping



users sharing common interests (in terms of criteria). SEE could also do with a way of
clustering keywords that the users perceive as similar.

7 Conclusion

Adaptive web and personalizing Web servers are relatively young fields of computer
science. In spiteSIE is still an immature system, we hope it will help the scientists to
test their ideas and develop new modules. Such a framework could prove very useful in
social sciences, or in fields that include interaction with humans, as it is impossible to
model their behavior in absolutely abstract way.

We were not able to find any similar framework freely available on the Internet. We
hopeSIEwill fill this gap and make future research easier.

8 Acknowledgments

First of all we would like to thank Krzysztof Ciebiera, who had the main idea of
the project. Without his irreplaceable help as our tutor the project would probably
not succeed.SIE itself was developed by many authors. Detailed list can be found at
http://sie.mimuw.edu.pl .

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items
in Large Databases. InProceedings of SIGMOD-93, pages 207–216, 1993.

2. C. Anderson, P. Domingos, and D. Weld. Adaptive web navigation for wireless devices,
2001.

3. C. Anderson, P. Domingos, and D. Weld. Relational markov models and their application to
adaptive web navigation, 2002.

4. C. R. Anderson.A Machine Learning Approach to Web Personalization. PhD thesis, Uni-
versity of Washington, 2002.

5. R. Barrett and P. P. Maglio. Intermediaries: New places for producing and manipulating web
content. InWorld Wide Web, 1999.

6. R. Barrett, P. P. Maglio, and D. C. Kellem. How to personalize the web. InProceedings of
the Conference on Human Factors in Computing Systems CHI’97, 1997.

7. I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Visualization of navigation
patterns on a web site using model-based clustering. InKnowledge Discovery and Data
Mining, pages 280–284, 2000.

8. S. Chakrabarti.Mining the Web. Morgan Kaufmann Publishers, San Francisco, 2003.
9. R. Cooley.Web Usage Mining: Discovery and Application of Interesting Patterns from Web

Data. PhD thesis, University of Minnesota, 2000.
10. M. Deshpande and G. Karypis. Selective Markov Models for Predicting Web-Page Accesses,

2001.
11. G. Karypis and E.-H. Han. Concept indexing: A fast dimensionality reduction algorithm

with applications to document retrieval and categorization. Technical report tr-00-0016,
University of Minnesota, 2000.

http://sie.mimuw.edu.pl


12. B. Mobasher, H. Dai, and M. Tao. Discovery and evaluation of aggregate usage profiles for
web personalization, 2002.

13. M. Perkowitz. Adaptive Web Sites: Cluster Mining and Conceptual Clustering for Index
Page Synthesis. PhD thesis, University of Washington, 2001.

14. M. Perkowitz and O. Etzioni. Adaptive Web Sites: an AI Challenge. InIJCAI (1), pages
16–23, 1997.

15. M. Perkowitz and O. Etzioni. Towards adaptive Web sites: conceptual framework and case
study.Computer Networks (Amsterdam, Netherlands: 1999), 31(11–16):1245–1258, 1999.

16. P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable structures from the
web. InCHI-96, Vancouver, 1996.

17. W3C. Web characterization activity. http://www.w3.org/WCA.


	SIE -- Intelligent Web Proxy Framework
	Grzegorz Andruszkiewicz, Krzysztof Ciebiera, Marcin Gozdalik, Cezary Kaliszyk, Mateusz Srebrny

